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Abstract. We study singularities f ∈ K[[x1, . . . , xn]] over an algebraically

closed field K of arbitrary characteristic with respect to right respectively con-

tact equivalence, and we establish that the finiteness of the Milnor respectively

the Tjurina number is equivalent to finite determinacy. We introduce the no-

tion of differential order and use this to give improved bounds for the degree

of determinacy in positive characteristic. Moreover, we consider different non-

degeneracy conditions of Kouchnirenko, Wall and Beelen-Pellikaan in positive

characteristic, and we show that Newton non-degenerate singularities satisfy

Milnor’s formula µ = 2 · δ − r + 1.

1. Introduction

Throughout this paper K shall be an algebraically closed field of arbitrary charac-

teristic unless explicitly stated otherwise. By

K[[x]] = K[[x1, . . . , xn]] =

{

∑

α∈Nn

aα · xα
∣

∣

∣
aα ∈ K

}

we denote the formal power series ring over K in n ≥ 2 indeterminates x1, . . . , xn

using the usual multiindex notation x
α = xα1

1 · · ·xαn
n for α = (α1, . . . , αn) ∈ Nn.

Moreover, we denote by

m = 〈x1, . . . , xn〉 � K[[x]]

the unique maximal ideal of K[[x]], so that the set of units in K[[x]] is K[[x]]∗ =

K[[x]] \ m.

If we are interested in the geometry of a power series f ∈ K[[x]] there are two

natural equivalence relations with respect to which we may want to consider it.

We say that two power series f, g ∈ K[[x]] are right equivalent to each other if

and only if there is an automorphism ϕ ∈ Aut(K[[x]]) such that f = ϕ(g), and we

denote this by f ∼r g. If we replaced K by the complex numbers and formal power

series by convergent ones then ϕ would induce an isomorphism of the zero fiber of
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f as well as of close by fibers. That is how we should interpret right equivalence

also in this more general setting.

If we are only interested in the geometry of the zero fiber, then the second equiv-

alence relation is the appropriate one. We call f, g ∈ K[[x]] contact equivalent

to each other if and only if there is an automorphism ϕ ∈ Aut(K[[x]]) and a unit

u ∈ K[[x]]∗ such that f = u ·ϕ(g), and we denote this by f ∼c g. The idea here is,

that ϕ and u still induce an isomorphism of the zero fibers of f and g.

However, we have to replace the geometric notion of the zero fiber by the algebraic

counterpart of its coordinate ring. That is, for a power series f ∈ K[[x]] we call

the analytic K-algebra Rf = K[[x]]/〈f〉 the induced hypersurface singularity. We

obviously have

f ∼c g ⇐⇒ Rf
∼= Rg,

i.e. f and g are contact equivalent if and only if the induced hypersurface singular-

ities are isomorphic as local K-algebras.

Right equivalence as well as contact equivalence can be expressed via group actions.

The group R = Aut(K[[x]]) operates on K[[x]] and the equivalence classes of K[[x]]

with respect to right equivalence are the orbits of this group, which we therefore

call the right group. Similarly, the semidirect product

K = K[[x]]∗ ⋉ Aut(K[[x]])

with multiplication

(u, ϕ) · (v, ψ) = (u · ϕ(v), ϕ ◦ ψ)

operates on K[[x]] and the orbits of this group operation are the equivalence classes

with respect to contact equivalence. K is also known as the contact group.

Over the complex numbers we say that the origin is an isolated singular point of f

if f is not singular at any point close-by, i.e. the origin is the only common zero of

the partial derivatives of f . We reformulate this algebraically so that it works over

any field. For a power series f ∈ K[[x]] we thus denote by

j(f) = 〈fx1
, . . . , fxn

〉 � K[[x]]

the Jacobian ideal of f , i.e. the ideal generated by the partial derivatives of f , and

we call the associated algebra

Mf = K[[x]]/ j(f)

the Milnor algebra of f and its dimension

µ(f) = dimK(Mf )

the Milnor number of f . We then call the origin an isolated singular point of f ,

or we simply call f an isolated singularity if µ(f) <∞, which is equivalent to the

existence of a positive integer k such that m
k ⊆ j(f).
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Similarly, over C we would call the origin an isolated singular point of the hypersur-

face singularity defined by f if this hypersurface singularity has no other singular

point close-by, i.e. the origin is the only common zero of f and its partial derivatives.

Algebraically we thus consider the Tjurina ideal

tj(f) = 〈f, fx1
, . . . , fxn

〉 = 〈f〉 + j(f) � K[[x]]

of f , the associated Tjurina algebra

Tf = K[[x]]/ tj(f)

of f and its dimension

τ(f) = dimK(Tf ),

the Tjurina number of f . We then call the origin an isolated singular point of the

hypersurface singularity Rf , or we will simply call Rf an isolated hypersurface

singularity if τ(f) < ∞ or, equivalently, if there is a positive integer such that

m
k ⊆ tj(f).

It is straight forward to see ([Bou09, Lem. 1.2.7]) that for an automorphism ϕ ∈

Aut(K[[x]]) and a unit u ∈ K[[x]]∗ we have

j
(

ϕ(f)
)

= ϕ
(

j(f)
)

and

tj
(

uϕ(f)
)

= ϕ(tj(f)
)

.

In particular, the Milnor number is invariant under right equivalence and the Tju-

rina number is invariant under contact equivalence.

It is a non-trivial theorem, using methods from complex analysis, which cannot

be extended to other fields that the Milnor number is indeed invariant under con-

tact equivalence (see [Gre75, p. 262]), and it is even a topological invariant (see

[TrR76]). Using the Lefschetz Principle the result for contact equivalence can be

generalised to arbitrary algebraically closed fields of characteristic zero (see [Bou09,

Prop. 5.2.1,Prop. 5.3.1] for a detailed proof of Theorem 1.1 and Theorem 1.2).

Theorem 1.1

Let K be an algebraically closed field of characteristic zero and f, g ∈ K[[x]].

If f ∼c g, then µ(f) = µ(g).

Proof: Since the Milnor number is invariant under right equivalence, it suffices to

show that µ(f) = µ(u · f) for any unit u ∈ K[[x]]∗. If A denotes the subset of K

containing the coefficients of u, f and all partial derivatives fxi
of f , then A is at

most countable infinite. Since char(K) = 0 and since Q ⊂ C is a field extension of

uncountable transcendence degree the field Q(A) is isomorphic to a subfield L of

the field C of complex numbers, and we may suppose that f and u · f belong to
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L[[x]] ⊆ C[[x]]. Now using the fact that over the complex numbers f and u ·f have

the same Milnor number we get

µ(f) = dimL(L[[x]]/ j(f)) = dimC(C[[x]]/ j(f))

= dimC(C[[x]]/ j(u · f)) = dimL(L[[x]]/ j(u · f)) = µ(u · f).

�

In positive characteristic this result does not hold any more; e.g. if char(K) = p > 0

and f = xp +yp−1, then µ(f) = ∞ while the contact equivalent series g = (1+x) ·f

has Milnor number µ(g) = p · (p− 2).

A well-known result in complex singularity theory states that the Milnor number

of a power series is finite if and only if the Tjurina number is so, i.e. that the

origin is an isolated singularity of f if and only if it is an isolated singular point

of the corresponding hypersurface (see [GLS07, Lem. 2.3]). This fact can also be

generalised to arbitrary fields of characteristic zero using the Lefschetz principle.

Theorem 1.2

Let K be an algebraically closed field of characteristic zero and f ∈ K[[x]].

Then µ(f) <∞ if and only if τ(f) <∞.

Proof: Let A be the set of coefficients of f and all its partial derivatives. As in

the proof of Theorem 1.1 the field Q(A) is isomorphic to a subfield L of C. We may

therefore assume that f ∈ L[[x]] ⊂ C[[x]], so that

µ(f) = dimL(L[[x]]/ j(f)) = dimC(C[[x]]/ j(f)),

τ(f) = dimL(L[[x]]/ tj(f)) = dimC(C[[x]]/ tj(f)).

Using the result for C, τ(f) is finite if and only if µ(f) is finite. �

For fields of positive characteristic this is false. The same example as above shows

that τ(f) = p · (p− 2) while µ(f) = ∞.

