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Abstract. In connection with his classification of real and complex hypersur-

face singularities Arnol’d introduced in the 1970’s the condition A which allows

to compute a normal form of a power series f with respect to right equiva-

lence. For this he uses piecewise filtrations induced by the Newton polytope of

f . Wall considered in 1999 a non-degeneracy condition which implies a weaker

but sufficient form of condition A and which can be checked on the Newton

polytope. We generalise Arnol’d’s and Wall’s results to arbitrary characteris-

tic and modify it in order to treat also contact equivalence. We deduce thus

normal forms and determinacy bounds for hypersurface singularities with re-

spect to right and contact equivalence in arbitrary characteristic. We apply

this to obtain a partial classification of hypersurface singularities in positive

characteristic.

1. Introduction

Throughout this paper K shall be an algebraically closed field of arbitrary charac-

teristic unless explicitly stated otherwise. By

K[[x]] = K[[x1, . . . , xn]] =

{

∑

α∈Nn

aα · xα
∣

∣

∣ aα ∈ K

}

we denote the formal power series ring over K in n ≥ 2 indeterminates x1, . . . , xn

using the usual multiindex notation x
α = xα1

1 · · ·xαn
n for α = (α1, . . . , αn) ∈ Nn.

Moreover, we denote by

m = 〈x1, . . . , xn〉 � K[[x]]

the unique maximal ideal of K[[x]], so that the set of units in K[[x]] is K[[x]]∗ =

K[[x]] \ m.

If we are interested in the classification of power series f ∈ K[[x]] there are two

natural equivalence relations, right equivalence and contact equivalence.

We say, two power series f, g ∈ K[[x]] are right equivalent to each other if and only

if there is an automorphism ϕ ∈ Aut(K[[x]]) such that f = ϕ(g), and we denote

this by f ∼r g. If we replaced K by the complex numbers and formal power series
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by convergent ones then ϕ would induce an isomorphism of the zero fiber of f as

well as of close by fibers. That is how we should interpret right equivalence also in

this more general setting.

If we are only interested in the geometry of the zero fiber, then the second equiv-

alence relation is the appropriate one. We call f, g ∈ K[[x]] contact equivalent if

and only if there is an automorphism ϕ ∈ Aut(K[[x]]) and a unit u ∈ K[[x]]∗ such

that f = u · ϕ(g), and we denote this by f ∼c g. The idea here is, that ϕ and u

still induce an isomorphism of the zero fibers of f and g.

However, we have to replace the geometric notion of the zero fiber by the algebraic

counterpart of its coordinate ring. That is, for a power series f ∈ K[[x]] we call

Rf = K[[x]]/〈f〉 the induced hypersurface singularity. We obviously have

f ∼c g ⇐⇒ Rf
∼= Rg,

i.e. f and g are contact equivalent if and only if the induced hypersurface singular-

ities are isomorphic as analytic K-algebras.

Over the complex numbers we would say that the origin is an isolated singular point

of f if f is not singular at any point close-by, i.e. the origin is the only common

zero of the partial derivatives of f . We have to reformulate this algebraically so

that it works over any field. For a power series f ∈ K[[x]] we denote by

j(f) = 〈fx1
, . . . , fxn

〉 � K[[x]]

the Jacobian ideal of f , i.e. the ideal generated by the partial derivatives of f , and

we call the associated algebra

Mf = K[[x]]/ j(f)

the Milnor algebra of f and its dimension

µ(f) = dimK(Mf )

the Milnor number of f . We then call the origin an isolated singular point of f ,

or we simply call f an isolated singularity if µ(f) < ∞, which is equivalent to the

existence of a positive integer k such that m
k ⊆ j(f).

Similarly, over C we would call the origin an isolated singular point of the hypersur-

face singularity defined by f if this hypersurface singularity has no other singular

point close-by, i.e. the origin is the only common zero of f and its partial derivatives.

Algebraically we thus consider the Tjurina ideal

tj(f) = 〈f, fx1
, . . . , fxn

〉 = 〈f〉 + j(f) � K[[x]]

of f , the associated Tjurina algebra

Tf = K[[x]]/ tj(f)

of f and its dimension

τ(f) = dimK(Tf ),
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the Tjurina number of f . We then call the origin an isolated singular point of the

hypersurface singularity Rf , or we will simply call Rf an isolated hypersurface

singularity if τ(f) < ∞, or equivalently if there is a positive integer such that

m
k ⊆ tj(f).

It is straight forward to see that the Milnor number is invariant under right equiv-

alence and the Tjurina number is invariant under contact equivalence.

Our principle interest is the classification of power series in positive characteristic

with respect to right respectively contact equivalence, where the latter is the same

as to say that we are interested in classifying hypersurface singularities up to iso-

morphism. In order to have good finiteness conditions at hand we restrict to the

case that f is an isolated singularity for right equivalence respectively that Rf is an

isolated hypersurface singularity for contact equivalence. Note that these are two

distinct conditions in positive characteristic (see also [BGM10]).

A first important step in the attempt to classify singularities from a theoretical

point of view as well as from a practical one is to know that the equivalence class

is determined by a finite number of terms of the power series f and to find the cor-

responding degree bound. We say that f is right respectively contact k-determined

if f is right respectively contact equivalent to every g which coincides with f up to

order k.

In [BGM10] we have shown that f is finitely right repectively contact determined if

and only if µ(f) respectively τ(f) is finite, and we have shown that 2·µ(f)−d(f)+2

respectively 2·τ(f)−ord(f)+2 is an upper bound for the determinacy. Here ord(f)

denotes the order and d(f) the differential order, i.e. the minimum of the orders

of all partial derivatives, of f . In Corollaries 4.6 and 4.7 we show how this degree

bound can be considerably improved when the singularities satisfy the conditions

AA resprectively AAC introduced in Section 4 (see also the examples in Section 5).

Once we know that a finite number of terms of f suffices to determine its equiva-

lence class then we would like to determine a normal form for f , i.e. an “efficient”

representative for the equivalence class. This is in general a difficult task. The first

classes of singularitites one comes across are those which have a quasihomogeneous

representative. In characteristic zero they are determined by the fact that the Mil-

nor number and the Tjurina number coincide (Theorem of K. Saito, see Theorem

2.1). The next more complicated classes of singularities are those which have a

representative with a quasihomogeneous principal part (that governs its topology

over the complex numbers), i.e. the right semi-quasihomogeneous rSQH respectively

contact semi-quasihomogeneous cSQH singularities. These are considered in Sec-

tion 2, and among others we show that they are indeed isolated (see Proposition

2.4).

When obtaining normal forms of power series which are not right semi-quasihomo-

geneous the only known classification method was introduced by Arnol’d in [Arn75]
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over the complex numbers and slightly generalised by Wall in [Wal99]. The method

generalises semi-quasihomogeneity and requires the principal part inP (f) of the

power series (with respect to some C-polytope P ) to be an isolated singularity and

its Milnor algebra to have a finite regular basis – see Section 3 and 4 for the notions.

At the heart lies the study of piecewise filtrations as introduced by Arnol’d [Arn75]

and used by Kouchnirenko to study non-degeneracy conditions [Kou76]. Section 3

is devoted to these. Arnol’d actually gives a more restrictive condition than Wall

but his proof shows that the weaker condition suffices as was pointed out by Wall.

In Section 4 we generalise these conditions both in the strict form A of Arnol’d and

in the weak form AA of Wall to the situation of contact equivalence, calling them

AC and AAC respectively, and derive normal forms for right as well as for contact

equivalence in arbitrary characteristic. See Theorem 4.2 and 4.3 and Corollaries 4.4

and 4.5.

The results on normal forms and degree bounds apply to large classes of examples.

In Corollary 4.9 we show that all rSQH singularities satisfy AA and all cSQH

singularities satisfy AAC. Moreover, a result by Wall [Wal99] over the complex

numbers generalises to arbitrary characteristic and shows that all strictly Newton

non-degenerate singularities (for the definition see Remark 4.11) satisfy both AA

and AAC (see Theorem 4.12). In Section 5 we then use our results to consider

normal forms for singularities of type Tpq, Q10, W1,1 and E7 in Arnol’d’s notation

in positive characteristic.

2. Quasi- and semi-quasihomogeneous singularities

A polynomial f ∈ K[x], x = (x1, . . . , xn), n ≥ 1, is called quasihomogeneous with

respect to the weight vector w ∈ Zn
>0 if all monomials x

α have the same weighted

degree d := degw(xα) = w · α =
∑n

i=1 wi · αi. We say for short that f is QH of

type (w; d). By the Euler formula a quasihomogeneous polynomial f of weighted

degree degw(f) := d satisfies

d · f = w1 · x1 · fx1
+ . . . + wn · xn · fxn

,

so that

j(f) = tj(f) if char(K) 6 | d.

In particular, for a quasihomogeneous polynomial f in characteristic zero the Milnor

number and the Tjurina number coincide. A famous result of K. Saito states that

over the complex numbers the reverse is true as well up to equivalence (see [Sai71]).

