Arithmetic applications of Prym varieties in low genus

Nils Bruin (Simon Fraser University), Tübingen, September 28, 2018

Background: classifying rational point sets of curves

Typical arithmetic geometry problem:

Difference in point sets:

$$x2 + y2 = 1$$

$$x2 + y2 = -1$$

$$x2 + y2 = 5$$

$$x2 + y2 = 3$$

Topological trichotomy for point sets of curves:

Let *C* be smooth projective curve over a number field *k* (e.g. $k = \mathbb{Q}$). As a simple case: $C \subset \mathbb{P}^2$ of degree *d*.

d	genus	point set
≤ 2	0	$C(k) = \emptyset$ or $C \sim \mathbb{P}^1$
= 3	1	$C(k) = \emptyset$ or $C(k)$ is a finitely
		generated abelian group (Mordell-Weil)
\geq 4	> 1	C(k) is a finite (Faltings)

Explicit computational question; elementary approaches

Explicit computational/theoretical problem: Given a projective, nonsingular curve *C* over a number field *k*, determine its set of *k*-rational points.

Basic observation I: local obstructions

If for a metric completion k_v of k (for $k = \mathbb{Q}$, this means $k_v = \mathbb{Q}_p$ or $k_v = \mathbb{R}$) we have $C(k_v) = \emptyset$, then we say that *C* has a *local obstruction* to having rational points:

$$C(k) \subset C(k_v)$$
 means $C(k_v) = \emptyset \implies C(k) = \emptyset$

Basic observation II: going down

If $\phi : C \to D$ is a finite cover of curves over k, then $\phi(C(k)) \subset D(k)$, so if D(k) is known and finite then $C(k) \subset \phi^{-1}(D(k))$ is easily computed.

Example:

$$C: y^{2} = x^{6} - 4x^{4} + 16 \quad \rightarrow \quad D: y^{2} = u^{3} - 4u^{2} + 16$$
$$(x, y) \qquad \mapsto \qquad (x^{2}, y) = (u, y)$$
$$D(\mathbb{Q}) = \{(0, \pm 4), (4, \pm 4), \infty\}, \text{ so } C(\mathbb{Q}) = \{(0, \pm 4), (\pm 2, \pm 4), \infty^{\pm}\}$$

Chevalley-Weil (Going up)

Definition: Let $\phi : \tilde{C} \to C$ and $\phi' : \tilde{C}' \to C$ be covers of projective curves over *k*. We say ϕ, ϕ' are *twists* if there is an isomorphism $\psi : \tilde{C} \to \tilde{C}'$ over k^{sep} such that $\phi = \phi' \circ \psi$:

Chevalley-Weil: going up

If $\phi: \tilde{C} \to C$ is unramified then there is a *finite* collection Σ of twists such that

$$\bigcup_{\xi\in\Sigma}\phi_\xi(\tilde C_\xi(k))=C(k)$$

Key fact: The curves \tilde{C}_{ξ} may be amenable to other approaches (such as local obstructions and going down).

Reminder: A curve is *hyperelliptic* if it admits a degree 2 map to a genus 0 curve. If it does not have a local obstruction, then it admits a model:

$$C: y^2 = f(x)$$

Example. The following (genus 1) curve has no local obstructions:

$$C: y^2 = 22x^4 + 65x^2 + 48 = (2x^2 + 3)(11x^2 + 16)$$

Construct a cover:

$$\tilde{C}_{\xi} = \begin{cases} 2x^2 + 3 = \xi y_1^2 \\ 11x^2 + 16 = \xi y_2^2 \\ y = \xi y_1 y_2 \end{cases}$$

- Careful consideration: WLOG $\xi \in \{1, 2, 3, 6, 11, 22, 33, 66\}$
- For each ξ we have $\tilde{C}_{\xi}(\mathbb{Q}_p) = \emptyset$ for some p.

Two-covers (B.-Stoll, 2009): For hyperelliptic curves $C: y^2 = f(x)$ of genus g, there are two-covers for which the Chevalley-Weil set Σ is explicitly computable.

Theorem (Poonen-Stoll, 1999): Most hyperelliptic curves $y^2 = f(x)$ over \mathbb{Q} do not have local obstructions.

Theorem (Bhargava, 2013): Most hyperelliptic curves over \mathbb{Q} have only two-covers that have local obstructions.

Theorem (Bogomolov-Tschinkel, 2002): Any hyperelliptic curve admits an unramified cover \tilde{C} that (over k^{sep}) covers $C_0: y^2 = x^6 + 1$.

Corollary: If for any number field *L*, you can compute $C_0(L)$ then, via going-up and going-down, you can compute the rational points on any hyperelliptic curve.

Subvarieties of Abelian varieties

Advanced: Determine C(k) via embedding $C \hookrightarrow A$ into an Abelian variety A.