Our principle interest is the classification of power series with respect to right

respectively contact equivalence, where the latter is the same as to say that we

are interested in classifying hypersurface singularities up to isomorphism (see also

[BGM10]). In order to do this we need finiteness conditions and therefore we

restrict to the isolated case, i.e. to the case that f is an isolated singularity for

right equivalence and to the case that Rf is an isolated hypersurface singularity for

contact equivalence, which are two distinct conditions in arbitrary characteristic.

A first important step in the attempt to classify singularities from a theoretical

point of view as well as from a practical one is to know that the equivalence class

is determined by a finite number of terms of the power series f and to find the

(smallest) corresponding degree bound. We say that f is right k-determined if f is
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right equivalent to every g ∈ K[[x]] whose k-jet coincides with that of f , where the

k-jet of f is

jetk(f) = f ∈ K[[x]]/mk+1

the residue class of f modulo the k+1-st power of the maximal ideal. I.e. f is right

k-determined if it is right equivalent to every g which coincides with f up to order

k. Similarly, we call f contact k-determined if f is contact equivalent to every g

whose k-jet coincides with that of f . In both situations we say that f is finitely

determined if it is k-determined for some positive integer k, and we call the least

such k the determinacy of f .

Over the complex numbers it is well known that f is finitely determined w.r.t. right

or contact equivalence if and only if f respectively Rf is an isolated singularity.

It is straight forward to generalise this to any field of characteristic zero, using

the infinitesimal characterisation of local triviality. Since the proof involves the

solution of a differential equation, it does not work in positive characteristic. We

will, however, prove the following theorem.

Theorem 2.8

Let 0 6= f ∈ m � K[[x]] be a power series.

(a) f is an isolated singularity if and only if f is finitely right determined.

(b) Rf is an isolated hypersurface singularity if and only if f is finitely contact

determined.

In the complex case and thus for arbitrary fields of characteristic zero it is known

that the right determinacy is at most µ(f) + 1 and the contact determinacy is at

most τ(f)+1. For arbitrary characteristic it was shown in [GrK90] (among others)

that 2 · µ(f) respectively 2 · τ(f) are bounds for the degree of right respectively

contact determinacy. We will improve these bounds substantially, in particular

for right equivalence by introducing the differential order, in Section 2. For the

formulation of our result we introduce the order ord(f) of a non-zero power series

as the largest integer k such that f ∈ m
k, i.e. the smallest integer k such that f

has non-zero terms of degree k, and we set ord(0) = ∞. Moreover, we introduce

the differential order of f to be

d(f) := min{ord(fx1
), . . . , ord(fxn

)}.

Note that d(f) = ord(f) − 1 if char(K) ∤ ord(f), e.g. ifchar(K) = 0, and that

d(f) = sup{l | j(f) ⊆ m
l}.

Hence d(f) is invariant under right equivalence, while ord(f) is even invariant under

contact equivalence.

Theorem 2.1

Let 0 6= f ∈ m
2 � K[[x]] and k ∈ N.
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(a) If m
k+2 ⊆ m

2 · j(f), then f is right (2k − d(f) + 1)-determined.

(b) If m
k+2 ⊆ m · 〈f〉 + m

2 · j(f), then f is contact (2k − ord(f) + 2)-determined.

Corollary 2.4

Let 0 6= f ∈ m
2 � K[[x]].

(a) If µ(f) <∞, then the right determinacy of f is at most 2µ(f) − d(f) + 1.

(b) If τ(f) <∞, then the contact determinacy of f is at most 2τ(f)− ord(f) + 2.

The Milnor number of a singularity is governed by the geometry of its Newton

polytope. In [Kou76] Kouchnirenko introduced the Newton number of a singularity

which only depends on the Newton polytope, and he showed that this number

is a lower bound for the Milnor number. Moreover, these two numbers coincide

for non-degenerate singularities with fixed Newton polytope – no matter what the

characteristic of the base field is. Unfortunately, his non-degeneracy assumption

(Newton non-degeneracy, NND) does not include all right semi-quasihomogeneous

singularities (see page 20), which led Wall (see [Wal99]) to the modified notion of

strict Newton non-degeneracy SNND in characteristic zero. Neither of these notions

fully implies the other, but there are well-understood relations, and Wall’s notion

allows to determine the Milnor number of a singularity from the geometry of the

Newton polytope in the same way. In Section 3 we introduce the different notions

of non-degeneracy and the Newton number µN (f), recall Kouchnirenko’s result and

generalise Wall’s result to positive characteristic.

Theorem 3.4 (Kouchnirenko, [Kou76])

For f ∈ K[[x]] we have µN (f) ≤ µ(f), and if f is NND and convenient then

µ(f) = µN (f) <∞.

Theorem 3.6 (Wall, [Wal99])

If f ∈ K[[x]] is SNND w.r.t. some C-polytope, then

µ(f) = µN (f) = µN

(

Γ−(f)
)

<∞.

Moreover, we will show that if the Newton polytope has only one facet then the

right semi-quasihomogeneous singularities are precisely the strictly Newton non-

degenerate ones (see Proposition 3.9). In the case of plane curve singularities we

shall see that the condition of convenience can be dropped (in any characteristic)

for the equality of the Milnor and the Newton number (see Proposition 4.5), and

we show that Newton non-degeneracy implies strict Newton non-degeneracy (see

Proposition 4.3).

Under a somewhat weaker assumption WNND than Newton non-degeneracy Beelen

and Pellikaan showed in [BeP00] how the delta invariant of a plane curve singu-

larity can be computed in terms of the Newton polygon. Combining this with
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Kouchnirenko’s formula we deduce that also in positive characteristic Newton non-

degenerate singularities satisfy Milnor’s well-known formula µ(f) = 2·δ(f)−r(f)+1,

relating the Milnor number and the delta invariant.

Theorem 4.13

If f ∈ K[[x]] is ND along each face of Γ(f), then µ(f) = 2 · δ(f) − r(f) + 1.

2. Finite determinacy

In this section we prove that finite determinacy is equivalent to the isolatedness of

the singularity. We start by showing that an isolated singularity is finitely deter-

mined and improve previously known determinacy bounds.

Theorem 2.1

Let 0 6= f ∈ m
2 and k ∈ N.

(a) If m
k+2 ⊆ m

2 · j(f), then f is right (2k − d(f) + 1)-determined.

(b) If m
k+2 ⊆ m · 〈f〉 + m

2 · j(f), then f is contact (2k − ord(f) + 2)-determined.

Proof: We first consider the case of contact determinacy and set o = ord(f). It

follows that ord(fxi
) ≥ o− 1 for all i = 1, . . . , n and by assumption we thus have

m
k+2 ⊆ m · 〈f〉 + m

2 · 〈fx1
, . . . , fxn

〉 ⊆ m
o+1.

This implies k ≥ o− 1. We set

N = 2k − o+ 2 ≥ k + 1,

and we consider g ∈ K[[x]] such that g − f ∈ m
N+1, i.e. f and g have the same

N -jet. We have to show that f and g are contact equivalent, i.e. that there exists

a unit u ∈ K[[x]]∗ and an automorphism ϕ ∈ Aut(K[[x]]) such that

g = u · ϕ(f).

We want to construct u and ϕ inductively, i.e. we want to construct inductively

sequences of units (up)p≥1 and of automorphisms (ϕp)p≥1 such that up · ϕp(f)

converges in the m-adic topology to u · ϕ(f) for some unit u ∈ K[[x]]∗ and some

automorphism ϕ ∈ Aut(K[[x]]) and at the same time

g − up · ϕp(f) ∈ m
N+1+p,

for all p ≥ 1. The latter implies that the up · ϕp(f) converge to g as well, and thus

g = u · ϕ(f).

