Potenzen
Exponentialfunktion
Logarithmus
Umkehrfunktionen

Mathematik I für Biologen, Geowissenschaftler und Geoökologen Exponentialfunktion & Logarithmus

Stefan Keppeler

4. November 2013

Potenzen

Definitionsbereiche

Potenzrechenregeln

Exponentialfunktion

Wachstums- bzw. Zerfallsprozesse

Beispiel

exp

Dimensionen

Beispiel: Radioaktiver Zerfall

Beispiel: Lichtabsorption

Logarithmus

Definition

Umkehrfunktionen

Injektivität

Beispiel: \sqrt{x}

Monotonie

Potenzen x^{α} sind auf dreierlei Definitionsbereichen erklärt:

- $x \in \mathbb{R} \setminus \{0\}$ und $\alpha \in \mathbb{Z}$
- ightharpoonup x = 0 und $\alpha \ge 0$
- ightharpoonup x > 0 und $\alpha \in \mathbb{R}$.

Nicht erklärt (in \mathbb{R}) ist x^{α} demnach für

- x = 0 und $\alpha < 0$ (also nicht " $\frac{1}{0}$ ")
- ▶ x < 0 und $\alpha \in \mathbb{R} \setminus \mathbb{Z}$ (also z.B. nicht " $\sqrt{-1}$ ")

Übrigens:

$$\qquad \qquad \mathbf{x}^{1/2} = \sqrt{x} \quad \text{ und } \quad x^{1/n} = \sqrt[n]{x}$$

Rechenregeln

- $x^{\alpha}x^{\beta} = x^{(\alpha+\beta)}$
- $ightharpoonup x^0 = 1$, $x^1 = x$ und $0^{\alpha} = 0$ (für $\alpha > 0$)
- $(x^{\alpha})^{\beta} = x^{\alpha\beta}$
- $\rightarrow x^{\alpha}y^{\alpha} = (xy)^{\alpha}$

Beispiel:
$$\sqrt[3]{9^{-2} \cdot 3} = \sqrt[3]$$

Außerdem:

- - , vergleiche auch mit ÜA 21.

Wachstums- bzw. Zerfallsprozesse Beispiel exp Dimensionen Beispiel: Radioaktiver Zerfall Beispiel: Lichtabsorption

Wachstums- bzw. Zerfallsprozesse

- ► Bisher: ganzzahlige Zeit t (zeitdiskret)
- ▶ Jetzt auch: $t \in \mathbb{R}$ (kontinuierlich)
- Gleichungen

$$G_t = \alpha^t G_0$$
 (geometrisch) (1)

$$A_t = A_0 + \beta t \qquad \text{(arithmetisch)} \tag{2}$$

bleiben gültig (nicht jedoch die Rekursionen!).

- Funktionen
 - ▶ der Form (1) heißen Exponentialfunktionen,
 - ▶ der Form (2), linear bzw. affin-linear.

Notation:

Statt G_t bzw. A_t scheibt man auch oft G(t) bzw. A(t).

Wachstums- bzw. Zerfallsprozesse Beispiel exp Dimensionen

Beispiel: Radioaktiver Zerfall Beispiel: Lichtabsorption

Beispiel:

- ► Kredit über 100€ zu 6% Jahreszins
- ► Rückzahlung nach halbem Jahr: Wieviel? 🖉

$$G_{1/2} = \alpha^{1/2} G_0 = \sqrt{1,06} \cdot 100 \in \approx 102,96 \in$$

nicht mit $\frac{6\%}{2} = 3\%$ verzinsen, $3 \in$ Zinsen wären zu viel.