His proof generalises to any algebraically closed field of characteristic zero.

Theorem 2.1 (Saito)

Let K be an algebraically closed field of characteristic zero, and suppose that f ∈

K[[x]] is an isolated singularity. Then the following are equivalent:

(a) f is right equivalent to a quasihomogeneous polynomial.
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(b) f is contact equivalent to a quasihomogeneous polynomial.

(c) µ(f) = τ(f).

(d) f ∈ j(f).

The Milnor and the Tjurina number are important invariants which even charac-

terise the singularities for values 0 and 1 in any characteristic. In fact, by the

implicit function theorem we have

µ(f) = 0 ⇐⇒ τ(f) = 0 ⇐⇒ ord(f) = 1 ⇐⇒ f ∼r x1.

If ord(f) ≥ 3 we have µ(f) ≥ τ(f) ≥ n+1 ≥ 2. If ord(f) = 2 we have the following

lemma.

Lemma 2.2

For f ∈ m the following are equivalent:

(a) µ(f) = 1.

(b) τ(f) = 1.

(c) (1) f ∼r x2
1 + . . . + x2

n if char(K) 6= 2.

(2) n = 2k is even and f ∼r x1x2 + . . . + x2k−1x2x if char(K) = 2.

Proof: This follows from [GrK90, 3.5, Prop. 3]. �

The class of quasihomogeneous singularities, i. e. of singularities with a quasiho-

mogeneous polynomial representative under right (or contact) equivalence, is an

important class of singularities in characteristic zero.

In positive characteristic we have to be more careful, since the Euler relation is not

helpful when the characteristic divides the weighted degree. E.g. f = xp + yp−1

is quasihomogeneous of degree p · (p − 1) with respect to w = (p − 1, p) with

τ(f) = p · (p− 2) and µ(f) = ∞. However, when the characteristic does not divide

the weighted degree some of the good properties still hold true.

Proposition 2.3

Let f ∈ K[x] \K be QH of type (w; d) with gcd(w1, . . . , wn) = 1.

(a) If f ∈ m
3 then

µ(f) < ∞ ⇐⇒ τ(f) < ∞ and char(K) 6 | d.

In this case obviously µ(f) = τ(f).

(b) If char(K) 6 | d and g ∈ K[[x]], then

f ∼r g ⇐⇒ f ∼c g.

Proof: (a) If the characteristic does not divide d and τ(f) < ∞ then we are done

by the Euler formula. Conversely, if µ(f) < ∞ then τ(f) < ∞ and we have
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to show that the characteristic does not divide d. Assume the contrary. The

Euler formula then gives the identity

w1 · x1 · fx1
+ . . . + wn · xn · fxn

= 0.

Since gcd(w1, . . . , wn) = 1 we may assume that wn is not divisible by the

characteristic, and we thus deduce

xn · fxn
= −

w1

wn

· x1 · fx1
− . . . −

wn−1

wn

· xn−1 · fxn−1
.

f being in m
3 the variable xn is not zero in Mf = K[[x]]/ j(f), so that fxn

is a

zero divisor in the K[[x]]/〈fx1
, . . . , fxn−1

〉. Thus fx1
, . . . , fxn

is not a regular

sequence in the Cohen-Macaulay ring K[[x]], and therefore the K-algebra Mf

is not zero-dimensional (see e.g. [GLS07, Corollary B.8.3]), i.e. we get the

contradiction µ(f) = ∞.

(b) The proof works as in characteristic zero since d-th roots exist in K[[x]]∗ if d

is not divisible by char(K), see e.g. [GLS07, Lemma 2.13]).

�

Note that the condition f ∈ m
3 cannot be avoided, though as seen in the proof it

can be weakened to e.g.

∃ i = 1, . . . , n : char(K) 6 | wi and xi 6∈ 〈fx1
, . . . , fxi−1

, fxi+1
, . . . , fxn

〉.

To see that we cannot avoid it completely consider f = xy ∈ K[[x, y]] with

char(K) = 2. It is QH of type
(

(1, 1); 2
)

and the Milnor number is one, yet the

characteristic divides the weighted degree.

When classifying singularities with respect to right or contact equivalence the first

classes one comes across have quasihomogeneous representatives. This is maybe

the most important reason why they deserve attention. The next more complicated

class of singularities are those which have a quasihomogeneous principal part that

somehow governs its discrete part of the classification.

For a power series f =
∑

α aαx
α ∈ K[[x]] and a weight vector w ∈ Zn

>0 we denote

by

inw(f) =
∑

w·α minimal

aαx
α

the initial form or principal part of f with respect to w. We call the power series

f right semi-quasihomogeneous rSQH respectively contact semi-quasihomogeneous

cSQH with respect to w if µ
(

inw(f)
)

< ∞ respectively τ
(

inw(f)
)

< ∞. A right

resp. contact equivalence class of singularities is called semi-quasihomogeneous if it

has a semi-quasihomogeneous representative. Note that in characteristic zero the

notions rSQH and cSQH coincide.

Moreover, in characteristic zero it is known that semi-quasihomogeneous singular-

ities are always isolated and that their Milnor number coincides with the Milnor
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number of the principal part, i.e. if K = C their topology is governed by the prin-

cipal part. In positive characteristic we get an analogous statement.

Proposition 2.4

Let f ∈ K[[x]] and w ∈ Zn
>0.

(a) If µ
(

inw(f)
)

< ∞ and d = degw

(

inw(f)
)

, then

µ(f) = µ(inw(f)) =

(

d

w1
− 1

)

· . . . ·

(

d

wn

− 1

)

< ∞.

(b) τ(f) ≤ τ
(

inw(f)
)

.

In particular, semi-quasihomogeneous singularities are isolated.

Proof: (a) Let d be the degree of inw(f). Then

f ′ :=
f
(

tw1x1, . . . , t
wnxn

)

td
= inw(f) + t · g′ ∈ K[[x, t]]

for some power series g′ ∈ K[[x, t]]. We can use f ′ to define the following local

K-algebra homomorphism

K[[z, t]] −→ K[[x, t]] : t 7→ t, zi 7→ f ′
xi

.

This gives K[[x, t]] the structure of a K[[z, t]]-algebra, and if we tensorise

K[[x, t]] with K = K[[z, t]]/〈z, t〉 we get

K[[x, t]] ⊗K[[x,t]] K = K[[x, t]]/〈f ′
x1

, . . . , f ′
xn

, t〉 ∼= K[[x]]/ j(inw(f)),

which by assumption is a finite dimensional K-vector space of dimension

µ(inw(f)). Since (f ′
x1

, . . . , f ′
xn

, t) is a regular sequence, K[[x, t]] is flat as a

K[[z, t]]-module (see e.g. [Eis96, Theorem 18.16]) and thus it is free of rank

µ
(

inw(f)
)

by Nakayama’s Lemma. Tensoring with K[[t]] = K[[z, t]]/〈z〉 we

get

K[[x, t]] ⊗K[[z,t]] K[[z, t]]/〈z〉 ∼= K[[x, t]]/〈f ′
x1

, . . . , f ′
xn
〉 (1)

as a free K[[t]]-module of rank µ
(

inw(f)
)

.

Passing to the field of fractions L = K((t)) of K[[t]] we have the isomorphism

of local L-algebras

ϕ : L[[x]] −→ L[[x]] : xi 7→ twixi.

Moreover

f ′ =
ϕ(f)

td
,

so that in L[[x]] we have the equality of ideals

〈f ′〉 = 〈ϕ(f)〉 and j(f ′) = j
(

ϕ(f)
)

= ϕ
(

j(f)
)

.

Extending scalars in (1) to the field of fractions L we get an isomorphism of

L-vector spaces

K[[x, t]]/〈f ′
x1

, . . . , f ′
xn
〉 ⊗K[[t]] L ∼= L[[x]]/ j(f ′) ∼= L[[x]]/ j(f).
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By freeness the left hand side is of dimension µ
(

inw(f)
)

while the right hand

side has dimension µ(f). For the formula for µ(inw(f)) see [BGM10, Prop. 3.8].

(b) It suffices to consider the case τ
(

inw(f)
)

< ∞, and the proof then is similar

to (a), using the map

K[[z, t]] −→ K[[x, t]] : t 7→ t, z0 7→ f ′, zi 7→ f ′
xi

for i = 1, . . . , n, where z = (z0, . . . , zn). Since (f ′, f ′
x1

, . . . , f ′
xn

, t) is not a

regular sequence, K[[x, t]]/〈f ′, f ′
x1

, . . . , f ′
xn
〉 is finitely generated but may have

torsion as a K[[t]]-module. Tensoring this module with K over K[[t]] gives a

K-vector space of dimension τ(inw(f)). Tensoring with L = K((t)) over K[[t]]

kills the torsion and gives an L-vector space of dimension τ(f) ≤ τ(inw(f)).

�

Note that the condition on the finiteness of µ
(

inw(f)
)

in Proposition 2.4 (a) cannot

be avoided, and τ(f) will in general not coincide with τ
(

inw(f)
)

. Moreover, if f ∈

m
3 we get from Proposition 2.3 that µ(inw(f)) < ∞ is equivalent to τ(inw(f)) < ∞

and char(K) ∤ d = degw(inw(f)).