Taking Lemma 2.2 into account and using its terminology with M = N − k ≥ 1 it

suffices to construct certain series bp,0 ∈ m
M+p−1 and bp,i ∈ m

M+p for i = 1, . . . , n

and p ≥ 1. For this we note that by assumption

g − f ∈ m
N+1 = m

M−1 · mk+2 ⊆ m
M · 〈f〉 + m

M+1 · j(f).
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Thus there are series b1,0 ∈ m
M and b1,i ∈ m

M+1 for i = 1, . . . , n such that

g − f = b1,0 · f +

n
∑

i=1

b1,i · fxi
. (1)

As in Lemma 2.2 we define v1 = 1 + b1,0 ∈ K[[x]]∗ and

φ1 : K[[x]] −→ K[[x]] : xi 7→ xi + b1,i.

We now want to show that

g − v1 · φ1(f) ∈ m
N+2,

since then we can replace f in the above argument by v1·φ1(f) and go on inductively.

Let us consider the formal Taylor expansion of f(z) at x

f(z) = f(x) +
n
∑

i=1

fxi
(x) · (zi − xi) +

∑

|α|≥2

Dαf(x) · (z1 − x1)α1 · · · (zn − xn)αn ,

where Dαf we denotes the corresponding formal partial derivative of f , α =

(α1, . . . , αn), |α| = α1 + . . .+ αn. Note that

ord(Dαf) ≥ o− |α|.

Applying φ1 to f amounts to substituting zi by xi + b1,i and we thus find

φ1(f) = f +
n
∑

i=1

fxi
· b1,i + h

where

h =
∑

|α|≥2

Dαf(x) · bα1

1,1 · · · b
αn

1,n ∈ m
N+2,

since

ord
(

Dαf(x) · bα1

1,1 · · · b
αn

1,n

)

≥ ord
(

Dαf(x)
)

+
n
∑

i=1

ord(b1,i) · αi

≥ o− |α| + (M + 1) · |α| ≥ o+ 2 ·M = N + 2.

Multiplying φ1(f) by v1 = 1 + b1,0 and using (1) we get

g − v1 · φ1(f) =g − (1 + b1,0) ·

(

f +
n
∑

i=1

fxi
· b1,i + h

)

= −
n
∑

i=1

b1,0 · b1,i · fxi
− (1 + b1,0) · h ∈ m

N+2,

(2)

since

ord(b1,0 · b1,i · fxi
) ≥M + (M + 1) + (o− 1) = N + 2.
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We thus can proceed inductively to construct sequences (bp,i)p≥1 for i = 0, . . . , n

with bp,0 ∈ m
M+p−1 and bp,i ∈ m

M+p for i = 1, . . . , n. The generalisation of (2)

holds by induction and with the notation of Lemma 2.2 it reads as

g − up · ϕp(f) ∈ m
N+1+p

as required. This finishes the proof for the contact equivalence.

The proof for right equivalence works along the same lines. With the notation from

above and o := d(f) + 1 the condition

m
k+2 ⊆ m

2 · j(f) ⊆ m
o+1

implies that still k ≥ o− 1 and that for any g with

g − f ∈ m
N+1 = m

M−1 · mk+2 ⊆ m
M+1 · j(f)

where N = 2k − d(f) + 1 = 2k − o + 2 ≥ k + 1 and M = N − k ≥ 1, there are

b1,i ∈ m
M+1 with

g − f = b1,1 · fx1
+ . . .+ b1,n · fxn

.

We can then define φ1 as above and see that

g − φ1(f) = h ∈ m
N+2.

Going on by induction and applying Lemma 2.2 we get an automorphism ϕ ∈

Aut(K[[x]]) such that g = ϕ(f). �

Lemma 2.2

Let M ≥ 1 be an integer and let bp,0 ∈ m
M+p−1 and bp,i ∈ m

M+p for i = 1, . . . , n

and p ≥ 1. Consider the units vp = 1 + bp,0 ∈ K[[x]]∗ and the automorphisms

φp ∈ Aut(K[[x]]) given by

φp : xi 7→ xi + bp,i for i = 1, . . . , n.

We denote by

ϕp = φp ◦ φp−1 ◦ . . . ◦ φ1 ∈ Aut(K[[x]])

the composition of the first p automorphisms, and we define inductively

up = vp · φp(up−1),

where u0 = 1.

Then the following hold true:

(a) The sequences
(

ϕp(xi)
)

p≥1
converge in the m-adic topology of K[[x]] to power

series xi + bi with bi ∈ m
M+1 for i = 1, . . . , n. In particular, the map

ϕ : K[[x]] −→ K[[x]] : xi 7→ xi + bi

is a local K-algebra automorphism of K[[x]].

(b) The sequence (up)p≥1 converges in the m-adic topology to a unit u = 1 + b0 ∈

K[[x]]∗ with b0 ∈ m
M .
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(c) For any power series f0 ∈ K[[x]] the sequence
(

ϕp(f0)
)

p≥1
converges in the

m-adic topology to ϕ(f0).

(d) For any power series f0 ∈ K[[x]] the sequence
(

up · ϕp(f0)
)

p≥1
converges in

the m-adic topology to u · ϕ(f0).

Proof: Since bp,i ∈ m
M+p for i = 1, . . . , n we have by construction that

ϕp(xi) − ϕp−1(xi) = φp

(

ϕp−1(xi)
)

− ϕp−1(xi) ∈ m
M+p,

and thus for any N ≥ 1 there is a P = max{N − M, 1} ≥ 1 such that for all

p > q > P

ϕp(xi) − ϕq(xi) =

p
∑

j=q+1

ϕj(xi) − ϕj−1(xi) ∈ m
M+P ⊆ m

N .

This shows that the ϕp(xi) converge to a power series of the form xi + bi with

bi ∈ m
M+1. Note that bi ≡ bi,1 (mod m

M+1). Similarly we have that

φp(up−1) − up−1 ∈ m
M+p,

and since bp,0 ∈ m
M+p−1 thus also

up − up−1 = (1 + bp,0) · φp(up−1) − up−1 ∈ m
M+p−1.

With basically the same argument as above we see that up converges in the m-

adic topology to a power series of the form 1 + b0 with b0 ∈ m
M . Note that

b0 ≡ b0,1 (mod m
M ).

Let now f0 ∈ K[[x]] be any power series and let N ∈ N be given. Since the ϕp(xi)

converge to ϕ(xi) and the up converge to u, there is a P ≥ 1 such that for all p ≥ P

and i = 1, . . . , n

ϕ(xi) − ϕp(xi) ∈ m
N as well as u− up ∈ m

N .

It follows that also

ϕ(f0) − ϕp(f0) ∈ m
N ,

and

u · ϕ(f0) − up · ϕp(f0) = u ·
(

ϕ(f0) − ϕp(f0)
)

+ (u− up) · ϕp(f0) ∈ m
N

for all p ≥ P . Thus the ϕp(f0) converge to ϕ(f0) and the up · ϕp(f0) converge to

u · ϕ(f0). �

Remark 2.3 (a) If the base field K has characteristic zero it is known that

m
k+2 ⊆ m

2 · j(f)

implies right-(k + 1)-determinacy of f , and that

m
k+2 ⊆ m · 〈f〉 + m

2 · j(f)

implies contact-(k + 1)-determinacy of f – see e.g. [GLS07, Thm. 2.23] for

K = C and [Bou09, Thm. 3.1.13] for the general case. In particular, the
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assumptions of Theorem 2.1 would in each case imply k + 1 as determinacy

bound, which in general is strictly better than 2k − d(f) + 1 ≥ k + 1 resp.

2k − ord(f) + 2 ≥ k + 1.

(b) In positive characteristic the bounds in (a) do not hold any longer. Con-

sider the power series f = y2 + x3y ∈ K[x, y], char(K) = 2. Then tj(f) =

〈y2, x2y, x3〉 and thus τ(f) = 5. In particular, f defines an isolated hypersur-

face singularity Rf . Moreover, we have

〈f〉 + m · j(f) = 〈y2, x3y, x4〉 ⊃ m
4,

and if (a) would hold then f would be 5-determined. However, f is reducible

while f + x5 is irreducible as can be checked by the procedure is irred

in Singular [DGPS10]. Therefore, Rf and Rf+x5 cannot be isomorphic,

i.e. f 6∼c f + x5, and f is not 5-determined. Theorem 2.1 asserts that f is

actually 6-determined, i.e. our result is sharp in this example.

