Arithmetic applications of Prym varieties in low genus

Nils Bruin (Simon Fraser University),
Tübingen, September 28, 2018

Background: classifying rational point sets of curves

Typical arithmetic geometry problem:

Difference in point sets:

$$
\begin{aligned}
& x^{2}+y^{2}=1 \\
& x^{2}+y^{2}=-1 \\
& x^{2}+y^{2}=5 \\
& x^{2}+y^{2}=3
\end{aligned}
$$

Topological trichotomy for point sets of curves:
Let C be smooth projective curve over a number field k (e.g. $k=\mathbb{Q}$). As a simple case: $C \subset \mathbb{P}^{2}$ of degree d.

d	genus	point set
≤ 2	0	$C(k)=\emptyset$ or $C \sim \mathbb{P}^{1}$
$=3$	1	$C(k)=\emptyset$ or $C(k)$ is a finitely
		generated abelian group (Mordell-Weil)
≥ 4	>1	$C(k)$ is a finite (Faltings)

Explicit computational question; elementary approaches

Explicit computational/theoretical problem: Given a projective, nonsingular curve C over a number field k, determine its set of k-rational points.

Basic observation I: local obstructions

If for a metric completion k_{v} of k (for $k=\mathbb{Q}$, this means $k_{v}=\mathbb{Q}_{p}$ or $k_{v}=\mathbb{R}$) we have $C\left(k_{v}\right)=\emptyset$, then we say that C has a local obstruction to having rational points:

$$
C(k) \subset C\left(k_{v}\right) \text { means } C\left(k_{v}\right)=\emptyset \Longrightarrow C(k)=\emptyset
$$

Basic observation II: going down

If $\phi: C \rightarrow D$ is a finite cover of curves over k, then $\phi(C(k)) \subset D(k)$, so if $D(k)$ is known and finite then $C(k) \subset \phi^{-1}(D(k))$ is easily computed.

Example:

$$
\begin{aligned}
C: y^{2}=x^{6}-4 x^{4}+16 & \rightarrow D: y^{2}=u^{3}-4 u^{2}+16 \\
(x, y) & \mapsto
\end{aligned}\left(x^{2}, y\right)=(u, y) .
$$

Chevalley-Weil (Going up)

Definition: Let $\phi: \tilde{C} \rightarrow C$ and $\phi^{\prime}: \tilde{C}^{\prime} \rightarrow C$ be covers of projective curves over k. We say ϕ, ϕ^{\prime} are twists if there is an isomorphism $\psi: \tilde{C} \rightarrow \tilde{C}^{\prime}$ over $k^{\text {sep }}$ such that $\phi=\phi^{\prime} \circ \psi$:

Chevalley-Weil: going up

If $\phi: \tilde{C} \rightarrow C$ is unramified then there is a finite collection Σ of twists such that

$$
\bigcup_{\xi \in \Sigma} \phi_{\xi}\left(\tilde{C}_{\xi}(k)\right)=C(k)
$$

Key fact: The curves \tilde{C}_{ξ} may be amenable to other approaches (such as local obstructions and going down).

Explicit unramified covers

Reminder: A curve is hyperelliptic if it admits a degree 2 map to a genus 0 curve. If it does not have a local obstruction, then it admits a model:

$$
C: y^{2}=f(x)
$$

Example. The following (genus 1) curve has no local obstructions:

$$
C: y^{2}=22 x^{4}+65 x^{2}+48=\left(2 x^{2}+3\right)\left(11 x^{2}+16\right)
$$

Construct a cover:

$$
\tilde{C}_{\xi}=\left\{\begin{aligned}
2 x^{2}+3 & =\xi y_{1}^{2} \\
11 x^{2}+16 & =\xi y_{2}^{2} \\
y & =\xi y_{1} y_{2}
\end{aligned}\right.
$$

- Careful consideration: WLOG $\xi \in\{1,2,3,6,11,22,33,66\}$
- For each ξ we have $\tilde{C}_{\xi}\left(\mathbb{Q}_{p}\right)=\emptyset$ for some p.

General results

Two-covers (B.-Stoll, 2009): For hyperelliptic curves C : $y^{2}=f(x)$ of genus g, there are two-covers for which the Chevalley-Weil set Σ is explicitly computable.

