Prof. Dr. Frank Loose, Dr. Sebastian Egger WS 2012/13 26.10.2012 Blatt 2

Übungen zu "Mathematik für Physiker 3"

1. (4 Punkte) Sei \mathbb{K} ein Körper und

$$A = \begin{pmatrix} 3 & 1 & 5 \\ 2 & 0 & 3 \\ 2 & -1 & 4 \end{pmatrix} \in Mat_2(\mathbb{K}).$$

- a) Sei $\mathbb{K} = \mathbb{Q}$. Berechnen Sie alle Eigenwerte von A sowie ihre algebraischen und geometrischen Vielfachheiten. Ist A diagonalisierbar?
- b) Sei $\mathbb{K} = \mathbb{F}_2$. Ist A diagonalisierbar?
- 2. (4 Punkte) Sei \mathbb{K} ein Körper, $n \in \mathbb{N}$ und $R = \mathbb{K}[T_1, \dots, T_n]$ der Polynomring in n Unbestimmten über \mathbb{K} (kommutative bzgl. der Variablen T_1, \dots, T_n). Für $k = 1, \dots, n$ definiert man das k-te elementarsymmetrische Polynom in n Unbestimmten über \mathbb{K} durch. Für $k = 1, \dots, n$ definiert man das k-te elementarsymmetrische Polynom in n Unbestimmten über \mathbb{K} durch

$$s_k(T_1,\ldots,T_n) = \sum_{1 \le i_1 \le \ldots \le i_k \le n} T_{i_1} \ldots T_{i_k}.$$

- a) Bestimmen Sie $s_1, s_2, s_n \in \mathbb{K}[T_1, \dots, T_n]$ (für $n \geq 2$) explizit.
- b) Sei \mathcal{S}_n die symmetrische Gruppe (in n Einträgen) und $\sigma \in \mathcal{S}_n$. Zeigen Sie (für alle $k = 1, \ldots, n$),

$$s_k\left(T_{\sigma(1)},\ldots,T_{\sigma(n)}\right)=s_k\left(T_1,\ldots,T_n\right).$$

c) Sei nun $A \in \operatorname{Mat}_n(\mathbb{K})$ diagonalisierbar und $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$ ihre Eigenwerte (mit Vielfachheiten aufgeführt). Sei für $k = 1, \ldots, n$ $S_k(A) \in \mathbb{K}$ der Koeffizient von T^{n-k} im charakteristischen Polynom von A. Zeigen Sie, dass dann (für alle $k = 1, \ldots, n$) gilt:

$$S_k(A) = (-1)^k s_k(\lambda_1, \dots, \lambda_n).$$

3. (4 Punkte) Eine Funktion $f: \mathbb{R} \to \mathbb{C}$ heißt 2π -periodisch, wenn für alle $x \in \mathbb{R}$ gilt: $f(x+2\pi) = f(x)$. Sei

$$V := \{ f : \mathbb{R} \to \mathbb{C}; \ f \text{ ist } 2\pi\text{-periodisch und stetig} \}$$

und weiter für $f, g \in V$

$$\langle f, g \rangle := \frac{1}{2\pi} \int_{0}^{2\pi} \overline{f(x)} g(x) dx.$$

Zeigen Sie, dass $V \subset \mathrm{Abb}(\mathbb{R}, \mathbb{C})$ ein komplexer Unterraum ist und $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ eine Hermitische Form.

4. (4 Punkte) (Cayley-Hamilton) Sei $A \in \operatorname{Mat}_n(\mathbb{K})$ und $P_A(T) = \sum_{r=0}^n a_r T^r$ das charakteristische Polynom von A. Zeigen Sie ($\mathbf{0} \in \operatorname{Mat}_n(\mathbb{K})$, $\mathbf{0}_{lm} = 0$, $1 \le l, m \le n$),

$$P_A(A) := \sum_{r=0}^n a_r A^r = \mathbf{0}.$$

(Hinweis: Folgern Sie aus der Identität $G^{ad}_{ij}=(-1)^{i+j}\det(G^{ji})$ eine Darstellung der Form $(TE_n-A)^{ad}=\sum_{r=0}^{n-1}B_rT^r$ (siehe Vorlesung). Führen Sie anschließend einen Koeffizientenvergleich der Identität $P_A(T)E_n=(TE_n-A)^{ad}(TE_n-A)$ (siehe Vorlesung) mithilfe der oben gewonnenen Darstellung durch, untersuchen Sie damit $P_A(A)$.)

Abgabe: Freitag, 02.11.2012, 11 Uhr in der Vorlesung