(c) The determinacy bounds given in Theorem 2.1 are always at least as good

as the previously known bounds 2 · µ(f) respectively 2 · τ(f) for arbitrary

characteristic, and they are in general much better (see e.g. the example in Part

(b)). This follows from the following two facts, which are easy consequences

of Nakayama’s Lemma:

• If µ(f) <∞, then m
µ(f) ⊆ j(f).

• If τ(f) <∞, then m
τ(f) ⊆ tj(f).

To see this it suffices to show that for any ideal I�K[[x]] with d = dimK(K[[x]]/I) <

∞ we have m
d ⊆ I. In the ring K[[x]]/I by Nakayama’s Lemma the descend-

ing sequence of powers m
k of the maximal ideal has to be strictly descending

until it finally becomes zero. Thus in each step the codimension of m
k grows

at least by one, and it can do so at most d times. Thus md = 0 or equivalently

m
d ⊆ I.

(d) In concrete examples the integers k in Theorem 2.1 can be computed in Sin-

gular with the aid of the procedure highcorner.

Corollary 2.4

Let 0 6= f ∈ m
2 � K[[x]].

(a) If µ(f) <∞, then the right determinacy of f is at most 2µ(f) − d(f) + 1.

(b) If τ(f) <∞, then the contact determinacy of f is at most 2τ(f)− ord(f) + 2.

Proof: This follows from Remark 2.3 (c) and Theorem 2.1. �

The assumptions in Theorem 2.1 are fulfilled if f respectively Rf is an isolated

singularity, and thus these are finitely determined. In the complex setting it is well

known that the converse holds as well (see e.g. [GLS07, Cor. 2.39]), and the same

is true in arbitrary characteristic.
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Theorem 2.5

Let 0 6= f ∈ m � K[[x]] be a power series.

(a) If f is right k-determined, then m
k+1 ⊆ m · j(f). In particular, f is an isolated

singularity.

(b) If f is contact k-determined, then m
k+1 ⊆ 〈f〉 + m · j(f). In particular, Rf is

an isolated hypersurface singularity.

In the proof of Theorem 2.5 we will restrict ourselves to the case of contact equiva-

lence, since the case of right equivalence can be treated analogously. But before we

come to the proof we would like to fix some notation. We have already seen that

contact equivalence can be phrased via the action of the contact group K on K[[x]].

If a power series is finitely determined then only terms up to some finite order are

relevant. We thus consider K[[x]] as well as the contact group modulo some power

of the maximal ideal, and we will now introduce the necessary notation.

We denote by

Jl = K[[x]]/ml+1

the space of l-jets of power series in K[[x]]. Recall that each local K-algebra auto-

morphism ϕ of K[[x]] is uniquely represented by a tuple (ϕ1, . . . , ϕn) ∈ K[[x]]n of

power series such that

ϕi(0) = 0 for all i = 1, . . . , n

and

det

(

∂ϕi

∂xj

(0)

)

i,j=1,...,n

6= 0.

We define the l-jet of the automorphism ϕ as

jetl(ϕ) := (jetl(ϕ1), . . . , jetl(ϕn)) ,

and the l-jet of the contact group

Kl := jetl(K[[x]]∗) ⋉ jetl

(

Aut(K[[x]])
)

via the multiplication

(

jetl(u), jetl(ϕ)
)

·
(

jetl(v), jetl(ψ)
)

:=
(

jetl(u · ϕ(v)), jetl(ϕ ◦ ψ)
)

which is independent of the chosen representatives. The l-jet of the contact group

then operates on the l-jet of K[[x]] via

Φl : Kl × Jl −→ Jl :
(

(jetl(u), jetl(ϕ)), jetl(f)
)

7→ jetl

(

u · ϕ(f)
)

,

i.e. by taking representatives, let them act and taking the l-jet.

Analogously, we define the l-jet Rl of the right group R = Aut(K[[x]]) and it

operates on Jl.
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Remark 2.6

Note also that Jl is an affine space and Kl and Rl are affine algebraic groups acting

on Jl via a regular separable algebraic action.

Proof that the actions are separable: We restrict to the case of the action of

Kl and we choose coordinates on Jl and of Kl. Writing

jetl(f) =
l
∑

|α|=0

aαx
α,

and

jetl(ϕi) =

l
∑

|β|=1

bi,βx
β ,

and

jetl(u) =

l
∑

|γ|=0

cγx
γ

we have the coordinates

(aα, bi,β , cγ)α,i,β,γ

on Kl × Jl with c0 6= 0 and det(B) 6= 0 where B = (Bij) with Bij = ∂ϕi

∂xj
(0) = bi,ej

and ej is the j-th canonical basis vector in Zn. Using in the same manner the

coordinates

(a′δ)|δ|=0,...,l

on the target space the action is given by polynomial maps

a′δ = Fδ(aα, bi,β , cγ),

and it is important to note that the inverse of the action is given by rational maps

aα =
Gα(a′δ, bi,β , cγ)

Hα(a′δ, bi,β , cγ)
.

The reason for this is that we can solve for the aα degree by degree starting basically

with Cramer’s rule, and this property ensures that for the extension of the fields of

rational functions induced by the operation Φl we have

K(Jl) = K(a′δ) ⊂ K(Kl × Jl) = K(aα, bi,β , cγ) = K(a′δ, bi,β , cγ) = K(Jl)(bi,β , cγ).

The bi,β and cγ are algebraically independent over K(aα) and comparing transcen-

dence degrees they must be so over K(Jl). Thus K(Kl × Jl) is a purely transcen-

dental extension of K(Jl), and it is thus by default a separably generated extension

in the sense of [Har77, p. 27]. Thus Kl operates separably on Jl. �

This allows us to describe the tangent space to the orbits also in positive charac-

teristic (for K = C see [GLS07, Prop. 2.38]).
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Proposition 2.7

Let f ∈ K[[x]]. Then the tangent space to the orbit of jetl(f) under the action of

Rl respectively Kl considered as a subspace of Jl is

Tjetl(f)

(

Rl · jetl(f)
)

=
(

m · j(f) + m
l+1
)

/ml+1

respectively

Tjetl(f)

(

Kl · jetl(f)
)

=
(

〈f〉 + m · j(f) + m
l+1
)

/ml+1.

Proof: If G denotes one of the two above groups then the action of G on Jl induces

a surjective separable morphism G −→ G · jetl(f) of smooth varieties. Thus the

induced differential map on the tangent spaces is generically surjective (see e.g. the

proof of [Har77, Lem. III.10.5.1]). However, since we can translate each point in G

to a point where the tangent map is surjective and the translation is an isomorphism

the differential map is actually always surjective. It thus suffices to understand the

image of the tangent space to G at the neutral element of the group and its image

under the differential map. We restrict here to the case G = Kl since the proof for

Rl works analogously.

The tangent space to Kl at (1, id) can be described via the local K-algebra homo-

morphisms from the local ring of Kl to K[ε] where ε2 = 0. In this sense, a tangent

vector is represented by the residue class modulo m
l+1 of a tuple

(

1 + ε · a, id +ε · φ
)

with a ∈ K[[x]] and φ = (φ1, . . . , φn) where φi ∈ m. We now apply the differential

map by acting with the above tuple on f modulo m
l+1. Taking ε2 = 0 and Taylor

expansion into account we get

(1 + ε · a) · f
(

x + ε · φ
)

= f + ε ·

(

a · f +

n
∑

i=1

fxi
· φi

)

.

Interpreted in J l this tangent vector is just the l-jet of

a · f +

n
∑

i=1

fxi
· φi,

which proves the claim. �

Proof of Theorem 2.5: We only do the proof for contact determinacy since the

other case works analogously. If f is contact k determined and g ∈ m
k+1 then for

any t ∈ K the k + 1-jet jetk+1(f) + t · jetk+1(g) is in the orbit of jetk+1(f) under

Kk+1. But then

jetk+1(g) ∈ Tjetk+1(f)

(

Kk+1 · jetk+1(f)
)

= 〈f〉 + m · j(f) + m
k+2/mk+2.

This implies

g ∈ 〈f〉 + m · j(f) + m
k+2,
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and hence

m
k+1 ⊆ 〈f〉 + m · j(f) + m

k+2.