Obstruction to embedding: Note that $C(k) \subset \text{Pic}^1(C/k)$, so either $C(k) = \emptyset$ or there is a $\mathfrak{d} \in \text{Pic}^1(C/k)$:

 $C \hookrightarrow \operatorname{Jac}(C); \ P \mapsto [P] - \mathfrak{d}$

Theorem (Mordell-Weil): A(k) is finitely generated.

Chabauty's method: If rkA(k) = r < dim(A):

- ► Higher dimension of *A* allows for larger *r*
- ► Lower dimension of *A* makes computation easier.
- If A = Jac(X), computing is easier still.

Prym varieties

Let *C* be of genus *g* and let $\phi : \tilde{C} \to C$ be an unramified double cover. Then $\ker(\phi_* : \operatorname{Jac}(\tilde{C}) \to \operatorname{Jac}(C))$ is of dimension g-1 and has two components. **Definition:** $\operatorname{Prym}(\tilde{C}/C)$ is the maximal connected subgroup of $\ker \phi_*$. **Proposition:** The principal polarization of $\operatorname{Jac}(\tilde{C})$ induces one on $\operatorname{Prym}(\tilde{C}/C)$. **Example** (Hyperelliptic curves):

Description of Prym variety: $Prym(\tilde{C}_{\xi}/C) = Jac(X_{\xi}) \times Jac(Y_{\xi})$

- ► As we have seen, Prym varieties of hyperelliptic curves can be described in terms of Jacobians. The cover *C̃* maps to those curves.
- ▶ For *C* of genus 3, dim $Prym(\tilde{C}/C) = 2$. These are all Jacobians.
- For *C* of genus 4, dim Prym $(\tilde{C}/C) = 3$. These are *twists* of Jacobians.
- For *C* of genus ≥ 5 we do not expect $Prym(\tilde{C}/C)$ to be a Jacobian.

Big question: For sufficiently general non-hyperelliptic *C* of genus 3, 4 we have $Prym(\tilde{C}/C) = Jac(X)$ for some curve *X* (for a specific twist of \tilde{C} for genus 4).

How do we construct this *Prym curve X*?

Description of canonical models of curves:

- ► Nonhyperelliptic genus 3 curve is a smooth plane quartic.
- Nonhyperelliptic genus 4 is an intersection of a quadric Q and a cubic Γ in \mathbb{P}^3 .

Trigonal construction – Recillas

Galois theory:

Theorem: $Jac(X) = Prym(\tilde{C}/C)$, so Jacobians of tetragonal curves are Pryms.

In the opposite direction: Let $C \to L$ be trigonal; let $\tilde{C} \to C$ be an unramified double cover.

- Galois closure \tilde{C} ! of $\tilde{C} \rightarrow L$ generically has group $(C_2)^3 \rtimes S_3 = C_2 \times S_4$;
- Center interchanges geometric components.

Theorem: Given *C* trigonal and $\tilde{C} \to C$ unramified of degree 2, then there is a *twist* such that $Prym(\tilde{C}/C) = Jac(X)$.

Smooth plane quartic:

C:
$$Q_1(x, y, z)Q_3(x, y, z) = Q_2(x, y, z)^2$$

Double cover:

$$\tilde{C}: \begin{cases} Q_1(x, y, z) = u^2 \\ Q_2(x, y, z) = uv \\ Q_3(x, y, z) = v^2 \end{cases}$$

Special divisor classes

$$X \subset W_4^1 \subset \operatorname{Pic}^4(\tilde{C})$$

Model:

$$X: t^2 = -\det(Q_1 + 2sQ_2 + s^2Q_3)$$

Mapping \tilde{C} into the Prym

Given $\phi^* \colon \tilde{C} \to C$ unramified double cover of a genus 3 curve:

Gives *C* as a subvariety of a Kummer surface, with the rational points of \tilde{C} lifting to Jac(X). Gives *C* as an intersection of two quartic equations.

Example:
$$C: (2z^2 - 2x^2 - 2yz)(x^2 + 2xy + 2y^2) = (z^2 - x^2 + xz - 2yz)^2$$
 has $C(\mathbb{Q}) = \{(0:1:0)\}.$

Example: $C: (y^2 + yz - z^2)(z^2 + xy) = (x^2 - y^2 - z^2)^2$ has no local obstructions and yet, no rational points. The same holds for \tilde{C} .

Corollary: Every sextic polynomial can be expressed as $det(M_0 + 2xM_1 + x^2M_2)$, where the M_i are 3×3 symmetric matrices (i.e., every Jac(X) is a Prym over k).

Pryms of genus 4 curves

Joint work with Emre Can Sertöz (MPI Leipzig)

Reminder: Non-hyperelliptic genus 4 curves have a canonical model in \mathbb{P}^3 $\Gamma = Q = 0$, where $\deg(\Gamma) = 3$, $\deg(Q) = 2$.

- ▶ Rulings on *Q* give trigonal maps $C \rightarrow L$,
- ▶ If *Q* is nonsingular, then *C* has two trigonal maps
- ▶ If *Q* is singular then *C* is uniquely trigonal (vanishing theta null)
- Cubic surfaces containing C: span $\langle \Gamma, xQ, yQ, zQ, wQ \rangle$.

