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Background: classifying rational point sets of curves

Typical arithmetic geometry problem:
Difference in point sets:
Py =1
2 —i—y2 —_1
¥+y?=5
¥+y?=3
Topological trichotomy for point sets of curves:

Let C be smooth projective curve over a number field « (e.g. k = Q). As a simple
case: C C P? of degree d.

d | genus | point set
<210 C(k)=0or C~P!
=31 C(k) =0 or C(k) is a finitely
generated abelian group (Mordell-Weil)
>4 >1 C(k) is afinite (Faltings)




Explicit computational question; elementary approaches

Explicit computational/theoretical problem: Given a projective, nonsingular
curve C over a number field k, determine its set of k-rational points.

Basic observation I: local obstructions
If for a metric completion &, of k (for k = Q, this means k, = Q, or k, = R) we have
C(k,) = 0, then we say that C has a local obstruction to having rational points:

C(k) C C(k,) means C(k,) =0 = C(k)=0

Basic observation Il: going down
If : C — D is afinite cover of curves over k, then ¢(C(k)) C D(k), so if D(k) is
known and finite then C(k) C ¢ ~!(D(k)) is easily computed.

Example:
C:y2:x6—4x4+16 — D:y2:u3—4u2+16
(x,) > (*%,y) = (u,)

D(Q) = {(Oaj:4)’ (4,:|:4)’oo}’ Y C(Q) = {(0’i4)7 (i27i4)’°°i}



Chevalley-Weil (Going up)

Definition: Let ¢: C — C and ¢’: C' — C be covers of projective curves over k. We
say ¢, ¢’ are twists if there is an isomorphism y: C — C’ over k%P such that

¢=¢ oy

Chevalley-Weil: going up
If ¢: C — C is unramified then there is a finite collection ¥ of twists such that

U :(C¢ (k) = C(k)

Eex

Key fact: The curves Cg may be amenable to other approaches (such as local
obstructions and going down).



Explicit unramified covers

Reminder: A curve is hyperelliptic if it admits a degree 2 map to a genus 0 curve.
If it does not have a local obstruction, then it admits a model:

C:y* =f(x)
Example. The following (genus 1) curve has no local obstructions:
C: y* = 22x* +-65x% +-48 = (2x* 4-3)(11x* + 16)

Construct a cover:

23 +3=¢&y7
Ce = 11>+ 16 = Ey3
y=E&v»n

» Careful consideration: WLOG & € {1,2,3,6,11,22,33,66}
» For each & we have C:(Q,) = 0 for some p.



General results

Two-covers (B.-Stoll, 2009): For hyperelliptic curves C: y* = f(x) of genus g, there
are two-covers for which the Chevalley-Weil set X is explicitly computable.

Theorem (Poonen-Stoll, 1999): Most hyperelliptic curves y> = f(x) over Q do not
have local obstructions.

Theorem (Bhargava, 2013): Most hyperelliptic curves over Q have only
two-covers that have local obstructions.

Theorem (Bogomolov-Tschinkel, 2002): Any hyperelliptic curve admits an
unramified cover C that (over k*P) covers Cy: y> =x0+ 1.

Corollary: If for any number field L, you can compute Cy(L) then, via going-up and
going-down, you can compute the rational points on any hyperelliptic curve.



Subvarieties of Abelian varieties

Advanced: Determine C(k) via embedding C < A into an Abelian variety A.

Obstruction to embedding: Note that C(k) C Pic!(C/k), so either C(k) =0 or
there is a 0 € Pic! (C/k):
C — Jac(C); P+~ [P]—D

Theorem (Mordell-Weil): A(k) is finitely generated.
Chabauty’s method: If rkA(k) = r < dim(A):

Clk) —=A(k) —=A

£

v

v-adic analytic intersection:

(k)
| e conim
A (k) NAK)
» Higher dimension of A allows for larger r

» Lower dimension of A makes computation easier.
» If A =Jac(X), computing is easier still.



Let C be of genus g and let ¢ : C — C be an unramified double cover. Then
ker(¢. : Jac(C) — Jac(C)) is of dimension g — 1 and has two components.

Definition: Prym(C/C) is the maximal connected subgroup of ker ¢,.
Proposition: The principal polarization of Jac(C) induces one on Prym(C/C).

Example (Hyperelliptic curves):

A
N

Description of Prym variety: Prym(C:/C) = Jac(X;) x Jac(Y;)

C: y* =fi(x)f2(x) where deg(f;),deg(f>) are even
Xe: yi=Ehx)
S PR B 716)

/ C§:X5 XLY(g



Prym varieties as Jacobians

As we have seen, Prym varieties of hyperelliptic curves can be described in
terms of Jacobians. The cover C maps to those curves.