Consider f = x7 + x6y + y4 ∈ K[[x, y]] with char(K) = 7. f is cSQH with principal

part inw(f) = x7 + y4 which is QH of type
(

(4, 7); 28
)

with

τ
(

inw(f)
)

= 21 > 17 = τ(f).

Moreover, µ
(

inw(f)
)

= ∞, but µ(f) = 21. Note, that here of course the charac-

teristic of the base field divides the weighted degree of inw(f).

Remark 2.5

To each power series f =
∑

α aαx
α ∈ K[[x]] we can associate its Newton diagram

Γ+(f) as the convex hull of the set
⋃

α∈supp(f)

(

α + Rn
≥0

)

where supp(f) = {α | aα 6= 0} denotes the support of f . This is an unbounded

polytope in Rn. We call the union Γ(f) of its compact faces the Newton polytope

of f . Note that the Newton polytope of a QH or SQH polynomial has exactly one

facet, where a facet is a face of dimension n− 1. For later use we denote by Γ−(f)

the union of line segments joining points on Γ(f) with the origin. (See Figure 1 for

an example.)

3. Piecewise filtrations and graded algebras

Fixing a weight vector w ∈ Zn
>0 we get in a natural way a filtration on K[[x]].

If a singularity is semi-quasihomogeneous with respect to w then this filtration is

perfectly suited to study the singularity and in general w singles out a unique facet

of the Newton polytope of the defining power series. However, in general we will

have to consider more complicated filtrations since there is no single facet of the
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Γ
+

(f) Γ(f) Γ
−

(f)

Figure 1. The Newton polytope of x · (y4 + xy3 + x2y2 − x3y2 + x6).

Newton polytope which captures enough information on the singularity. This was

noted by Arnold and he introduced in [Arn75] piecewise filtrations which are used

to study non-degeneracy conditions by Kouchnirenko in [Kou76].

Given weight vectors wi ∈ Qn
>0 with positive entries, i = 1, . . . , k, they define linear

functions

λi : Rn −→ R : r 7→ wi · r :=

n
∑

j=1

wi,j · rj ,

and their minimum defines a convex piecewise linear function

λ : Rn −→ R : r 7→ min{λ1(r), . . . , λk(r)}.

We will always assume that the set of weights is irredundant, i.e. that none of the

λi is superfluous in the definition of λ. The set

Pλ = {r ∈ Rn
≥0 | λ(r) = 1}

is a compact rational polytope of dimension n− 1 in the positive orthant Rn
≥0, and

its facets are given by

∆i = {r ∈ Pλ | λi(r) = 1}.

Pλ has the property that each ray in Rn
≥0 emanating from the origin meets Pλ in

precisely one point and that the region in Rn
≥0 lying above Pλ is convex. Following

the convention of Wall (see [Wal99]) we call such polytopes C-polytopes. Thus,

irredundant sets of weight vectors define C-polytopes.

Conversely, given a C-polytope P the suitably scaled inner normal vectors of its

facets define an irredundant set of weight vectors such that P = Pλ for the corre-

sponding piecewise linear function λ. We denote by λP the piecewise linear function

defined by P , and by λ∆ the linear function corresponding to a facet ∆ of P .

If f ∈ K[[x]] is a convenient power series, i.e. if the support of f contains a point on

each coordinate axis, then the Newton polytope Γ(f) is a C-Polytope. C-Polytopes

should thus be thought of as generalising the Newton polytope, and in our appli-

cations they will basically arise by extending Newton polytopes of non-convenient

power series in a suitable way.

For a C-polytope P we denote by NP the lowest common multiple of the denomi-

nators of all entries in the weight vectors corresponding to P , so that NP ·λP takes
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non-negative integer values on Nn. We then define a piecewise valuation on K[[x]]

by

vP (f) := min{NP · λP (α) | aα 6= 0} ∈ N

for 0 6= f =
∑

α aαx
α ∈ K[[x]] and vP (0) := ∞. vP satisfies

vP (f · g) ≥ vP (f) + vP (g) and vP (f + g) ≥ min{vP (f), vP (g)}.

Indeed we should like to point out that

vP (f · g) = vP (f) + vP (g) ⇐⇒ vP (f) = v∆(f) and vP (g) = v∆(g) (2)

for some facet ∆ of P . The sets

Fd := FP,d := {f ∈ K[[x]] | vP (f) ≥ d}

with d ∈ N are thus ideals in K[[x]] and satisfy

Fd · Fe ⊆ Fd+e,

i.e. they form a filtration on K[[x]]. Note also that F0 = K[[x]] and F1 = m.

Moreover, since all weight vectors corresponding to P have only positive entries for

each d there is a positive integer m such that

m
m ⊆ Fd, (3)

and also for any k there is a d such that no monomial of degree less than k can

have a valuation of degree d, i.e. such that

Fd ⊆ m
k. (4)

Given any C-polytope P and a power series f ∈ K[[x]], we call the polynomial

inP (f) =
∑

λP (α) minimal

aαx
α

the initial form or the principal part of f with respect to P . f is said to be

piecewise homogeneous PH of degree d ∈ Q≥0 with respect to P if λP (α) = d

for all α ∈ supp(f). Note that then f = inP (f) is a polynomial. The power

series f is called right semi-piecewise homogeneous rSPH respectively contact semi-

piecewise homogeneous cSPH with respect to P if µ
(

inP (f)
)

< ∞ respectively

τ
(

inP (f)
)

< ∞.

Even though PH, rSPH and cSPH are straight forward generalisations of QH, rSQH

and cSQH things get more complicated. One of the reasons is that the product of

two PH polynomials need no longer be so, as Example 3.1 shows.

Example 3.1

Consider the weights w1 = (1, 2) and w2 = (3, 1) together with the polynomials

f = x7 + y7 and g = x. The corresponding C-polytope P is the black polygon

shown in Figure 2. Both f and g are PH with respect to P of degree 7 respectively
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1

1

P

Figure 2. The C-polytope to w1 = (1, 2) and w2 = (3, 1).

1. However,

inP (f · g) = x8 6= x8 + xy7 = f · g ∈ FP,8,

so that f · g is no longer piecewise homogeneous.

This example shows also that there cannot be any monomial ordering > which

refines the piecewise degree with respect to P if P has more than one side. In fact,

suppose there is, then either x7 or y7 is the leading term of f . However, since >

refines the piecewise degree, xf definitely will have leading term x8 and yf will

have leading term y8, in contradiction to the fact that the leading term must be

compatible with the multiplication by monomials. This makes computations with

piecewise filtrations difficult, in particular, we cannot use Gröbner basis methods.

2

We also should like to point out, that a polynomial can be PH with respect to many

different C-polytopes. E.g. consider for f = x5 + x2y2 + y5 the two C-polytopes

shown in Figure 3.

P P

Figure 3. Two C-polytopes w.r.t. which x5 + x2y2 + y5 is PH.

If I �K[[x]] is an ideal in K[[x]] and P is a C-polytope then the filtration induced

by P on K[[x]] leads to the filtration

F0 + I/I ⊇ F1 + I/I ⊇ F2 + I/I ⊇ . . .

on K[[x]]/I, and induces thus the associated graded K-algebra

grP

(

K[[x]]/I
)

=
⊕

d∈N

(Fd + I)/(Fd+1 + I)
)

∼=
⊕

d∈N

Fd/
(

(I ∩ Fd) + Fd+1

)

.
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The product of the classes of two monomials x
α and x

β in grP (K[[x]]/I) satisfies

x
α · xβ =

{

x
α+β , if vP (xα+β) = vP (xα) + vP (xβ),

0, else.
(5)

We will show next that there are isomorphisms of vector spaces,

Mf
∼= grP (Mf ) respectively Tf

∼= grP (Tf ),

if the graded algebras are finite dimensional. Therfore, these graded algebras are

natural means to study the singularity defined by f . Arnol’d [Arn75] has shown

how to use a monomial basis of grP (Mf ) under suitable conditions on f to compute

a normal form for f . We will generalise this in Section 4.

Proposition 3.2

Let I � K[[x]] be an ideal and let P be a C-polytope.

(a) Then

dimK(grP (K[[x]]/I)) = dimK(K[[x]]/I).

(b) If dimK(grP (K[[x]]/I)) < ∞, then any monomial basis of grP (K[[x]]/I) is a

basis K[[x]]/I as K-vector space.

Proof: (a) The sequence of ideals

K[[x]] = F0 + I ⊇ F1 + I ⊇ . . . ⊇ Fd + I ⊇ Fd+1 + I ⊇ . . . ⊇ I

shows that dimK(K[[x]]/I) < ∞ if and only if there are only finitely many

d such that 0 < dimK(Fd + I/Fd+1 + I) < ∞, and this is equivalent to

dimK

(

grP (K[[x]]/I)
)

< ∞. In this case the dimensions obviously coincide.