Theorem (Poonen-Stoll, 1999): Most hyperelliptic curves $y^{2}=f(x)$ over \mathbb{Q} do not have local obstructions.

Theorem (Bhargava, 2013): Most hyperelliptic curves over \mathbb{Q} have only two-covers that have local obstructions.

Theorem (Bogomolov-Tschinkel, 2002): Any hyperelliptic curve admits an unramified cover \tilde{C} that (over $k^{\text {sep }}$) covers $C_{0}: y^{2}=x^{6}+1$.

Corollary: If for any number field L, you can compute $C_{0}(L)$ then, via going-up and going-down, you can compute the rational points on any hyperelliptic curve.

Subvarieties of Abelian varieties

Advanced: Determine $C(k)$ via embedding $C \hookrightarrow A$ into an Abelian variety A. Obstruction to embedding: Note that $C(k) \subset \operatorname{Pic}^{1}(C / k)$, so either $C(k)=\emptyset$ or there is a $\mathfrak{d} \in \operatorname{Pic}^{1}(C / k)$:

$$
C \hookrightarrow \mathrm{Jac}(C) ; P \mapsto[P]-\mathfrak{d}
$$

Theorem (Mordell-Weil): $A(k)$ is finitely generated.
Chabauty's method: If $\operatorname{rk} A(k)=r<\operatorname{dim}(A)$:

- Higher dimension of A allows for larger r
- Lower dimension of A makes computation easier.
- If $A=\operatorname{Jac}(X)$, computing is easier still.

Prym varieties

Let C be of genus g and let $\phi: \tilde{C} \rightarrow C$ be an unramified double cover. Then $\operatorname{ker}\left(\phi_{*}: \operatorname{Jac}(\tilde{C}) \rightarrow \operatorname{Jac}(C)\right)$ is of dimension $g-1$ and has two components.
Definition: $\operatorname{Prym}(\tilde{C} / C)$ is the maximal connected subgroup of ker ϕ_{*}.
Proposition: The principal polarization of $\operatorname{Jac}(\tilde{C})$ induces one on $\operatorname{Prym}(\tilde{C} / C)$.
Example (Hyperelliptic curves):

$$
\begin{aligned}
& C: y^{2}=f_{1}(x) f_{2}(x) \text { where } \operatorname{deg}\left(f_{1}\right), \operatorname{deg}\left(f_{2}\right) \text { are even } \\
& X_{\xi}: y_{1}^{2}=\xi f_{1}(x) \\
& Y_{\xi}: y_{1}^{2}=\xi f_{2}(x) \\
& \tilde{C}_{\xi}=X_{\xi} \times_{L} Y_{\xi}
\end{aligned}
$$

Description of Prym variety: $\operatorname{Prym}\left(\tilde{C}_{\xi} / C\right)=\operatorname{Jac}\left(X_{\xi}\right) \times \operatorname{Jac}\left(Y_{\xi}\right)$

Prym varieties as Jacobians

- As we have seen, Prym varieties of hyperelliptic curves can be described in terms of Jacobians. The cover \tilde{C} maps to those curves.
- For C of genus $3, \operatorname{dim} \operatorname{Prym}(\tilde{C} / C)=2$. These are all Jacobians.
- For C of genus 4 , dimPrym $(\tilde{C} / C)=3$. These are twists of Jacobians.
- For C of genus ≥ 5 we do not expect $\operatorname{Prym}(\tilde{C} / C)$ to be a Jacobian.

Big question: For sufficiently general non-hyperelliptic C of genus 3 , 4 we have $\operatorname{Prym}(\tilde{C} / C)=\operatorname{Jac}(X)$ for some curve X (for a specific twist of \tilde{C} for genus 4).

How do we construct this Prym curve X ?

Description of canonical models of curves:

- Nonhyperelliptic genus 3 curve is a smooth plane quartic.
- Nonhyperelliptic genus 4 is an intersection of a quadric Q and a cubic Γ in \mathbb{P}^{3}.

Trigonal construction - Recillas

Galois theory:

Theorem: $\operatorname{Jac}(X)=\operatorname{Prym}(\tilde{C} / C)$, so Jacobians of tetragonal curves are Pryms.
In the opposite direction: Let $C \rightarrow L$ be trigonal; let $\tilde{C} \rightarrow C$ be an unramified double cover.