By Nakayama’s Lemma we finally get

m
k+1 ⊆ 〈f〉 + m · j(f),

as claimed. �

Combining the results of Corollary 2.4 and of Theorem 2.5 we get the following

result.

Theorem 2.8

Let 0 6= f ∈ m � K[[x]] be a power series.

(a) f is an isolated singularity if and only if f is finitely right determined.

(b) Rf is an isolated hypersurface singularity if and only if f is finitely contact

determined.

3. Non-degenerate singularities

For the convenience of the reader let us recall the definition of the Newton poly-

tope and Wall’s notion of a C-polytope (see [Wal99]). To each power series f =
∑

α aαx
α ∈ K[[x]] we can associate its Newton diagram Γ+(f) as the convex hull

of the set
⋃

α∈supp(f)

(

α+ Rn
≥0

)

where supp(f) = {α | aα 6= 0} denotes the support of f . This is an unbounded

polytope in Rn. We call the union Γ(f) of its compact faces the Newton polytope of

f . By Γ−(f) we denote the union of all line segments joining the origin to a point

on Γ(f). (See Figure 1 for an example.)

Γ
+

(f) Γ(f) Γ
−

(f)

Figure 1. The Newton polytope of x · (y4 + xy3 + x2y2 − x3y2 + x6).

If the Newton polytope of a singularity f meets all coordinate axes we call f con-

venient. In this case the Newton polytope of f can be used to define a filtration on

K[[x]] by finite dimensional vector spaces. However, not every isolated singularity is

convenient, and one then has to enlarge the Newton polytope. A compact rational

polytope P of dimension n − 1 in the positive orthant Rn
≥0 is called a C-polytope

if the region above P is convex and if every ray in the positive orthant emanating
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from the origin meets P in exactly one point. Typical examples are the Newton

polytopes of convenient series.

We will now first introduce the different notions of non-degeneracy. For this let

f =
∑

α aα · xα ∈ m be a power series, let P be a C-polytope such that supp(f)

has no point below P , and let ∆ be a face of P . By in∆(f) =
∑

α∈∆ aα · xα we

denote the initial form or principal part of f along ∆.

Following Wall we call f non-degenerate ND along ∆ if the Jacobian ideal j(in∆(f))

has no zero in the torus (K∗)n. f is then said to be Newton non-degenerate NND if

f is non-degenerate along each face of the Newton polytope Γ(f). Note that unlike

Wall we do not require f to be convenient.

To define strict non-degeneracy we need to fix two more notions. The face ∆ is an

inner face of P if it is not contained in any coordinate hyperplane. And each point

q ∈ Kn determines a coordinate hyperspace Hq =
⋂

qi=0{xi = 0} ⊆ Rn in Rn. We

call f strictly non-degenerate SND along ∆ if for each zero q of the Jacobian ideal

j(in∆(f)) the polytope ∆ contains no point on Hq. And we finally call f strictly

Newton non-degenerate SNND w.r.t. a C-polytope P if f is strictly non-degenerate

along each inner face of P .

Finally, we call f weakly non-degenerate WND along ∆ if the Tjurina ideal tj(in∆(f))

has no zero in the torus (K∗)n, and f is called weakly Newton non-degenerate

WNND if f is weakly non-degenerate along each facet of Γ(f). Recall that a facet

is a top-dimensional face.

Remark 3.1

We collect some easy facts on and relations between the different types of non-

degeneracy. For any occuring C-polytope and power series f we assume that no

point in supp(f) lies below P .

(a) Each of the non-degeneracy conditions introduced above only depends the

principal part inP (f) =
∑

α∈P aα · xα of f w.r.t. P .

(b) Obviously ND along ∆ implies WND along ∆ and both are equivalent in

characteristic zero, or, more generally, if char(K) does not divide the weighted

degree of in∆(f).

(c) WNND is strictly weaker than NND.

E.g. f = x3 + y2 with char(K) = 3, then f is WNND but not NND, since f is

not ND along ∆ = {(3, 0)}.

(d) If f is SND along ∆, then f is ND along ∆.

(e) If ∆ does not meet any coordinate hyperplane, then f is ND along ∆ if and

only if f is SND along ∆.
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(f) ND does not in general imply SND.

E.g. f = x2y2 +y4 and ∆ the line segment from (4, 0) to (0, 4), then f satisfies

ND along ∆, but not SND.

(g) f can be convenient and SNND without satisfying NND.

E.g. f = (x + y)2 + xz + z2 with char(K) 6= 2, then Γ(f) has a unique facet

∆ with f = in∆(f) and Sing(f) = {0}. Thus f is SNND, but f is not ND

along the line segment from (2, 0, 0) to (0, 2, 0) which is a face of Γ(f) (see also

[Kou76]).

(h) If f is NND and k · ei ∈ Γ(f), where ei is the i-th standard basis vector of Rn,

then char(K) does not divide k.

(i) f satisfies SND at an inner vertex α = (α1, . . . , αn) of P if and only if α is a

vertex of Γ(f) and some αi is not divisible by char(K).

(j) In characteristic zero each of the above non-degeneracy conditions is a general-

ity condition in the sense that fixing a C-polytope P then, among all polyno-

mials f with supp(f) ⊆ P , there is a Zariski open dense subset which satisfies

the non-degeneracy condition. In positive characteristic some additional as-

sumptions on the C-polytope P are necessary, like that not all coordinates of

a vertex should be divisible by the characteristic.

2

The following two remarks shed some light on the definition of NND and SNND.

Remark 3.2 ([Kou76])

Kouchnirenko defines ND and NND actually by considering common zeros of xi ·

in∆(f)xi
for i = 1, . . . , n, since these polynomials are better suited with respect

to the piecewise filtration induced by the C-polytope P = Γ(f) (see [Kou76] or

[BGM10, Sec. 3] for details on this filtration). However, they have no common

zero in the torus if and only if j(in∆(f)) has no zero in the torus, so that the two

definitions coincide.

Each face ∆ of the Newton polytope of a convenient power series f determines a

finitely generated semigroup C∆ in Zn by considering those lattice points which lie

in the cone over ∆ with the origin as base. This semigroup then determines a finitely

generated K-algebra K[C∆] = K[xα|α ∈ C∆], and the polynomials xi · in∆(f)xi
,

i = 1, . . . , n generate an ideal, say I∆, in K[C∆].

It then turns out that (see [Kou76, Thm. 6.2] or [Wal99, Prop. 2.2])

dimK(K[C∆]/I∆) <∞ ⇐⇒ f is ND along all faces of ∆.

We should like to point out that f ND along ∆ is not sufficient for the finiteness

of dimK(K[C∆]/I∆). Consider e.g. f = x3 + y2 with char(K) = 3 and ∆ = Γ(f),

then f = in∆(f) and j(f) has no zero in the torus, yet K[C∆]/I∆ = K[x, y]/〈y〉 has

infinite dimension.
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The piecewise filtration induced by P determines a graded algebra grP (K[[x]]/IP )

for the piecewise homogeneous ideal IP = 〈xi · inP (f)xi
| i = 1, . . . , n〉. We can

view K[C∆]/I∆ in a natural way as a quotient of grP (K[[x]]/IP ), and we then get

an injective map (see [Kou76, Prop. 2.6])

grP (K[[x]]/IP ) −→
⊕

∆ face of Γ(f)

K[C∆]/I∆.

This shows right away that dimK(grP (K[[x]]/IP ) is finite, if f is NND. From this it

is not hard to see that a monomial K-vector space basis of grP (K[[x]]/IP ) actually

generates Mf (see [BGM10, Sec. 3]), and it thus follows:

f is NND and convenient =⇒ µ(f) <∞.

2

Remark 3.3 ([Wal99])

Wall adapts Kouchnirenko’s arguments and replaces the ideal I∆ by a possibly

somewhat larger ideal. The ideal I∆ was achieved by applying the K[C∆]-module

D0
∆ generated by the derivations xi∂xi

to in∆(f). Wall replaces D0
∆ by the K[C∆]-

module

D∆ = 〈xα · ∂xi
| x

α · ∂xi
(f) ∈ K[C∆] ∀ f ∈ K[C∆]〉

generated by all monomial derivations which leave K[C∆] invariant and considers

the ideal

J∆ = {ξ(in∆(f)) | ξ ∈ D∆}

which results by applyingD∆ to in∆(f). He then shows that (see [Wal99, Prop. 2.2])

dimK(K[C∆]/J∆) <∞ ⇐⇒ f is SND along all inner faces of ∆.