- ► Entsprechend: Schuld nach einem Monat: $G_{1/12} = \alpha^{1/12} G_0 \approx 100,487 \in$
- ▶ Insbesondere ist der monatliche Zinssatz $\approx 0.487\%$, und damit geringer als $\frac{6\%}{12} = 0.5\%$ (vgl. Zinseszins)

Wachstums- bzw. Zerfallsprozesse Beispiel exp Dimensionen Beispiel: Radioaktiver Zerfall Beispiel: Lichtabsorption

Andere Schreibweise:

- $ightharpoonup \alpha^t = e^{\gamma t}$.
- ▶ wobei e = 2,71828182846... (Eulersche Zahl),
- lacktriangle und $\gamma \in \mathbb{R}$ so gewählt, dass $\mathrm{e}^{\gamma} = \alpha$.
- e als Basis ist geschickt, da $(e^x)' = e^x$. (Ableitung, später)
- ▶ Statt e^x schreibt man auch exp(x) (Exponentialfunktion).

Wachstums- bzw. Zerfallsprozesse Beispiel exp Dimensionen

Beispiel: Radioaktiver Zerfall Beispiel: Lichtabsorption

Dimensionen

- ▶ Betrachte t nicht als reine Zahl (z.B. Anzahl Jahre), sondern als dimensionsbehaftet (verstrichene Zeit)
- ► Exponent muss dimensionlos sein
 - schreibe daher statt α^t nun $\alpha^{t/T}$,
 - ▶ mit Vergleichs-Zeitraum *T* (frei wählbare Einheit)

$$\qquad \text{Mit } \lambda = \tfrac{\gamma}{T} \text{ gilt: } \\ \qquad \alpha^{t/T} = (\mathrm{e}^{\gamma})^{t/T} = \mathrm{e}^{\gamma t/T} = e^{\lambda t}$$

- ▶ Dimension: $[\lambda] = 1/[t]$
- ▶ Bedeutung folgt aus $G_{1/\lambda} = e G_0$ bzw. $G_{-1/\lambda} = \frac{1}{e} G_0$:
 - $\lambda > 0$: $\frac{1}{\lambda}$ ist die Zeit, in der G auf das e-fache anwächst
 - $ightharpoonup \lambda < 0$: $-\frac{1}{\lambda}$ ist die Zeit, in der G auf das $\frac{1}{e}$ -fache abfällt

Wachstums- bzw. Zerfallsprozesse Beispiel exp Dimensionen Beispiel: Radioaktiver Zerfall Beispiel: Lichtabsorption

Beispiel: Radioaktiver Zerfall

▶ G(t): Materialmenge (in Anzahl Atome oder Mol oder kg...) als Funktion der Zeit t ist Exponentialfunktion,

$$G(t) = G(0) e^{-\lambda t},$$

mit Materialkonstante $\lambda > 0$.

▶ Z(t): Anzahl Zerfälle in einem Zeitintervall [t, t+T], T fest, ist ebenfalls Exponentialfunktion,

$$Z(t) = Z(0) e^{-\lambda t}$$

mit derselben Konstante $\lambda > 0$.

▶ Bedeutung: In gleich langen Zeitintervallen [t, t+T] zerfällt stets derselbe Anteil der zu Beginn vorhandenen Menge.

Wachstums- bzw. Zerfallsprozesse Beispiel exp Dimensionen Beispiel: Radioaktiver Zerfall

Beispiel: Lichtabsorption

Beispiel: Lambert-Beer-Gesetz der Lichtabsorption

Legt ein monochromatischer (einfarbiger) Lichtstrahl der einfallenden Intensität (Energie) I_0 durch ein absorbierendes Medium (z.B. Farbstoff) den Weg s zurück, so beträgt die Intensität des austretenden Strahls

$$I_s = I_0 e^{-\lambda s},$$

wobei die Konstante λ vom Material, von der Konzentration des Materials (z.B. in Wasser gelöster Farbstoff) und der Farbe (Wellenlänge) des Lichts abhängt.