- Galois closure \tilde{C} ! of $\tilde{C} \rightarrow L$ generically has group $\left(C_{2}\right)^{3} \rtimes S_{3}=C_{2} \times S_{4}$;
- Center interchanges geometric components.

Theorem: Given C trigonal and $\tilde{C} \rightarrow C$ unramified of degree 2, then there is a twist such that $\operatorname{Prym}(\tilde{C} / C)=\operatorname{Jac}(X)$.

Double covers of smooth plane quartics

Smooth plane quartic:

$$
C: Q_{1}(x, y, z) Q_{3}(x, y, z)=Q_{2}(x, y, z)^{2}
$$

Double cover:

$$
\tilde{C}:\left\{\begin{array}{l}
Q_{1}(x, y, z)=u^{2} \\
Q_{2}(x, y, z)=u v \\
Q_{3}(x, y, z)=v^{2}
\end{array}\right.
$$

Special divisor classes

$$
X \subset W_{4}^{1} \subset \operatorname{Pic}^{4}(\tilde{C})
$$

Model:

$$
X: t^{2}=-\operatorname{det}\left(Q_{1}+2 s Q_{2}+s^{2} Q_{3}\right)
$$

Mapping \tilde{C} into the Prym

Given $\phi^{*}: \tilde{C} \rightarrow C$ unramified double cover of a genus 3 curve:

Gives C as a subvariety of a Kummer surface, with the rational points of \tilde{C} lifting to $\mathrm{Jac}(X)$. Gives C as an intersection of two quartic equations.
Example: $C:\left(2 z^{2}-2 x^{2}-2 y z\right)\left(x^{2}+2 x y+2 y^{2}\right)=\left(z^{2}-x^{2}+x z-2 y z\right)^{2}$ has
$C(\mathbb{Q})=\{(0: 1: 0)\}$.
Example: C : $\left(y^{2}+y z-z^{2}\right)\left(z^{2}+x y\right)=\left(x^{2}-y^{2}-z^{2}\right)^{2}$ has no local obstructions and yet, no rational points. The same holds for \tilde{C}.
Corollary: Every sextic polynomial can be expressed as $\operatorname{det}\left(M_{0}+2 x M_{1}+x^{2} M_{2}\right)$, where the M_{i} are 3×3 symmetric matrices (i.e., every $\operatorname{Jac}(X)$ is a Prym over k).

Pryms of genus 4 curves

Joint work with Emre Can Sertöz (MPI Leipzig)
Reminder: Non-hyperelliptic genus 4 curves have a canonical model in \mathbb{P}^{3}
$\Gamma=Q=0$, where $\operatorname{deg}(\Gamma)=3, \operatorname{deg}(Q)=2$.

- Rulings on Q give trigonal maps $C \rightarrow L$,
- If Q is nonsingular, then C has two trigonal maps
- If Q is singular then C is uniquely trigonal (vanishing theta null)
- Cubic surfaces containing $C: \operatorname{span}\langle\Gamma, x Q, y Q, z Q, w Q\rangle$.

Cayley cubic: Four nodes; admits a symmetric presentation:

$$
\Gamma_{\varepsilon}: x y z+x y w+x z w+y z w=\operatorname{det}\left(\begin{array}{ccc}
x+w & w & w \\
w & y+w & w \\
w & w & z+w
\end{array}\right)
$$

Points on Γ_{ε} parametrize singular plane conics, so pairs of lines.
Double cover: $\tilde{\Gamma} \rightarrow \Gamma$ Splits these pairs.

Double covers of genus 4 curves

Theorem (Catanese, B-Sertöz): The double covers of C (modulo twists) correspond exactly to symmetrized cubics containing C :

$$
\varepsilon \in \operatorname{Pic}^{0}(C)[2] \backslash\{0\} \longleftrightarrow\left\{\text { Symmetrized cubics } \Gamma_{\varepsilon} \supset C\right\}
$$

Warning: If $C \rightarrow E$ is bielliptic, then double covers of E (three in total) pull back to double covers of C. Then Γ_{ε} is a cone over E with three possible symmetrizations.
Parametrization: Symmetrization induces a birational map

$$
\mathbb{P}^{2} \rightarrow \Gamma_{\varepsilon}
$$

Distinguished double cover:

Question: Do we have $\operatorname{Prym}(\tilde{C} / C)=\operatorname{Jac}\left(X_{\varepsilon}\right)$ and if so, how do we construct X_{ε} ?