(b) Let B be any set of monomials whose residue classes in grP (K[[x]]/I) form a

K-vector space basis. We have to show that the residue classes of the elements

of B in K[[x]]/I generate K[[x]]/I as a K-vector space.

Let f ∈ K[[x]] be given and let d = vP (f) be its piecewise valuation. We then

can write f as

f =
∑

x
α∈B

vP (xα)=d

cαx
α + gd + hd

with cα ∈ K, gd ∈ I ∩ Fd and hd ∈ Fd+1.

We continue with hd in the same way, and thus for any k ≥ d there are cα ∈ K,

gk ∈ I ∩ Fk and hk ∈ Fk+1 such that

f =
∑

x
α∈B

d≤vP (xα)≤k

cαx
α + (gd + gd+1 + . . . + gk) + hk,

where g = gd + gd+1 + . . . + gk ∈ I. Since dimK

(

grP (K[[x]]/I)
)

< ∞ there is

a d0 such that

(I ∩ Fd) + Fd+1 = Fd for all d ≥ d0,
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i.e. B ∩ Fd0
= ∅. For k ≥ d0 we thus have

f −
∑

x
α∈B

d≤vP (xα)<d0

cαx
α = (gd + gd+1 + . . . + gk) + hk ∈ I + Fk+1,

where the left hand side does not depend on k. Using Krull’s Intersection

Theorem this shows that

f −
∑

x
α∈B

d≤vP (xα)<d0

cαx
α ∈

⋂

k≥0

(I + Fk)
(3),(4)

=
⋂

k≥0

(I + m
k) = I,

and hence the claim.

�

If we apply Proposition 3.2 to Mf and Tf we get the following corollary.

Corollary 3.3

Let f ∈ K[[x]] be a power series and P a C-polytope.

(a) µ(f) = dimK(grP (Mf )).

(b) τ(f) = dimK(grP (Tf )).

vP induces a K-linear decomposition of the polynomial ring K[x] =
⊕

d≥0 K[x]d

with

K[x]d = 〈xα | vP (xα) = d〉K,

and for any ideal J � K[[x]] we can consider

Jd = K[x]d ∩ J.

Note that in general J 6=
⊕

d≥0 Jd if the C-polytope P has more than one facet,

even if J is generated as an ideal by piecewise homogeneous elements. See e.g.

J = 〈inP (h · f) | h ∈ K[[x, y]]〉 with P and f as in Example 3.1 then it is easy to

see that x · f = x8 + xy7 = f8 + f10 ∈ J but f10 = xy7 6∈ J .

Proposition 3.4

Let I � K[[x]] be an ideal in K[[x]] and let P be a C-polytope. Then there is a

natural isomorphism of K-vector spaces

grP (K[[x]]/I) ∼=
⊕

d≥0

K[x]d/ inP (I)d,

where inP (I) = 〈inP (f) | f ∈ I〉 is the initial ideal of I with respect to P .

Proof: Consider the K-linear map

ϕd : K[x]d −→ Fd/
(

(I ∩ Fd) + Fd+1

)

: f 7→ f

sending a polynomial f to its residue class. This map is obviously surjective, and we

claim that ker(ϕd) = inP (I)d. If f = inP (g) ∈ inP (I)d with g ∈ I then f−g ∈ Fd+1

and thus ϕd(f) = g + (f − g) = 0. If f ∈ ker(ϕd) then f = g + h with g ∈ I ∩ Fd
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and h ∈ Fd+1, so that f = inP (g) ∈ inP (I)d. Thus ϕd induces an isomorphism as

desired. �

Remark 3.5

If the C-polytope P in Proposition 3.4 has only one facet, i.e. P induces a weighted

filtration, then we have a natural isomorphism

grP (K[[x]]/I) ∼= K[[x]]/ inP (I).

The reason for this is that if P has only one facet then

inP (I) =
⊕

d≥0

inP (I)d,

since a weighted homogeneous polynomial lies in the weighted homogeneous ideal

inP (I) if and only if its weighted homogeneous summands belong to inP (I). The

isomorphism is thus induced by

K[[x]] −→ grP (K[[x]]/I) : f =
∑

d

fd 7→
∑

d

fd,

where f =
∑

d fd is the decomposition of f into its weighted homogeneous parts

and fd is the the residue class of fd in Fd/
(

(I ∩ fd) + Fd+1

)

.

This fact can be used to compute a monomial basis for grP (K[[x]]/I). P determines

a weight vector w and we can fix a local weighted degree ordering with respect to

this weight vector w. If we then compute a standard basis of I with respect to this

ordering, the w-initial forms of the basis elements generate inP (I). Moreover, we

can compute the standard monomials of of K[[x]]/ inP (I) via the leading ideal and

they are a monomial basis of both, K[[x]]/ inP (I) and of grP (K[[x]]/I).

For any C-polytope P the piecewise valuation vP on K[[x]] can easily be extended

to the K[[x]]-module DerK(K[[x]]) of derivations on K[[x]]. For this we define

vP (ξ) = min{λP (α − ei) | ai,α 6= 0}

where

ξ =

n
∑

i=1

∑

α∈Nn

ai,α · xα · ∂xi
6= 0

and where ei is the i-th standard basis vector of Zn, i.e. we naturally extend

vP (xα∂xi
) = λP (α − ei)

where the derivation ∂xi
lowers the exponent of xi in x

α by one. Note that vP (∂xi
)

is negative.

Straight forward computations show that vP then satisfies (see e.g. [Bou09, Lemma 2.2.3])

vP (ξf) ≥ vP (ξ) + vP (f) (6)
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for any 0 6= f ∈ K[[x]] and any 0 6= ξ ∈ DerK(K[[x]]). Moreover (see [Bou09,

Lemma 2.2.5] or [Arn75, Lemma 6.6]), if f ∈ m
2 and g1, . . . , gn ∈ m with vP (gi) >

vP (xi) then ϕ : K[[x]] −→ K[[x]] : xi 7→ xi + gi is an isomorphism and

ϕ(f) = f + ξf + h (7)

where

ξ =
n

∑

i=1

gi∂xi
and vP (h) > vP (ξ) + vP (f).

The fact that we do not always have vP (ξf) = vP (ξ)+vP (f) is somewhat annoying

and forces us to adapt the filtrations induced by vP on the ideals

j(f) = {ξf | ξ ∈ DerK(K[[x]])}

respectively

tj(f) = {g · f + ξf | g ∈ K[[x]], ξ ∈ DerK(K[[x]])}.

In the following definitions we will restrict our attention in j(f) ∩ Fd respectively

tj(f) ∩ Fd to those elements whose valuation is expected to be at least d, avoiding

those who do so simply by bad luck.

For d ≥ 0 we define the ideals

jAP (f)d := {ξf | vP (ξ) + vP (f) ≥ d} � K[[x]]

and

tjAC
P (f)d := {g · f + ξf | min{vP (g) + vP (f), vP (ξ) + vP (f)} ≥ d} � K[[x]].

Replacing j(f) ∩ Fd resp. tj(f) ∩ Fd in the definition of grP (Mf ) resp. grP (Tf ) by

jAP (f)d resp. tjAC
P (f)d we get the graded K-algebras

grA
P (Mf ) :=

⊕

d≥0

Fd

/(

jAP (f)d + Fd+1

)

respectively

grAC
P (Tf ) :=

⊕

d≥0

Fd

/(

tjAC
P (f)d + Fd+1

)

.

We obviously have the inclusions

tj(f) ∩ Fd ⊇ tjAC
P (f)d ⊇ jAP (f)d ⊆ j(f) ∩ Fd,

and hence canonical surjections

grA
P (Mf ) ։ grP (Mf ), grA

P (Tf ) ։ grP (Tf ).

Due to Proposition 3.2 this yields together with Corollary 3.3 the following result.

Corollary 3.6

Let f ∈ K[[x]] be a power series and let P be a C-polytope.
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(a) Any monomial basis B of grA
P (Mf ) generates grP (Mf ), and if µ(f) < ∞ then

B also generates Mf . In particular,

µ(f) = dimK(grP (Mf )) ≤ dimK(grA
P (Mf )).

(b) Any monomial basis B of grAC
P (Tf ) generates grP (Tf ), and if τ(f) < ∞ then

B also generates Tf . In particular,

τ(f) = dimK(grP (Tf )) ≤ dimK(grA
P (Tf )).

Following Arnol’d [Arn75] and Wall [Wal99], who considered this notion for Mf ,

we call a monomial basis of grA
P (Mf ) respectively grAC

P (Tf ) a regular basis for Mf

respectively Tf .

We should point out that the finiteness of µ(f) respectively of τ(f) does not suf-

fice in general to guarantee the finite dimensionality of grA
P (Mf ) respectively of

grAC
P (Tf ). The reason for this is that elements of valuation d in j(f) respectively

in tj(f) may not be contained in jAP (f)d respectively in tjAP (f)d, as in the following

example.