The rings K[C∆]/J∆ can be stacked neatly in an exact sequence of complexes whose

homology was used by Wall to show (see [Wal99, Prop. 1.2, Prop. 2.3] and [BGM10,

Thm. 4.13]):

f is SNND =⇒ µ(f) <∞.

Wall’s arguments use only standard facts from toric geometry and homological

algebra and do not depend on the characteristic of the base field. 2

In [Kou76] Kouchnirenko not only showed that a Newton non-degenerate singularity

f is isolated, but he gives a formula for the Milnor number in terms of certain

volumes of the faces of Γ−(f).

For any compact polytope Q in Rn
≥0 we denote by Vk(Q) the sum of the k-

dimensional Euclidean volumes of the intersections of Q with the k-dimensional

coordinate subspaces of Rn, and following Kouchnirenko we then call

µN (Q) =

n
∑

k=0

(−1)n−k · k! · Vk(Q)
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the Newton number of Q. For a power series f ∈ K[[x]] we define the Newton

number of f to be

µN (f) = sup
{

µN (Γ−(fm))
∣

∣

∣
fm = f + xm

1 + . . .+ xm
n , m ≥ 1

}

∈ Z ∪ {∞}.

If f is convenient, then

µN (f) = µN (Γ−(f)).

The following theorem was proved by Kouchnirenko in arbitrary characteristic.

Theorem 3.4 (Kouchnirenko, [Kou76])

For f ∈ K[[x]] we have µN (f) ≤ µ(f), and if f is NND and convenient then

µ(f) = µN (f) <∞.

Actually, Kouchnirenko shows that in characteristic zero the result still holds if f

is not convenient. We will show in Proposition 4.5 that at least in the planar case

this also holds in arbitrary characteristic.

Example 3.5

Newton non-degeneracy is sufficient but not necessary to ensure that the Milnor

number coincides with the Newton number and both are finite.

If char(K) 6= 2 then f = (x+ y)2 + xz + z2 is not NND (see Remark 3.1), but

µ(f) = µN (f) = 1.

x

y

z

Figure 2. The Newton polytope of f = (x+ y)2 + xz + z2

Wall proved in [Wal99] the analogous result for strictly Newton non-degenerate sin-

gularities in characteristic zero, and his proof generalises to arbitrary characteristic.

Theorem 3.6 (Wall, [Wal99])

If f ∈ K[[x]] is SNND w.r.t. some C-polytope, then

µ(f) = µN (f) = µN

(

Γ−(f)
)

<∞.

Proof: By [Wal99, Prop. 1.2] respectively [BGM10, Thm. 4.13] we know that

µ(f) < ∞. It thus remains to show that µ(f) = µN (f) = µN

(

Γ−(f)
)

, but the

proof for this is the same as in [Wal99, Thm. 1.6] if we take into account that

µ(f) <∞ implies that f is finitely determined (see Theorem 2.8). �
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Example 3.7 (W1,1-Singularities)

A series f with principal part inP (f) = x7 + x3y2 + y4 for P = Γ(f) is SNND if

char(K) 6∈ {2, 3, 7}, and thus f is an isolated singularity.

At the beginning of this section we mentioned that strict Newton non-degeneracy

has the advantage over Newton non-degeneracy that all right semi-quasihomogeneous

singularities satisfy this condition, even if they are not convenient. This is an easy

consequence of the observation in Lemma 3.8 as we will see in Proposition 3.9.

A polynomial f ∈ K[x] is said to be quasihomogeneous QH w.r.t. a weight vec-

tor w ∈ Zn
>0 if all monomials x

α, α ∈ supp(f), have the same weighted degree

degw(xα) = w ·α = w1 ·α1 + . . .+wn ·αn. We call a power series f =
∑

α aα ·xα ∈

K[[x]] right semi-quasihomogeneous rSQH if there is a weight vector w ∈ Zn
>0 such

that the principal part inw(f) =
∑

w·α minimal

aα · x
α has a finite Milnor number.

Note that since in positive characteristic the finiteness of the Milnor number and

the Tjurina number are no longer equivalent we have to distinguish between semi-

quasihomogeneity for right and contact equivalence (see also [BGM10, Sec. 2]).

Lemma 3.8

Let f ∈ K[x] be QH w.r.t. w ∈ Zn
>0, then µ(f) < ∞ if and only if 0 is the only

zero of j(f).

Proof: If a monomial x
α is a linear combination of the partial derivatives of f

in K[[x]] then we only have to consider the suitable weighted homogeneous part,

and it actually is a linear combination in K[x]. Thus µ(f) is finite if and only

if dimK(K[x, y]/ j(f)) < ∞. By Hilbert’s Nullstellensatz the latter is equivalent

to the fact that j(f) has only finitely many zeros in Kn. But since f is weighted

homogeneous for each zero q = (q1, . . . , qn) of j(f) also (tw1q1, . . . , t
wnqn) is a zero

of j(f) for all t ∈ K. Thus j(f) has only finitely many zeros if and only if 0 is the

only zero of j(f). �

Proposition 3.9

Let P be a C-polytope with a single facet ∆ with weight vector w and suppose that

f ∈ K[[x]] has principal part inw(f) = in∆(f) w.r.t. P . Then f is SNND w.r.t. P

if and only f is rSQH w.r.t. w.

In particular, if f is rSQH w.r.t. w of weighted degree d, then

µ(f) =

(

d

w1
− 1

)

· . . . ·

(

d

wn

− 1

)

.

Proof: Since P is a C-polytope the unique facet ∆ meets all coordinate subspaces

except possibly {0}. Thus f is SND along ∆ if and only if Sing(in∆(f)) = {0}. By

Lemma 3.8 this is equivalent to µ(inw(f)) = µ(in∆(f)) < ∞, i.e. that f is rSQH

w.r.t. w.
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The formula for µ(f), first proved by Milnor and Orlik [MiO70] for isolated QH

singularities in characteristic zero, follows from Theorem 3.6 since µN (f) is easily

seen to be the product of the d
wi

− 1. �

Example 3.10

Generalising Example 3.5 we consider f = (x + y)k + xzk−1 + zk for some k ≥ 2

such that char(K) neither divides k nor k−1. Then f is QH w.r.t. w = (1, 1, 1) and

Sing(f) = {0}. Thus by Lemma 3.8 and Proposition 3.9 f is an isolated singularity

and SNND with µ(f) = µN (f) = (k − 1)3. Note that f is not NND.

4. Invariants of plane curve singularities

For the convenience of the reader we start this section by gathering numerical

invariants of a singularity f respectively numbers associated to the geometry of

its Newton polygon that will be introduced and compared throughout. We will

comment on these and their relations further down.

Remark 4.1

Let f ∈ K[[x, y]] be a power series and suppose that the Newton polygon of f has

k facets ∆1, . . . ,∆k. By l(∆i) we denote the lattice length of ∆i, i.e. the number

of lattice points on ∆i minus one.

We fix a minimal resolution of the singularity computed via successively blowing

up points, denote by Q→ 0 that Q is an infinitely near point of the origin and by

mQ the multiplicity of the strict transform of f at Q. Finally, for m ∈ N we set

fm := f + xm + ym.

(a) µ(f) = dimK(K[[x, y]]/〈fx, fy〉) is the Milnor number of f .

(b) δ(f) =
∑

Q→0
mQ·(mQ−1)

2 is the delta invariant of f .

(c) ν(f) =
∑

Q special
mQ·(mQ−1)

2 , where an infinitely near point Q is special if it

is zero or the origin of the corresponding chart of the blowing up.

(d) r(f) is the number of branches of f counted with multiplicity.

(e) If f is convenient, then the Newton number of f is

µN (f) = 2 · V2

(

Γ−(f)
)

− V1

(

Γ−(f)
)

+ 1,

and otherwise it is µN (f) = sup{µN (fm) | m ∈ N}.

