Elementare Differentialgeometrie von Kurven und Flächen

Übungsblatt 7

Aufgabe 25: Drehfläche

Sei $\mathbf{X}(t,\varphi) = (r(t)\cos(\varphi), r(t)\sin(\varphi), h(t))$ mit $\dot{r}^2 + \dot{h}^2 = 1$.

Berechne g, k, G, H. Wo kommt die Krümmung der Kurve $\gamma(t) = (r(t), 0, h(t))$ vor?

Aufgabe 26: Regelfläche

Sei $\gamma(s) \in \mathbb{R}^3$ eine parametrisierte Kurve und Y ein Vektorfeld längs γ . Dann nennt man $X(s,t) = \gamma(s) + tY(s)$ eine Regelfläche.

Berechne g. Wie müssen γ und Y gewählt werden, damit X einen Zylinder oder einen Kegel parametrisiert?

Aufgabe 27:

Sei k die 2. Fundamentalform an einem Punkt der Fläche $\boldsymbol{X}(\boldsymbol{u})$. Skizziere die $\boldsymbol{Y} \in T_{\boldsymbol{u}}\boldsymbol{X}$ mit $k(\boldsymbol{Y},\boldsymbol{Y})=1$ abhängig davon, ob G>0 oder G<0.

Aufgabe 28:

Seien E_1 und E_2 die Eigenvektoren der Weingartenabbildung L, also $LE_i = \kappa_i E_i$, mit $||E_i|| = 1$.

a) Zeige

$$g(LY, Z) = g(Y, LZ).$$

Schliesse daraus, dass

$$g(\boldsymbol{E}_1, \boldsymbol{E}_2) = 0,$$

falls $\kappa_1 \neq \kappa_2$.

b) Sei $\mathbf{v}(\theta) = \mathbf{E}_1 \cos(\theta) + \mathbf{E}_2 \sin(\theta)$. Zeige

$$\frac{1}{2\pi} \int_0^{2\pi} k(\boldsymbol{v}(\theta), \boldsymbol{v}(\theta)) d\theta = H,$$

wobei H die mittlere Krümmung ist.