Example 3.7 (T45-Singularity in characteristic 2)

Let char(K) = 2 and let the C-polytope P be defined by the weights w1 = (4, 6)

and w2 = (5, 5). The polynomial f = x5 +x2y2 +y4 is PH of degree 20 with respect

to P with Tjurina number τ(f) = 16. For n ≥ 4 we have

y4n = g · f + ξf ∈ tj(f),

where g = y4n−4 + x2y4n−6 + x4y4n−8 is QH of degree 20n− 20 = vP (y4n)− vP (f)

and ξ = (x · g + x2y4n−6) · ∂x. Thus g guarantees that y4n is indeed in tjAC
P (f)20n,

however,

vP (ξ) = vP (x2y4n−6∂x) = 20n − 25 < vP (y4n) − vP (f)

has a valuation which is too small. Moreover, we cannot do any better, i.e.

y4n 6∈ tjAC
P (f) + F20n+1

and thus

dimK

(

grAC
P (Tf )

)

= ∞.

See also Example 4.10. 2

Lemma 3.8

If P is a C-polytope and f ∈ K[[x]] then

grA
P (Mf ) = grA

P (MinP (f)) and grAC
P (Tf ) = grAC

P (TinP (f)).

Proof: For this we write f = inP (f)+h for some h ∈ K[[x]] with vP (h) ≥ vP (f)+1,

and we note that for any ξ ∈ DerK(K[[x]])

vP (ξh) ≥ vP (ξ) + vP (h) ≥ vP (ξ) + vP (f) + 1. (8)
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In order to show grA
P (Mf ) = grA

P (MinP (f)) we have to show

jAP (f)d + Fd+1 = jAP
(

inP (f)
)

d
+ Fd+1 (9)

for all d ≥ 0.

If g ∈ jAP (f)d then there is a derivation ξ such that g = ξf with

d ≤ vP (ξ) + vP (f) = vP (ξ) + vP

(

inP (f)
)

.

In view of (8) we thus have

g = ξ inP (f) + ξh ∈ jAP
(

inP (f)
)

d
+ Fd+1,

which shows that the left hand side in (9) is contained in the right hand side.

On the other hand, if g ∈ jAP
(

inP (f)
)

d
then there is a derivative ξ such that

g = ξ inP (f) with

d ≤ vP (ξ) + vP

(

inP (f)
)

= vP (ξ) + vP (f).

Again, in view of (8) we thus have

g = ξf − ξh ∈ jAP
(

inP (f)
)

d
+ Fd+1,

which shows that the left hand side in (9) is contained in the right hand side.

The proof for grAC
P (Tf ) = grAC

P (TinP (f)) works analogously. �

Corollary 3.9

Let f ∈ K[x] be QH of type (w; d) and let P be the C-polytope defined by the single

weight vector w.

(a) Then Γ(f) ⊆ P , grA
P (Mf ) = grP (Mf ) and grAC

P (Tf ) = grP (Tf )

(b) If moreover µ(f) < ∞ respectively τ(f) < ∞, then a set of monomials is a

K-vector space basis for grA
P (Mf ) respectively for grAC

P (Tf ) if and only if it is

one for Mf respectively for Tf .

Proof: Since P has only one side it induces a grading on K[x] and a homogeneous

filtration on K[[x]].

(a) We note that the partial derivative fxi
is QH of type (w; d−wi) if it does not

vanish. Thus the ideals j(f) and tj(f) are generated by weighted homogeneous

elements. This implies that

(j(f) ∩ Fk) + Fk+1 = jAP (f)k + Fk+1

and

(tj(f) ∩ Fk) + Fk+1 = tjAC
P (f)k + Fk+1

for all k ≥ 0 as required. Let us elaborate this argument for the ideal j(f).

Suppose that h =
∑n

i=1 gi · fxi
∈ j(f) is given. We can decompose the gi into

their quasihomogeneous parts

gi =
∑

j≥0

gi,j
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with gi,j QH of type (w; j). Then h decomposes into quasihomogeneous parts

h =
∑

j≥0 hj with

hj =
∑

fxi
6=0

gi,j−d+wi
· fxi

.

If we now suppose that h ∈ Fk then we can replace gi,j by zero for j < k+d−wi,

i.e. we may assume that

gi =
∑

j≥k+d−wi

gi,j ∈ Fk+d−wi
.

Setting

ξ =
∑

fxi
6=0

gi · ∂xi

we have h = ξf and necessarily vP (ξ) + vP (f) = vP (h) = k. Thus h ∈ j(f)k.

(b) By Corollary 3.6 any monomial basis B of grA
P (Mf ) is a generating set of

Mf . However, by (a) and Corollary 3.3 these vector spaces have the same

dimension. Hence, B is a basis of Mf .

For the converse we note that j(f) is generated by weighted homogeneous

polynomials. If B is a monomial basis Mf and x
β is any monomial, then there

are cα ∈ K and a g ∈ j(f) such that

x
β =

∑

x
α∈B

cα · xα + g,

and all x
α as well as g are weighted homogeneous polynomials of the same

weighted degree as x
β . In particular g ∈ j(f) ∩ Fd with d = vP (xβ), and thus

x
β is a linear combination of the elements of B in grP (Mf ). This shows that

B generates grP (Mf ) = grA
P (Mf ), and since Mf and grP (Mf ) have the same

dimension by Corollary 3.3 B must be a basis of grA
P (Mf ).

The proof for grAC
P (Tf ) and Tf works in the same way.

�

4. Normal forms

When obtaining normal forms of power series which are not right semi-quasihomo-

geneous the only known method was introduced by Arnol’d in [Arn75] over the

complex numbers and slightly generalised by Wall in [Wal99]. It requires the prin-

cipal part inP (f) of the power series (with respect to some C-polytope P ) to be an

isolated singularity and its Milnor algebra to have a finite regular basis. Arnol’d

actually gives a more restrictive condition but his proof shows that this suffices as

was pointed out by Wall. We generalise Arnol’d’s condition both in the strict and

in the weak form to the situation of contact equivalence and derive normal forms

for right as well as for contact equivalence in arbitrary characteristic.
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Definition 4.1 (a) Let P be a C-polytope and let f ∈ K[[x]] be a power series.

Following Arnol’d [Arn75] we say that f satisfies condition A with respect to

P if for any g ∈ j(f) there exists a derivation ξ ∈ DerK(K[[x]]) such that

vP (g) = vP (ξ) + vP (f) < vP (g − ξf),

i.e. if
(

j(f) ∩ Fd

)

+ Fd+1 = jAP (f)d + Fd+1, for all d ≥ 0,

i.e. if

grP (Mf ) = grA
P (Mf ).

i.e. if

µ(f) = dimK

(

grA
P (Mf )

)

.

(b) Following Wall we modify the condition, and say f satisfies condition AA –

for almost A – if

dimK

(

grA
P (Mf )

)

< ∞,

i.e. if the Milnor algebra of f has a finite regular basis.

(c) We modify these two conditions, which are meant to deal with right equivalence

to the situation of contact equivalence, and say f satisfies condition AC – for

A for contact equivalence – if for all h ∈ tj(f) there exists a g ∈ K[[x]] and a

derivation ξ ∈ DerK(K[[x]]) such that

vP (h) = min{vP (g) + vP (f), vP (ξ) + vP (f)} < vP (h − g · f − ξf),

i.e. if
(

tj(f) ∩ Fd

)

+ Fd+1 = tjAC
P (f)d + Fd+1 for all d ≥ 0,

i.e. if

grP (Tf ) = grAC
P (Tf ).

i.e. if

τ(f) = dimK

(

grAC
P (Tf )

)

.

(d) Again we modify the condition, and say f satisfies condition AAC – for almost

AC – if

dimK

(

grAC
P (Tf )

)

< ∞,

i.e. if the Tjurina algebra of f has a finite regular basis.

The naming of the above conditions should explain the superscripts in grA
P (Mf )

respectively in grAC
P (Tf ) and in the corresponding ideals.

The above equivalence of the characterisations of condition A respectively AC uses

Corollary 3.6. Corollary 3.3 and 3.6 together with Example 5.9 show that for

isolated singularities the almost conditions are indeed strictly weaker. Moreover,

µ(f) < ∞ and f satisfies A =⇒ f satisfies AA =⇒ µ(f) < ∞ (10)
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and

τ(f) < ∞ and f satisfies AC =⇒ f satisfies AAC =⇒ τ(f) < ∞. (11)

We point out that by Lemma 3.8

f satisfies AA resp. AAC ⇐⇒ inP (f) satisfies AA resp. AAC , (12)

i.e. the conditions AA and AAC only depend on the principal part of f .

We now formulate our main result on normal forms without refering to the condi-

tions AA respectively AAC, and we will see later how they come in useful. The

statement for right equivalence in this form without refering to condition A or AA

was first stated over the complex numbers in [Wal99, Theorem 2.1], but was already

proved by Arnol’d in [Arn75, Theorem 9.5]. We generalise the statement to contact

equivalence and give a different proof which works for any algebraically closed field

making an “Ansatz” with power series. Recall that ord(f) denotes the order of the

power series f and that d(f) denotes its differential order, i.e.

d(f) := min{ord(fx1
), . . . , ord(fxn

)}.