Wachstums- bzw. Zerfallsprozesse Beispiel exp Dimensionen Beispiel: Radioaktiver Zerfall

Beispiel: Lichtabsorption

Herleitung: Lambert-Beer-Gesetz der Lichtabsorption

- ightharpoonup Die Intensität des austretenden Strahls $I_{
 m aus}$ ist immer proportional zur Intensität des einfallenden Strahls $I_{
 m ein}$.
- ► Skizze 🌽

$$\Rightarrow \qquad \alpha_{s_1} \cdot \alpha_{s_2} = \alpha_{s_1 + s_2}$$

• Klappt nur, falls $\alpha_s = e^{-\lambda s}$, denn

$$\alpha_{s_1} \, \alpha_{s_2} = e^{-\lambda s_1} \, e^{-\lambda s_2} = e^{-\lambda (s_1 + s_2)} = \alpha_{s_1 + s_2} \,.$$

Der Logarithmus ist die Umkehrfunktion der Exponentialfunktion, d.h.

$$y = \log x$$

ist die eindeutige Lösung der Gleichung ${\rm e}^y=x$ zu gegebenem x>0.

- ► Es gilt also $\log(e^x) = x = e^{\log x}$ für x > 0.
- ► Damit folgen Rechenregeln für den Logarithmus aus den Potenzrechenregeln

Machmal schreibt man auch \ln (*Logarithmus naturalis*) statt \log – wir schreiben \log .

Wann besitzt eine Funktion $f: A \rightarrow B$ eine Umkehrfunktion?

Definition: Eine Funktion $f:A\to B$ heißt injektiv, wenn die Bilder verschiedener Elemente stets verschieden sind, d.h.

$$f(x) \neq f(y)$$
 für $x \neq y$.

Menn f nicht injektiv ist, dann besitzt die Gleichung f(x) = b für manche b mehrere Lösungen x.

▶ Wenn f injektiv ist, dann besitzt sie genau eine Lösung, genannt $x = f^{-1}(b)$, für jedes $b \in f(A) = \{f(a) : a \in A\} \subseteq B$.

Definition: Die so definierte Funktion $f^{-1}:f(A)\to A$ heißt Umkehrfunktion von f und erfüllt

$$f^{-1}(f(x)) = x$$
 und $f(f^{-1}(b)) = b$.

Beispiel:

- ▶ Die Wurzelfunktion $x \mapsto \sqrt{x}$ ist die Umkehrfunktion der Funktion $f_1: [0, \infty) \to \mathbb{R}$ gegeben durch $f_1(x) = x^2$.
- ▶ Ebenso ist $x \mapsto -\sqrt{x}$ die Umkehrfunktion von $f_2: (-\infty, 0] \to \mathbb{R}$ mit $f_2(x) = x^2$.

Beachte: (Notation)

$$f^{-1} \neq \frac{1}{f}$$

Definition: Eine Funktion $f: \mathbb{R} \supseteq D \to \mathbb{R}$ heißt

- streng monoton wachsend, wenn f(x) < f(y) für x < y,
- streng monoton fallend, wenn f(x) > f(y) für x < y,
- monoton wachsend, wenn $f(x) \leq f(y)$ für x < y und
- monoton fallend, wenn $f(x) \ge f(y)$ für x < y.

Beispiele:

- exp ist streng monoton wachsend
- f = const ist monoton wachsend und fallend, aber nicht streng
- ▶ $x \mapsto x^{\alpha}$ auf dem Definitionsbereich $D = [0, \infty)$ ist streng monoton wachsend für $\alpha > 0$ und fallend für $\alpha < 0$.

Satz:

Streng monotone Funktionen $f: D \to \mathbb{R}$, $D \subseteq \mathbb{R}$ sind injektiv.

Folgerung:

- ► Da exp streng wachsend ist,
- und da $\exp(\mathbb{R}) = \mathbb{R}^+ = (0, \infty) = \{x \in \mathbb{R} \, | \, x > 0\},$
- existiert auf $D = \mathbb{R}^+$ die Umkehrfunktion, genannt \log (Logarithmus).