Cayley cubic: Four nodes; admits a *symmetric* presentation:

$$\Gamma_{\varepsilon} : xyz + xyw + xzw + yzw = \det \begin{pmatrix} x + w & w & w \\ w & y + w & w \\ w & w & z + w \end{pmatrix}$$

Points on Γ_{ε} parametrize singular plane conics, so pairs of lines. **Double cover:** $\tilde{\Gamma} \rightarrow \Gamma$ Splits these pairs. **Theorem** (Catanese, B-Sertöz): The double covers of *C* (modulo twists) correspond exactly to symmetrized cubics containing *C*:

 $\varepsilon \in \operatorname{Pic}^{0}(C)[2] \setminus \{0\} \longleftrightarrow \{\text{Symmetrized cubics } \Gamma_{\varepsilon} \supset C\}$

Warning: If $C \to E$ is bielliptic, then double covers of *E* (three in total) pull back to double covers of *C*. Then Γ_{ε} is a cone over *E* with three possible symmetrizations.

Parametrization: Symmetrization induces a birational map

$$\mathbb{P}^2 \to \Gamma_{\varepsilon}$$

Distinguished double cover:

Question: Do we have $Prym(\tilde{C}/C) = Jac(X_{\varepsilon})$ and if so, how do we construct X_{ε} ?

Recall: Given a surface V: f(x, y, z, w) = 0, we have a rational map:

$$\mathbb{P}^3 \to \widehat{\mathbb{P}}^3; \ (x:y:z:w) \mapsto (\frac{\partial f}{\partial x}:\frac{\partial f}{\partial y}:\frac{\partial f}{\partial z}:\frac{\partial f}{\partial w})$$

Dual variety: Image \hat{V} under this map.

- If Γ_{ε} is a Cayley cubic then $\widehat{\Gamma}_{\varepsilon}$ is a quartic surface.
- For a nonsingular quadric Q, we have that \hat{Q} is an isomorphic quadric.

Theorem: $X_{\varepsilon} = \widehat{\Gamma}_{\varepsilon} \cap \widehat{Q}$ yields $\operatorname{Jac}(X_{\varepsilon}) = \operatorname{Prym}(\widetilde{C}_{\varepsilon}/C)$.

Additionally, the pull-back of X_{ε} along $\mathbb{P}^2 \to \Gamma_{\varepsilon} \to \widehat{\Gamma}_{\varepsilon}$ gives a smooth plane quartic.

Indication of proof: We have that $C \subset Q$ makes *C* trigonal in two ways. Similarly, $X_{\varepsilon} \subset \widehat{Q}$ makes X_{ε} tetragonal in two ways. This fits in Recillas' trigonal construction.

Defining data

Equivalent defining data for Prym construction

- *C*, together with $\varepsilon \in \operatorname{Pic}^0(C)[2]$
- ► *X*, together with two tetragonal pencils $\mathscr{L}_1, \mathscr{L}_2$, with $\mathscr{L}_1 \otimes \mathscr{L}_2$ bicanonical

Note: \mathscr{L}_1 is either part of a canonical linear system, or \mathscr{L}_1 is complete.

Special cases:

- *C* may have a vanishing theta null θ_0 : *Q* is a cone.
- ε may be bielliptic: Γ_{ε} is a cone
- $\mathscr{L}_1, \mathscr{L}_2$ may be canonical themselves
- \mathscr{L}_1 may be linear equivalent to \mathscr{L}_2 (self-residual)

 ε bielliptic $\longleftrightarrow \mathscr{L}_1$ self-residual $\ell(\varepsilon + \theta_0)$ even $\longleftrightarrow C$ hyperelliptic $\ell(\varepsilon + \theta_0)$ odd $\longleftrightarrow \mathscr{L}_1$ canonical

Note: $\ell(\varepsilon + \theta_0)$ odd and ε bielliptic does not happen.

Required data: *X*: smooth plane quartic, and one of:

(a) Point in \mathbb{P}^2 to project from to get $X \to \mathbb{P}^1$

(b) $\{\mathscr{L}_1, \mathscr{L}_2\}$ Galois-stable as a set; equivalently:

 $\{\mathscr{L}_1 - \kappa_C, \mathscr{L}_2 - \kappa_C\};$ a point on $\operatorname{Kum}(X) = \operatorname{Jac}(X)/\langle \pm 1 \rangle.$

(Indeed, the "Fibre" of the Prym map $\tilde{C}/C \mapsto X$ is known to be the Kummer variety blown up at the origin)

With (b) we can construct Q and Γ_{ε} .

For (a) one can use link with degree 2 and 1 del Pezzo surfaces to construct C.

- For determining Jac(C)(k): *p*-adic computations; *S*-units in number fields
- For computing X from C etc.: basic commutative algebra; elimination (images of maps)
- ► For experimental checking: period matrices of algebraic curves.
- For Chabauty computations: Computing with divisor classes over \mathbb{Q}_p and \mathbb{F}_p .