Theorem 4.2 (Normal forms with respect to right equivalence)

Let f ∈ m, P be a C-polytope and B = {xα | α ∈ Λ} a regular basis for MinP (f).

If m
k+2 ⊆ m

2 · j(f) then

f ∼r inP (f) +
∑

α∈Λf

cαx
α. (13)

for suitable cα ∈ K, where Λf is the finite set

Λf =
{

α ∈ Λ
∣

∣ deg(xα) ≤ 2k − d(f) + 1, vP (xα) ≥ vP

(

f − inP (f)
)}

.

Theorem 4.3 (Normal forms with respect to contact equivalence)

Let f ∈ m, P be a C-polytope and B = {xα | α ∈ Λ} a regular basis for TinP (f).

If m
k+2 ⊆ m · 〈f〉 + m

2 · j(f) then

f ∼c inP (f) +
∑

α∈Λf

cαx
α. (14)

for suitable cα ∈ K, where Λf is the finite set

Λf =
{

α ∈ Λ
∣

∣ deg(xα) ≤ 2k − ord(f) + 2, vP (xα) ≥ vP

(

f − inP (f)
)}

.

We will only prove Theorem 4.3 since the proof of Theorem 4.2 works along the

same lines.

Proof of Theorem 4.3: In the proof we will write fP instead of inP (f) to shorten

the notation. The basic idea is to construct a finite sequence (fi)
m
i=0 with f0 = f

such that fi ∼c f for all i and that

fm ≡ fP +
∑

α∈Λf

cαx
α

(

mod m
2k−ord(f)+3

)

.
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We try to do so by eliminating terms in f (piecewise) degree by degree. If we

succeed then by [BGM10, Theorem 2.1] we have

f ∼c fm ∼c fP +
∑

α∈Λf

cαx
α

as desired since 2k − ord(f) + 2 is a bound for the determinacy of f .

We start our construction by denoting by g = inP (f − fP ) the principal part of

g1 = f − fP with respect to P and setting h = f − fP − g. If we set d0 = vP (f) =

vP (fP ) and d1 = vP (f − fP ) > d0 then fP ∈ Fd0
is PH of degree d0, g ∈ Fd1

is

PH of degree d1 and h ∈ Fd1+1. Moreover, since B is a K-vector space basis of

grAC
P (TfP

) we have

g =
∑

α∈Λ

λP (α)=d1

cαx
α + b0 · fP + ξfP + h′

for suitable

cα ∈ K, b0 ∈ K[[x]], ξ =

n
∑

i=1

bi · ∂xi
∈ DerK(K[[x]]), and h′ ∈ K[[x]]

satisfying

d1 = min{vP (b0) + d0, vP (ξ) + d0} and vP (h′) > d1. (15)

Form (15) we deduce that

vP (b0) ≥ d1 − d0 > 0

and thus

b0 ∈ m, (16)

and also

vP (bi) − vP (xi) = vP (bi∂xi
) ≥ vP (ξ) ≥ d1 − d0 > 0. (17)

From (7) we know that then

ϕ : K[[x]] −→ K[[x]] : xi 7→ xi − bi

is a local K-algebra isomorphism of K[[x]].

Moreover, applying (7) to ϕ(fP ) and to ϕ(g) we get

ϕ(f) =ϕ(fP ) + ϕ(g) + ϕ(h)

=fP − ξfP + h1 + g − ξg + h2 + ϕ(h)

=(1 + b0) · fP +
∑

α∈Λ

λP (α)=d1

cαx
α + (h′ + h1 + h2 + ϕ(h) − ξg)

with h′, h1, h2, ϕ(h), ξg ∈ Fd1+1 taking (6) and (17) into account.
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Since by (16) b0 ∈ m we can multiply by the inverse of the unit 1 + b0 which is of

the form 1 + b with vP (b) ≥ d1 − d0 > 0 so that we get

(1 + b) · ϕ(f) = fP +
∑

α∈Λ

λP (α)=d1

cαx
α + g2 with vP (g2) > d1.

Setting f1 = (1 + b) · ϕ(f) we have f1 ∼c f , and we can go on inductively treating

g2 as we have treated g1 = f − fP before. That way we construct power series

fm = fP +
∑

α∈Λ

d1≤λP (α)≤dm

cαx
α + gm+1

with gm+1 ∈ Fdm
and d1 < d2 < . . . < dm, m ≥ 0. By (4) we eventually have that

Fdm
⊆ m

2k−ord(f)+3,

and we are done. �

Theorem 4.2 has as easy corollary the result of Arnol’d which he proved over the

complex numbers in [Arn75, Theorem 9.5], even though he used condition A and

µ
(

inP (f)
)

< ∞ (see also [Wal99, Theorem 2.1]).

Corollary 4.4 (Normal forms for right equivalence)

Let P be a C-polytope and f ∈ m be a power series such that inP (f) satisfies AA

then f is finitely right determined, rSPH and

f ∼r inP (f) +
∑

x
α∈B

vP (xα)>d

cαx
α

for suitable cα ∈ K, where B is a finite regular basis for MinP (f) and d = vP (inP (f)).

Proof: If inP (f) satisfies AA then f does so as well by Lemma 3.8. By (10) thus

µ(f) is finite and therefore j(f) contains some power of the maximal ideal. Hence

we are done by Theorem 4.2 since a regular basis for MinP (f) is finite due condition

AA. �

Using Lemma 3.8, (11) and Theorem 4.3 we get the analogous statement for contact

equivalence.

Corollary 4.5 (Normal forms for contact equivalence)

Let P be a C-polytope and f ∈ m be a power series such that inP (f) satisfies AAC

then f is finitely contact determined, cSPH and

f ∼c inP (f) +
∑

x
α∈B

vP (xα)>d

cαx
α

for suitable cα ∈ K, where B is a finite regular basis for TinP (f) and d = vP (inP (f)).

The proof of Theorem 4.2 and 4.3 actually gives a more precise bound on the

determinacy if AA respectively AAC is fulfilled.
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Corollary 4.6 (Finite determinacy bound for right equivalence)

Let P be a C-polytope, f ∈ m be a power series such that inP (f) satisfies AA and

let B be a regular basis for MinP (f). Then

d := max
{

vP

(

inP (f)
)

, vP

(

x
α
) ∣

∣

x
α ∈ B}

is finite and f ∼r g for any g ∈ K[[x]] with vP (f − g) > d.

In particular, if m
k+1 ⊆ Fd+1, then f is right k-determined.

We will explain the proof only in the case of contact equivalence.

Corollary 4.7 (Finite determinacy bound for contact equivalence)

Let P be a C-polytope, f ∈ m be a power series such that inP (f) satisfies AAC and

let B be a regular basis for TinP (f). Then

d := max
{

vP

(

inP (f)
)

, vP

(

x
α
) ∣

∣

x
α ∈ B}

is fintie and f ∼c g for any g ∈ K[[x]] with vP (f − g) > d.

In particular, if m
k+1 ⊆ Fd+1, then f is contact k-determined.

Proof: By Corollary 4.5 f is finitely determined, and thus by [BGM10, Theo-

rem 2.5] some power of m lies in 〈f〉 + m · j(f), so that we are in the situation of

Theorem 4.3. The proof of Theorem 4.3 shows that

f ∼c inP (f) +
∑

x
α∈B

vP (xα)>vP (inP (f))

cαx
α + gl

for suitable cα ∈ K and with gl ∈ Fl for l arbitrarily large. Moreover, in the process

of constructing the transformations we see that terms of piecewise valuation larger

than d do not have any influence on the coefficients cα of the above normal form.

Thus any power series g which coincides with f up to valuation d will give the same

normal form and is thus contact equivalent to f . �

The determinacy bounds from Corollaries 4.6 resp. 4.7 for power series satisfying

conditions AA resp. AC are in general better than those for arbitrary isolated

singularities given in [BGM10] (see Example 5.1). This shows that the conditions

AA and AAC are desirable. In the following we give lots of examples of power series

satisfying these conditions. We will first consider quasihomogeneous polynomials.

Proposition 4.8

If f ∈ K[x] is QH of type (w; d) and P is the C-polytope defined by the single weight

vector w, then f satisfies the conditions A and AC with respect to P .

Proof: This was proved in from Corollary 3.9 (a). �

From (10) and (11) together with (12) it follows that any power series with an

isolated quasihomogeneous principal part satisfies AA and AAC.
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Corollary 4.9

If f ∈ K[[x]] is rSQH respectively cSQH w.r.t. w then f is AA respectively AAC

w.r.t. the C-polytope defined by w.