(f) If f is convenient, we define

νN (f) = V2(Γ−(f)) −
V1(Γ−(f))

2
+

∑k
i=1 l(∆i)

2
,

and otherwise we set νN (f) = sup{νN (fm) | m ∈ N}.

(g) rN (f) =
∑k

i=1 l(∆i) + max{j | xj divides f} + max{l | yl divides f}.
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Coming back to the different notions of non-degeneracy, a particularly interesting

situation is that of plane curve singularities. We will end this paper by investigating

this case more closely. One of the aims is to show that for non-degeneracy the

condition of convenience is often not necessary, even in positive characteristic. We

now elaborate on the conditions SND and SNND in the planar case.

Remark 4.2

Let f ∈ K[[x, y] and P be a C-polytope such that no point in supp(f) lies below

P .

(a) Then f is SND along an edge ∆ of P if and only if

• all zeros of j(in∆(f)) have at least one coordinate zero if ∆ does not meet

any coordinate axis;

• all zeros of j(in∆(f)) have x-coordinate zero if ∆ only meets the x-axis;

• all zeros of j(in∆(f)) have y-coordinate zero if ∆ only meets the y-axis;

• the only zero of j(in∆(f)) is (0, 0) if ∆ meets both axes.

(b) In [Wal99] Wall describes how much the C-polytope P may differ from Γ(f)

if f is SNND w.r.t. P :

• each inner vertex of P is a vertex of Γ(f);

• an edge of P which does not meet a coordinate axis is an edge of Γ(f);

• an edge of P which meets exactly one of the coordinate axes is either

itself an edge of Γ(f) or, replacing the point on the coordinate axis by

the point on the edge with distance one from the coordinate axis, leads

to an edge or a vertex of Γ(f);

• if P consists of a single edge meeting both coordinate axes, then f is rSQH

w.r.t. any weight vector defining this edge (see Prop. 3.9); in particular,

the principal part of f is reduced and unless it is xy the edge P contains

an edge of the Newton polygon whose end points have distance at most

one from the corresponding axes.

Wall gives this characterisation over the complex numbers, but it actually

holds in the same way in any characteristic.

It turns out that in the planar situation NND implies SNND.

Proposition 4.3

If f ∈ K[[x, y]] is NND, then f is SNND w.r.t. Γ(f).

Proof: Let ∆ be any inner face of Γ(f). If ∆ intersects none of the two coordinate

axes, then f is SND along ∆ since it is ND along ∆ by Remark 3.1.

If ∆ meets the y-axis we have to show that there is no zero of j(in∆(f)) with non-

zero y-coordinate. In this situation ∆ is an edge of the Newton polygon whose one

end point lies on the y-axis, i.e.

in∆(f) = a · yk + x · g
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for some a ∈ K∗, k ≥ 1 and g ∈ K[x, y].

By assumption j(in∆(f)) has no zero in (K∗)2 and we have to exclude the possibility

that it has a zero q = (0, z) ∈ {0} ×K∗. This is the case since

in∆(f)y = a · k · yk−1 + x · gy

and

in∆(f)y(q) = a · k · zk−1 6= 0,

where, for the second statement, we note that by Remark 3.1 char(K) does not

divide k.

Similarly, if ∆ meets the x-axis there is no zero of j(in∆(f)) with non-zero x-

coordinate.

Thus f is also SND along any inner face which meets any of the two coordinate

axes by Remark 4.2, and altogether we have that f is SND w.r.t. Γ(f). �

Since on each face SND implies ND, the previous result can be rephrased as follows.

Corollary 4.4

If f ∈ K[[x, y]], then the following are equivalent:

(a) f is NND.

(b) f is SNND w.r.t. Γ(f), and in case Γ(f) meets the x-axis or the y-axis then

the corrsponding coordinate is not divisible by char(K).

We show now that in the planar case Kouchnirenko’s result holds in arbitrary

characteristic without the assumption that f is convenient.

Proposition 4.5

Suppose that f ∈ K[[x, y]] is NND, then µ(f) = µN (f).

Proof: We may assume that f ∈ m
2. Moreover, if Γ(f) consists of a single point

α then either α = (1, 1) with µ(f) = µN (f) = 1 or µ(f) = µN (f) = ∞. We thus

also may assume that Γ(f) has at least one edge.

Let α = (k, l) be the end point of Γ(f) closest to the y-axis, and suppose that

k ≥ 2, then µN (f) = ∞ and by Theorem 3.4 also µ(f) = ∞. Thus we may assume

that either α is on the y-axis or its distance k to the y-axis is one. Similarly, we

may assume that the end point of Γ(f) closest to the x-axis has distance at most

one from the x-axis.

Note that there is a unique C-polytope P which contains Γ(f) and which has the

same number of edges. It is derived from Γ(f) by prolonging the obvious edges to

the coordinate axes. We want to show that f is SNND w.r.t. P .

Let ∆ be an inner face of P . If ∆ does not meet any of the coordinate axes, then

∆ is a face of Γ(f) and condition ND implies that f is also SND along ∆.

If ∆ meets the y-axis, then it prolongs the edge ∆′ of Γ(f) whose end point closest

to the y-axis is α = (k, l) with k ≤ 1. If k = 0 then ∆ = ∆′ is an edge of Γ(f)
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and we can see as in the proof of Proposition 4.3 that j(in∆(f)) has no zero with

non-zero y-coordinate. If k = 1 then

in∆(f) = in∆′(f) = a · x · yl + x2 · g

for some a ∈ K∗ and some g ∈ K[x, y]. Since f satisfies ND along ∆′ there is no

point q ∈ Sing(in∆(f)) with both coordinates non-zero, and since

in∆(f)x = a · yl + x · (2g + x · gx)

there can also be no point q ∈ Sing(in∆(f)) with only the y-coordinate non-zero.

Thus, in any case we see that j(in∆(f)) has no zero with a non-zero y-coordinate.

Similarly, if ∆ meets the x-axis there is no zero of j(in∆(f)) with a non-zero x-

coordinate.

Again by Remark 4.2 f is SND along each inner face of P which meets any of

the coordinate axes, and thus altogether f is SNND. Theorem 3.6 implies that

µ(f) = µN (f). �

Example 4.6

We now give an example for a reduced power series which is not SNND w.r.t. any

C-polytope. Let f = x6 + y3 + x5y ∈ K[[x, y]] with char(K) = 2 and suppose

that f is SNND w.r.t. some C-polytope P . By Remark 4.2 P must be the Newton

polygon of f and by Proposition 3.9 f is then rSQH in contradiction to µ(inP (f)) =

µ(x6 + y3) = ∞. Note that µ(f) = 13 > 10 = µN (f).

6

3

x

y

Γ(f)

Figure 3. The Newton polygon of f = x6 + y3 + x5y.

Beelen and Pellikaan investigate in [BeP00] plane curve singularities in arbitrary

characteristic, and under the assumption of convenience and weak Newton non-

degeneracy they give a formula for the delta invariant of f in terms of the Newton

polygon. We generalise this by dropping the condition of convenience. Moreover,

their proof shows that if f is WND along an edge ∆ of Γ(f) of lattice length k,

then there are exactly k branches of f corresponding to ∆ (see [BeP00, Rem. 3.18]).

Combining these results Milnor’s formula with the Newton number instead of the

Milnor number follows in arbitrary characteristic.

If f ∈ K[[x, y]] is convenient and ∆1, . . . ,∆k are the facets of the Newton polygon

Γ(f), then we define

νN (f) := V2(Γ−(f)) −
V1(Γ−(f))

2
+

∑k
i=1 l(∆i)

2
,
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where l(∆i) is the lattice length of ∆i, i.e. one less than the number of lattice points

on ∆i. If f is not convenient, we generalise this definition to

νN (f) := sup{νN (fm) | fm = f + xm + ym,m ∈ N}.

