Mathematik für Physiker 3

Übungsblatt 9

Aufgabe 1:

 $(\times, *, 4 \text{ Punkte})$

Die Pauli-Matrizen sind definiert durch

$$\sigma_1 := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 := \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Weiter setzen wir für einen Vektor $a \in \mathbb{R}^3$, $a \cdot \sigma := \sum_{i=1}^3 a_i \sigma_i \in M(2, \mathbb{C})$ und definieren den Raum $\mathfrak{su}(2) := \{A \in M(2, \mathbb{C}) | A = a \cdot \sigma, \ a \in \mathbb{R}^3\}$, den wir als Vektorraum über \mathbb{R} auffassen.

Zeige, dass

$$(a \cdot \sigma)(b \cdot \sigma) = \langle a, b \rangle_{\mathbb{R}^3} E_2 + i(a \times b) \cdot \sigma$$

gilt, wobei $a \times b$ das Kreuzprodukt im \mathbb{R}^3 bezeichnet und $E_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Nun definieren wir ein Skalarprodukt auf $\mathfrak{su}(2)$ durch

$$\langle \cdot, \cdot \rangle_{\mathfrak{su}(2)} : \mathfrak{su}(2) \times \mathfrak{su}(2) \to \mathbb{R}, \quad \langle A, B \rangle_{\mathfrak{su}(2)} = \frac{1}{2} \mathrm{Spur}(AB).$$

Dabei ist $\operatorname{Spur}(A) = a_{11} + a_{22}$, wobei a_{ij} (i, j = 1, 2, 3), die Einträge der Matrix A sind. Zeige, dass die lineare Abbildung $\phi : \mathbb{R}^3 \to \mathfrak{su}(2)$, $a \mapsto a \cdot \sigma$ ein isometrischer Isomorphismus ist. D.h. ϕ ist ein Isomorphismus, der die Norm erhält. Der \mathbb{R}^3 ist mit dem euklidischen Skalarprodukt versehen.

Aufgabe 2:
$$(\times)$$

Sei $n \in \mathbb{R}^3$ normiert, also ||n|| = 1, und $\sigma = (\sigma_1, \sigma_2, \sigma_3)$ der Vektor der Paulimatrizen aus Aufgabe 1. Zeige, dass

$$e^{i\alpha(n\cdot\sigma)} = \cos(\alpha)E_2 + i(n\cdot\sigma)\sin(\alpha).$$

Folgere daraus, dass $\exp(i \mathfrak{su}(2)) \subset SU(2)$ ist. Hinweis: Verwende die Beziehung aus Aufgabe 1 und die Reihendarstellung der Exponentialfunktion.

Aufgabe 3: $(\times, *, 4 \text{ Punkte})$

Seien Äquivalenzrelationen definiert wie auf Seite 62 im Skript (Def. 3.72). Welche der folgenden Relationen \sim sind Äquivalenzrelationen (mit Beweis)?

- a) Für Matrizen $A, B \in M(n, \mathbb{K})$ und n > 1 setzen wir $A \sim B \Leftrightarrow AB = BA$.
- b) Sei M eine nichtleere Menge von Vektorräumen. Für $U,V\in M$ setze $U\sim V,$ falls es einen Isomorphismus $\Phi:U\to V$ gibt.
- c) Für Zahlen $a, b \in \mathbb{R}$, setze $a \sim b \Leftrightarrow a \geq b$.

Aufgabe 4:
$$(\times)$$

Bestimme die Spektraldarstellung der selbstadjungierten Matrix

$$A = \begin{pmatrix} 1 & 0 & 3i \\ 0 & -3 & 0 \\ -3i & 0 & 1 \end{pmatrix},$$

d.h. schreibe A in der Form $A = \sum_{j=1}^{3} \lambda_j P_j$ mit den Eigenwerten λ_j und den zugehörigen Spekralprojektionen P_j .

Aufgabe 5:
$$(\times)$$

Bestimme eine Jordan-Normalform der Matrix

$$\begin{pmatrix} -1 & 0 & 4 \\ 2 & -1 & 0 \\ 3 & 2 & -1 \end{pmatrix}.$$

Bestimme ebenfalls die zugehörige Transformationsmatrix.