Example 4.10 (T45-Singularity in characteristic 2)

The condition in Corollary 4.9 that the C-polytope has only one facet, i.e. that

the principal part is quasihomogeneous, is essential. Let char(K) = 2 and f =

x5 + x2y2 + y4 + x3y2 ∈ K[[x, y]]. Then f is cSPH with respect to P = Γ(f) with

principal part inP (f) = x5 + x2y2 + y4 and τ
(

inP (f)
)

= 16. However, τ(f) = ∞,

which is an alternative proof of the fact f is not AAC, as we have already seen in

Example 3.7. 2

Remark 4.11 ([Wal99])

In [Wal99] Wall introduces the notion of strict Newton non-degeneracy which turns

out to be a sufficient condition for AA and AAC. Let us recall the definition here. A

face ∆ of P is called an inner face if it is not contained in any coordinate hyperplane.

Each point q ∈ Kn determines a coordinate hyperspace Hq =
⋂

qi=0{xi = 0} ⊆ Rn

in Rn. We call f strictly non-degenerate SND along ∆ if for no common zero q

of j(in∆(f)) the polytope ∆ contains a point on Hq, and we call f strictly Newton

non-degenerate SNND w.r.t. P if f is non-degenerate of type SND along each inner

face of P .

Strict Newton non-degeneracy can be formulated differently so that the connection

to grA
P (Mf ) is more evident. Each face ∆ of the Newton polytope of f determines

a finitely generated semigroup C∆ in Zn by considering those lattice points which

lie in the cone over ∆ with the origin as base. This semigroup then determines a

finitely generated K-algebra K[C∆] = K[xα|α ∈ C∆] and a K[C∆]-module

D∆ = 〈xα · ∂xi
| x

α · ∂xi
x

γ ∈ K[C∆] ∀ γ ∈ C∆〉K[C∆]

generated by monomial derivations which leave K[C∆] invariant. Applying all ele-

ments in D∆ to in∆(f) leads to an ideal J∆ in K[C∆], and Wall then shows that

(see [Wal99, Prop. 2.2])

dimK(K[C∆]/J∆) < ∞ ⇐⇒ f is SND along all inner faces of ∆.

The rings K[C∆]/J∆ can be stacked neatly in an exact sequence of complexes whose

homology Wall uses to show that (see [Wal99, Prop. 2.3])

f is SNND =⇒ dimK

(

grA
P (Mf )

)

< ∞.

Wall’s arguments use only standard facts from toric geometry and homolgoical

algebra and do not depend on the characteristic of the base field. This proves The-

orem 4.12, which shows that strictly Newton non-degenerate singularities possess

good normal forms w.r.t. right equivalence and also w.r.t. contact equivalence (see

Corollaries 4.4 and 4.5).
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We refer to [Wal99] and [BGM10, Sec. 3] for more information on strict Newton

non-degeneracy. 2

Theorem 4.12 (Wall, [Wal99])

If f ∈ K[[x]] is SNND w.r.t. P , then f is AA and AAC w.r.t. P , and hence

τ(f) ≤ µ(f) < ∞.

5. Examples

In this section we apply the results of the previous sections to the classification of

singularities of low modality in positive characteristic. A full classification of hy-

persurface singularities of right modality at most 2 and of contact modality at most

1 is still missing in positive characteristic, although a big part of this classification

was achieved in [GrK90] and [Bou02].

Example 5.1 (Q10-Singularity in characteristic 2)

Let char(K) = 2 and assume that f ∈ K[[x, y, z]] is cSQH with respect to the C-

polytope P containing Γ(f) and with principal part inP (f) = x2z + y3 + z4. Using

Singular ([DGPS10]) we see that

B = {1, x, y, z, xy, xz, yz, z2, xyz, xz2, yz2, z3, xyz2, xz3, yz3, xyz3}

is a K-vector space basis of TinP (f). By Proposition 4.8 we see that B is indeed a

regular basis for Tf and that f is AC with

dimK

(

grAC
P (Tf )

)

= τ
(

inP (f)
)

= 16.

Corollary 4.5 then shows that

f ∼c x2z + y3 + z4 + c1 · xyz2 + c2 · xz3 + c3 · yz3 + c4 · xyz3

for some c1, . . . , c4 ∈ K. Moreover, using the weight vector w = (9, 8, 6) to deter-

mine the filtration induced by P then

max{vP (f), vP (b) | b ∈ B} = 35

and an easy computation shows that m
6 ∈ F36. Thus f is contact 5-determined,

and this bound of determinacy is better than the one obtained from [BGM10,

Theorem 2.1], which would be 11. 2

When checking if certain monomials are zero in grA
P (Mf ) respectively grAC

P (Tf ) the

following lemma is very helpful.

Lemma 5.2

Let P be a C-polytope, ∆ a facet of P and f ∈ K[[x]]. Moreover, denote by C∆ the

cone over ∆, and assume that α, β ∈ C∆∩Zn. If x
α is zero in grA

P (Mf ) respectively

in grAC
P (Tf ) then x

α+β is so.
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x

y

z

Figure 4. The Newton polytope of xz2 + y3 + z4.

Proof: Since α and β belong to the same cone C∆ Equation (2) shows that

vP

(

x
α+β

)

= vP

(

x
α
)

+ vP

(

x
β
)

.

Thus in the graded algebra grA
P (Mf ) respectively grAC

P (Tf ) the class of x
α+β is

the product of the classes of x
α and x

β (see (5)). Since the former is zero by

assumption so is the product. �

Remark 5.3

With the notation and assumptions of Lemma 5.2 it follows that all monomials

corresponding to the cone α + C∆ vanish in grA
P (Mf ) respectively in grAC

P (Tf ).

C∆

α

α + C∆

C∆

Figure 5. The lattice points in α + C∆ correspond to monomials

xγ vanishing in grA
P (Mf ) respectively in grAC

P (Tf ).

Example 5.4 (Tpq-Singularities)

Arnol’d considered in [Arn75, Example 9.6] the power series f = xp +λx2y2 + yq ∈

C[[x]] with λ 6= 0 and 1
p

+ 1
q

< 1
2 or equivalently

pq − 2p − 2q > 0.

f is PH with respect to its Newton polygon P = Γ(f) depicted in Figure 6. If we

scale the corresponding weight vectors to length 2pq instead of one they are

w1 = (2q, pq − 2q) and w2 = (pq − 2p, 2p),

and the piecewise degree of f is then degP (f) = 2pq. Arnol’d describes in his paper

a geometric procedure to compute a regular basis for Mf if the partial derivatives
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q

p

Γ(f)

Figure 6. The Newton polygon of xp + λx2y2 + yq.

have only two terms as in the example, and he deduces that f satisfies condition A

and AA and that

B = {1, x, . . . , xp, y, y2, . . . , yq−1, xy}

is a regular basis for Mf . In particular,

µ(f) = dimK

(

grA
P (Mf )

)

= p + q + 1.

Since no monomial in B lies above Γ(f) it follows as seen in Corollary 4.4 and 4.6

that any power series whose principal part with respect to the above P coincides

with Tpq actually is right equivalent to Tpq.

Arnol’d’s arguments actually work for any field K where the characteristic is neither

two, nor divides p or q. If the characteristic divides p or q then µ(f) = ∞, and in

the characteristic two case the Jacobian ideal is generated by the monomials xp−1

and yq−1, so that µ(f) = pq.

We now want to investigate f = Tpq with respect to contact equivalence and the

condition AC, and we first want to show that

char(K) 6= 2 =⇒ f satisfies AC and hence AAC .

Assume first that in addition char(K) does neither divide p nor q nor pq−2 ·(p+q).

Then µ(f) < ∞ and thus also τ(f) < ∞. Moreover, by Corollary 3.6 the above B

generates grAC
P (Tf ) and

Tf = K[[x, y]]/〈f, fx, fy〉.

It is clear that other than xp the monomials in B will stay linearly independent

modulo tj(f), and all monomials xiyj which are in j(f)d + Fd+1 with d = vP (xiyj)

are also in tj(f)d + Fd+1 (since they are a regular basis for Mf , see also [Bou09,

Proposition 3.2.14]). To see that f satisfies AC it thus suffices to show that there

are a, b, c ∈ K such that

xp = a · f + b · x · fx + c · y · fy

since then

xp ∈ tj(f)2pq ⊆ tj(f).
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Considering the coefficients for xp, x2y2 and yp this leads to a linear system of

equations with extended coefficient matrix

M =







1 p 0 1

λ 2λ 2λ 0

1 0 q 0






.

This system is solvable if and only if the equation

λ ·
(

pq − 2 · (p + q)
)

= 2λ

has a solution, i.e. if the first 3 × 3-Minor −λ ·
(

pq − 2 · (p + q)
)

6= 0. This shows

that

p + q = τ(f) = dimK

(

grAC
P (Tf )

)

,

where for the latter equality we take into account that τ(f) is a lower bound for

the dimension. Moreover,

B′ = {1, x, . . . , xp−1, y, y2, . . . , yq−1, xy}

is a regular basis for Tf and f satisfies AC.

Assume next that char(K) does neither divide p nor q, but it divides pq−2 · (p+ q).

We have already seen in the first case that the system of linear equations with

extended coefficient matrix M is not solvable under the given hypotheses. It follows

that xp does not lie in tj(f). Therefore, B is a regular basis for Tf and

p + q + 1 = τ(f) = dimK

(

grAC
P (Tf )

)

.