Recall: Given a surface $V: f(x, y, z, w)=0$, we have a rational map:

$$
\mathbb{P}^{3} \rightarrow \widehat{\mathbb{P}}^{3} ; \quad(x: y: z: w) \mapsto\left(\frac{\partial f}{\partial x}: \frac{\partial f}{\partial y}: \frac{\partial f}{\partial z}: \frac{\partial f}{\partial w}\right)
$$

Dual variety: Image \widehat{V} under this map.

- If Γ_{ε} is a Cayley cubic then $\widehat{\Gamma}_{\varepsilon}$ is a quartic surface.
- For a nonsingular quadric Q, we have that \widehat{Q} is an isomorphic quadric.

Theorem: $X_{\varepsilon}=\widehat{\Gamma}_{\varepsilon} \cap \widehat{Q}$ yields $\operatorname{Jac}\left(X_{\varepsilon}\right)=\operatorname{Prym}\left(\tilde{C}_{\varepsilon} / C\right)$.
Additionally, the pull-back of X_{ε} along $\mathbb{P}^{2} \rightarrow \Gamma_{\varepsilon} \rightarrow \widehat{\Gamma}_{\varepsilon}$ gives a smooth plane quartic. Indication of proof: We have that $C \subset Q$ makes C trigonal in two ways. Similarly, $X_{\varepsilon} \subset \widehat{Q}$ makes X_{ε} tetragonal in two ways. This fits in Recillas' trigonal construction.

Defining data

Equivalent defining data for Prym construction

- C, together with $\varepsilon \in \operatorname{Pic}^{0}(C)[2]$
- X, together with two tetragonal pencils $\mathscr{L}_{1}, \mathscr{L}_{2}$, with $\mathscr{L}_{1} \otimes \mathscr{L}_{2}$ bicanonical

Note: \mathscr{L}_{1} is either part of a canonical linear system, or \mathscr{L}_{1} is complete.

Special cases:

- C may have a vanishing theta null $\theta_{0}: Q$ is a cone.
- ε may be bielliptic: Γ_{ε} is a cone
- $\mathscr{L}_{1}, \mathscr{L}_{2}$ may be canonical themselves
- \mathscr{L}_{1} may be linear equivalent to \mathscr{L}_{2} (self-residual)

$$
\begin{aligned}
\varepsilon \text { bielliptic } & \longleftrightarrow \mathscr{L}_{1} \text { self-residual } \\
\ell\left(\varepsilon+\theta_{0}\right) \text { even } & \longleftrightarrow C \text { hyperelliptic } \\
\ell\left(\varepsilon+\theta_{0}\right) \text { odd } & \longleftrightarrow \mathscr{L}_{1} \text { canonical }
\end{aligned}
$$

Note: $\ell\left(\varepsilon+\theta_{0}\right)$ odd and ε bielliptic does not happen.

Realizing a quartic as a prym curve

Required data: X : smooth plane quartic, and one of:
(a) Point in \mathbb{P}^{2} to project from to get $X \rightarrow \mathbb{P}^{1}$
(b) $\left\{\mathscr{L}_{1}, \mathscr{L}_{2}\right\}$ Galois-stable as a set; equivalently:
$\left\{\mathscr{L}_{1}-\kappa_{C}, \mathscr{L}_{2}-\kappa_{C}\right\}$; a point on $\operatorname{Kum}(X)=\operatorname{Jac}(X) /\langle \pm 1\rangle$.
(Indeed, the "Fibre" of the Prym map $\tilde{C} / C \mapsto X$ is known to be the Kummer variety blown up at the origin)

With (b) we can construct Q and Γ_{ε}.
For (a) one can use link with degree 2 and 1 del Pezzo surfaces to construct C.

Software needs

- For determining $\operatorname{Jac}(C)(k): p$-adic computations; S-units in number fields
- For computing X from C etc.: basic commutative algebra; elimination (images of maps)
- For experimental checking: period matrices of algebraic curves.
- For Chabauty computations: Computing with divisor classes over \mathbb{Q}_{p} and \mathbb{F}_{p}.