Example 4.7

If f = x4y+x2y2 + y5 and m ≥ 6, then the Newton polygon of fm has three facets

∆1,∆2,∆3 of lattice length one (see Figure 4). We thus get

νN (fm) = V2(Γ−(fm)) −
V1(Γ−(fm))

2
+
l(∆1) + l(∆2) + l(∆3)

2

=

(

10 +
m− 4

2

)

−
5 + 4 + (m− 4)

2
+

1 + 1 + 1

2
= 7,

where the m−4
2 corresponds to both, the area of the gray triangle in Figure 4 and

half the length of the intersection of this triangle with the x-axis. We thus have

νN (f) = νN (f6) = 7.

5

4 m

∆1

∆2

∆3

Figure 4. The Newton polygon of x6 + x2y2 + y5.

The number νN (f) is related to the delta invariant of f . If we consider a minimal

resolution of the singularity computed via successive blowing up and denote by

Q → 0 that Q is an infinitely near point of the origin, then we know that (see

[GLS07, Prop. 3.34])

δ(f) =
∑

Q→0

mQ · (mQ − 1)

2
,

where mQ denotes the multiplicity of the strict transform of f at Q. Beelen and

Pellikaan introduced the number

ν(f) :=
∑

Q special

mQ · (mQ − 1)

2
≤ δ(f),

where an infinitely near point is special if it is 0 or the origin in the corresponding

chart of the blowing up procedure. Clearly, ν(f) depends on the coordinates of f ,

while δ(f) does not. Beelen and Pellikaan then show that ν(f) and νN (f) coincide
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if f is convenient. Using our generalisation of νN , the condition of convenience can

be dropped.

Lemma 4.8

If f ∈ K[[x, y]], then ν(f) = νN (f).

Proof: If x2 or y2 divides f then both numbers are infinite, so we may assume

that this is not the case.

If y divides f then passing from f to f + xm for some large m replaces the smooth

branch y by some other smooth branch with the same tangent direction, and the

analogous argument holds if x divides f . Therefore, ν(f) = ν(fm) for sufficiently

large m. Moreover, as in Example 4.7 the values of νN (fm) stabilise for sufficiently

large m, since the area that is added in the computation of V2(Γ−(fm)) coincides

with the length that is subtracted in the computation of V1(Γ−(fm)). Using the

result of Beelen and Pellikaan [BeP00, Thm. 3.11] we can summarise that for a

sufficiently large m

νN (f) = νN (fm) = ν(fm) = ν(f).

�

One would like to know under which conditions ν(f) actually coincides with δ(f),

and Beelen and Pellikaan show in [BeP00, Prop. 3.17] that for a convenient f weak

Newton non-degeneracy is a sufficient condition to assure this. Again we can drop

the condition of convenience.

Proposition 4.9

If f ∈ K[[x, y]] is WNND, then νN (f) = ν(f) = δ(f).

Proof: If f is divisible by x2 or y2, then all of these numbers are infinite, so

we may exclude this case. Moreover, we may restrict to the case that y divides

f but x does not, as the remaining cases work analogously. As above, passing

from f to f + xm for a large m replaces the smooth branch y by some smooth

branch with the same tangent direction, so the delta invariant does not change.

Moreover, if m is sufficiently large then Γ(f) differs from Γ(fm) by one additional

facet ∆, a line segment with end points (m, 0) and (k, 1). The initial form along ∆ is

in∆(fm) = xm +c ·xky and j(xm +c ·xky) has no zero in the torus (K∗)2. Therefore,

fm is convenient and WNND, so that [BeP00, Prop. 3.17] and Lemma 4.8 imply

that for sufficiently large m

δ(f) = δ(fm) = ν(fm) = νN (fm) = νN (f) = ν(f).

�

We denote by r(f) the number of branches of f counted with multiplicity, i.e.

the number of irreducible factors of f . Moreover, we introduce the combinatorial
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counterpart of r as

rN (f) =
k
∑

i=1

l(∆i) + max{j | xj divides f} + max{l | yl divides f}.

Beelen and Pellikan ([BeP00]) realised that weak Newton non-degeneracy is a suf-

ficient condition for these two numbers to coincide.

Lemma 4.10

r(f) ≤ rN (f), and if f is WNND then rN (f) = r(f).

Proof: If j and l are the maximal such that xj and yl divide f , then

rN (f) =

k
∑

i=1

l(∆i) + j + l.

It is well known that the lattice length of a facet of the Newton polygon of f is

an upper bound for the number of branches of f corresponding to this facet. This

implies the inequality r(f) ≤ rN (f). The proof of [BeP00, Prop. 3.17] shows then

that f has indeed l(∆i) branches corresponding to ∆i, if f is WND along ∆i (see

also [BeP00, Prop. 3.18]). This shows that f has exactly rN (f) branches, counting

the branches x and y with multiplicity, if f is WNND. �

Lemma 4.11

If f ∈ K[[x, y]], then µN (f) = 2 · νN (f) − rN (f) + 1.

Proof: If x2 or y2 divides f , then both sides of the equation are infinite, and we

may thus assume that this is not the case.

Suppose now that Γ(f) has the facets ∆1, . . . ,∆k and let m be very large. Then

Γ(fm) also has the facets ∆1, . . . ,∆k, and it has an additional facet of lattice length

one if x divides f and the same for y. In particular, rN (f) = rN (fm).

Since fm is convenient the definition of µN , νN and rN gives right away

µN (fm) = 2 · νN (fm) − rN (fm) + 1.

Moreover, for sufficiently large m we have µN (fm) = µN (f) and νN (fm) = νN (f),

and hence

µN (f) = 2 · νN (f) − rN (f) + 1.

�

Combining the last three results we get the following generalisation of the result of

Beelen and Pellikan.

Theorem 4.12

If f ∈ K[[x, y]] is WNND, then µN (f) = 2 · δ(f) − r(f) + 1.

Proof: The result follows from Lemma 4.11, Proposition 4.9 and Lemma 4.10. �
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Together with Kouchnirenko’s formula for the Milnor number in Proposition 4.5 we

deduce then that Milnor’s formula µ(f) = 2 · δ(f) − r(f) + 1 in characteristic zero

(see [Mil68] or [GLS07, Prop. 3.35]) holds in arbitrary characteristic for Newton

non-degenerate singularities, even without the condition of convenience.

Theorem 4.13

If f ∈ K[[x, y]] is NND, then µ(f) = 2 · δ(f) − r(f) + 1.

Without the assumption of Newton non-degeneracy one has at least an inequality

as was proved by Melle and Wall [MHW01, Formula (14)] based on a result by

Deligne [Del73, Theorem 2.4]. We are grateful to Alejandro Melle for pointing out

this result.

Proposition 4.14 (Deligne, Melle-Wall)

If f ∈ K[[x, y]], then µ(f) ≥ 2 · δ(f) − r(f) + 1.

The difference of the two sides is measured by the so called Swan character which

counts wild vanishing cycles that can only occur in positive characteristic. For

details we refer to [MHW01] and [Del73].

Note that we always have the inequalities

µN (f) ≤ 2 · νN (f) − r(f) + 1 ≤ 2 · δ(f) − r(f) + 1 ≤ µ(f).

It is easy to see that the equality may be violated in positive characteristic, and

that the above inequalities may be strict. E.g. char(K) = 2, f = (x− y)2 +x5 then

µN (f) = 1, νN (f) = 1, δ(f) = 2, r(f) = 1, µ(f) = ∞, so that

µN (f) < 2 · νN (f) − r(f) + 1 < 2 · δ(f) − r(f) + 1 < µ(f).

Note that the first two inequalities hold in characteristic zero as well.

We can now use the above results to measure the difference between µ(f) and µN (f)

better and thereby generalise a result of P loski [P lo99], who proved this for K = C

and f convenient.

Proposition 4.15

If f ∈ K[[x, y]], then µ(f) − µN (f) ≥ rN (f) − r(f) ≥ 0.

Proof: Combining Proposition 4.14 with Lemma 4.8, Lemma 4.10 and Lemma

4.11 we get

µ(f) ≥ 2 · δ(f) − r(f) + 1 ≥ 2 · ν(f) − r(f) + 1

= 2 · νN (f) − r(f) + 1 = 2 · νN (f) − rN (f) + 1 + (rN (f) − r(f))

= µN (f) + (rN (f) − r(f)) ≥ µN (f),

which proves the claim. �
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