Assume now that char(K) divides p but not q. Then it is straight forward to see

that

tj(f) =
〈

xp, yq, xy2, qyq−1 − 2λx2y
〉

.

and thus B′ is a K-vector space basis of Tf . We claim that B′ also generates

grAC
P (Tf ), so that f satisfies AC with Tjurina number τ(f) = p+ q. By Lemma 5.2

it suffices to check that the monomials in

Bc =
{

x2y2, xy2, x2y, xp, yq}

are zero in grAC
P (Tf ) (see Figure 7). However, we have that

x2y2 =
1

2λ
· x · ∂xf ∈ tj(f)2pq

and

xp = f −

(

1

2
+

1

q

)

· x · ∂xf −
1

q
· y · ∂yf ∈ tj(f)2pq.

Moreover, vP (xy2) = pq + 2q and vP (∂x) = 2p − pq so that

xy2 =
1

2λ
· ∂xf ∈ tj(f)pq+2p.

Similar arguments hold for x2y and yq. This finishes this case.
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q

p

q

p

C∆

Figure 7. On the left hand side the elements of B′ are depicted

by large white dots and the elements in Bc are depicted by large

black dots. The right hand side shows the union of (2, 2) + C∆,

(2, 1) + C∆ and (p, 0) + C∆ which covers all lattice points in C∆

which are not in B′.

Assume now that char(K) divides q but not p. This case follows by symmetry from

the previous case, i.e. f is AC with Tjurina number τ(f) = p + q.

Assume finally that char(K) divides both p and q. Then tj(f) = 〈xy2, x2y, xp +

yq, xp+1, yq+1〉 and B is a K-vector space basis of Tf . Moreover, we claim that it is

a regular basis for Tf as well. By Lemma 5.2 it suffices to show that the monomials

xp+1, yq+1, x2y2, xy2 and x2y as well as the binomial xp +yq are zero in grAC
P (Tf ).

This can be achieved in the same way as above. In particular we have

p + q + 1 = τ(f) = dimK

(

grAC
P (Tf )

)

and f satisfies AC.

Conclusion: In each of the above cases the regular basis B respectively B′ consists

of monomials on or below the Newton polygon P = Γ(f). Therefore, the normal

form algorithm shows that any power series with principal part f with respect to

P has indeed f as normal form. 2

Corollary 5.5 (Normal form of Tpq-Singularities)

Suppose that char(K) 6= 2 and let f ∈ K[[x, y]] be a power series with inΓ(f) =

xp + λ · x2y2 + yq, 1
p

+ 1
q

< 1
2 and λ 6= 0. Then f is AC and

f ∼c xp + λ · x2y2 + yq.

The contact determinacy of f is max{p, q}.

Proof: That f satisfies AC and is contact equivalent to its principal part was shown

in Example 5.4. It is obvious that any monomial above the Newton polygon has

stricly larger piecewise valuation than f . Using the notation from Example 5.4 it

follows that m
k+1 ⊆ F2pq+1 for k = max{p, q}, so that by Corollary 4.7 the degree
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of contact determinacy is at most k. To see that it cannot be less we may assume

the contrary and we may assume moreover that p ≥ q. Then f ∼c inΓ(f)(f)−xp =

λ · x2y2 + yq, but the latter is non-reduced and has thus infinite Tjurina number.

This is clearly a contradiction. �

Remark 5.6

If char(K) = 2 neither the conclusion in Corollary 5.5 nor the investigation in

Example 5.4 hold in general as we can see from Example 3.7.

For the Tpq-Singularities we considered the conditions A and AC and deduced a

normal form. However, for normal forms we only need a good way to choose a small

regular basis for MinP (f) respectively TinP (f). There the following observations are

useful.

Remark 5.7

Each C-polytope P has only finitely many zero-dimensional faces and each facet is

the convex hull of some of these. The cones over these zero-dimensional faces are

rays, and for each facet ∆ of P the cone C∆ is spanned by a finite number of these

rays, none of which is superfluous, i.e. they are the extremal rays of the cone.

Then f ∈ K[[x]] satisfies condition AA respectively AAC w.r.t. P if and only if on

each ray spanned by a zero-dimensional face of P there is a lattice point α such that

x
α is zero in grA

P (Mf ) respectively in grAC
P (Tf ).

Proof: Consider first the two-dimensional situation such that each cone C∆ is

spanned by two rays. Suppose that a cone C∆ is given and it is spanned by the

rays r and s, and suppose that α is a lattice point on r and β is a lattice point on

s. The shifted rays α + s and β + r will intersect, since r and s are not parallel,

r

s

α

β

C∆

Figure 8. C∆ almost filled by two shifted copies of C∆.

and thus the rays r, s, α + s and β + r bound a finite region in the cone C∆ (see

Figure 8). By Lemma 5.2 the lattice points which are not inside the bounded region

will be zero in grA
P (Mf ) respectively in grAC

P (Tf ). We can play this game for each

facet of P , and thus there are only finitely many monomials whose class is not zero.
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The argument generalises right away to higher dimensions. �

Corollary 5.8

Let f = xa + yb + λ · xcyd ∈ K[[x, y]] with λ ∈ K, a > c ≥ 1, b > d ≥ 1 and

ad + bc < ab, and let P = Γ(f). Then f satisfies AA respectively AAC w.r.t. P if

and only if there are natural numbers k,m, n such that xm, yn and xckydk are zero

in grA
P (Mf ) respectively in grAC

P (Tf ).

Proof: The Newton polygon of f is schematically shown in Figure 9, and the result

follows from Remark 5.7. �

mac

n

b

d

(ck, dk)

Figure 9. The Newton polygon of xa + yb + λ · xcyd.

Example 5.9 (E3,3-Singularity in characteristic 3)

Let char(K) = 3 and consider the equation

f = x12 + x3y2 + y3 ∈ K[[x, y]].

f is piecewise homogeneous with respect to its Newton polygon and using the

procedure isAC from the Singular library gradalg.lib we can check that x15, y15

and x9y6 are zero in grAC
P (Tf ). Thus f is AAC with respect to Γ(f) by Corollary 5.8.

Moreover, using the procedure ACgrbase from the same library we can compute

the regular basis

B = {1, x, . . . , x12, y, xy, x2y, y2, xy2, x2y2, xy3, x2y3, x2y4}

for Tf . Hence, dimK

(

grAC
P (Tf )

)

= |B| = 22 while τ(f) = 21. This shows that f is

not AC.

Theorem 4.3 shows that any power series g whose principal part with respect to

Γ(f) is f satisfies

g ∼c f + c1 · xy3 + c2 · x
2y3 + c3 · x

2y4

for suitable c1, c2, c3 ∈ K.

Scaling the weight vectors corresponding to the facets of Γ(f) suitably they are

w1 = (6, 27) and w2 = (8, 24), and f is PH of piecewise degree 72. Moreover, the

maximum of the piecewise degree of the monomials in B is d = 112, and an easy
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computation shows that m
19 ⊆ F113. By Corollary 4.7 we therefore know that the

contact determinacy bound of f is at most 18. That is much better than the bound

2 · τ(f) − ord(f) + 2 = 41

which [BGM10, Theorem 2.1] gives. 2

Example 5.10 (E7-Singularity)

Let f ∈ K[[x, y, z]] and let P be a C-polytope containing Γ(f) and suppose that

the principal part of f is inP (f) = x3 +xy3 +z2. Then f is cSQH and our methods

show the following (for the details we refer to [Bou09, Example 3.3.22]):

1st Case: char(K) 6∈ {2, 3}: Then f ∼c inP (f), τ(f) = τ
(

inP (f)
)

= 7 and the

contact determinacy is 4.

2nd Case: char(K) = 3: Then f ∼c inP (f)+c·x2y2 for some c ∈ K, τ
(

inP (f)
)

= 9

and the contact determinacy is again 4. If c 6= 0 then τ(f) = 7.

3rd Case: char(K) = 2: Then f ∼c inP (f) + c1 · y3z + c4 · y4z, τ
(

inP (f)
)

= 14

and the determinacy is 5.

Example 5.11 (W1,1-Singularities)

Let f ∈ K[[x, y]] be such that the principal part with respect to P = Γ(f) is

inP (f) = x7 + x3y2 + y4. Then f is cSPH and our methods give the following

normal forms (for the details we refer to [Bou09, Example 3.3.9]):

1st Case: char(K) 6∈ {2, 3}: Then f ∼c inP (f).

2nd Case: char(K) = 3: Then f ∼c inP (f)+c1 ·xy4 +c2 ·x
2y3 +c3 ·x

2y4 +c4 ·x
2y5

for some c1, . . . , c4 ∈ K. However, considering parametrisations it can be shown

that actually f ∼c inP (f) + c · x2y3 for some c ∈ K (see [Bou02]).

3rd Case: char(K) = 2: Then f ∼c inP (f) + c · x6y for some c ∈ K.
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Figure 10. The Newton polygon of x7 + x3y2 + y4 for char(K) 6= 2, 3, 7.
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