For C of genus 3, dimPrym(C/C) = 2. These are all Jacobians.
For C of genus 4, dimPrym(C/C) = 3. These are twists of Jacobians.
For C of genus > 5 we do not expect Prym(C/C) to be a Jacobian.

v

v

v

v

Big question: For sufficiently general non-hyperelliptic C of genus 3, 4 we have
Prym(C/C) = Jac(X) for some curve X (for a specific twist of C for genus 4).

How do we construct this Prym curve X?

Description of canonical models of curves:
» Nonhyperelliptic genus 3 curve is a smooth plane quartic.
» Nonhyperelliptic genus 4 is an intersection of a quadric Q and a cubic I in P3.



Trigonal construction — Recillas

Galois theory:

Theorem: Jac(X) = Prym(C/C), so Jacobians of tetragonal curves are Pryms.
In the opposite direction: Let C — L be trigonal; let C — C be an unramified
double cover.

» Galois closure C! of C — L generically has group (C>)? x S3 = C x Sy;

» Center interchanges geometric components.

Theorem: Given C trigonal and C — C unramified of degree 2, then there is a twist
such that Prym(C/C) = Jac(X).



Double covers of smooth plane quartics

Smooth plane quartic:

C: Q1 (X,y7Z)Q3(-x7y7Z) - QZ(—xuy7Z)2

Double cover:

Ql (x,y,z) = MZ
é: Ql(x7y7z) =uv
03(x,y,2) = v?

Special divisor classes
X C W} C Pic*(C)
Model:
X: 2 = —det(Q) 4250, +5°03)



Mapping C into the Prym

Given ¢*: C — C unramified double cover of a genus 3 curve:

CM)JaC(X)
C——Jac(X)/(—1)

Gives C as a subvariety of a Kummer surface, with the rational points of C lifting to
Jac(X). Gives C as an intersection of two quartic equations.

Example: C: (222 — 2x? — 2yz) (x* + 2xy +2y?) = (z*> — x> +xz — 2yz)? has

C(Q) ={(0:1:0)}.

Example: C: (y* 4 yz — 2%)(z* +xy) = (x* —y?> —z%)? has no local obstructions and
yet, no rational points. The same holds for C.

Corollary: Every sextic polynomial can be expressed as det(My +2xM; +x>M5),
where the M; are 3 x 3 symmetric matrices (i.e., every Jac(X) is a Prym over k).



Pryms of genus 4 curves

Joint work with Emre Can Sertéz (MPI Leipzig)

Reminder: Non-hyperelliptic genus 4 curves have a canonical model in P3
I'=0 =0, where deg(T") = 3, deg(Q) =2.

v

Rulings on Q give trigonal maps C — L,

v

If Q is nonsingular, then C has two trigonal maps

v

If Q is singular then C is uniquely trigonal (vanishing theta null)
Cubic surfaces containing C: span(I',xQ,yQ,z0,wQ).

v

Cayley cubic: Four nodes; admits a symmetric presentation:
w W Z+w

X+w w w
e xyz+xyw+xzw + yzw = det w y+w w

Points on I'; parametrize singular plane conics, so pairs of lines.

Double cover: I' — I' Splits these pairs.



Double covers of genus 4 curves

Theorem (Catanese, B-Sert6z): The double covers of C (modulo twists)
correspond exactly to symmetrized cubics containing C:

g € Pic’(C)[2] \ {0} +— {Symmetrized cubics I’ > C}

Warning: If C — E is bielliptic, then double covers of E (three in total) pull back to
double covers of C. Then I'; is a cone over E with three possible symmetrizations.

Parametrization: Symmetrization induces a birational map
P2 - T

Distinguished double cover:

Question: Do we have Prym(C/C) = Jac(X,) and if so, how do we construct X, ?



Dual varieties

Recall: Given a surface V: f(x,y,z,w) = 0, we have a rational map:

3f.3f.9f.3f)

3 _ 3. cy e A A
P’ — P (x.y.z.w)H(ax.ay.aZ.aw

Dual variety: Image V under this map.

» If T is a Cayley cubic then T; is a quartic surface.
» For a nonsingular quadric Q, we have that Q is an isomorphic quadric.

Theorem: X, =T': N Q yields Jac(X,) = Prym(C¢/C).
Additionally, the pull-back of X, along P2 — I'. — I'; gives a smooth plane quartic.

Indication of proof: We have that C C Q makes C trigonal in two ways. Similarly,
X C Q makes X, tetragonal in two ways. This fits in Recillas’ trigonal construction.



Defining data

Equivalent defining data for Prym construction

» C, together with & € Pic’(C)[2]

» X, together with two tetragonal pencils .£7,.%,, with £ ® %, bicanonical
Note: % is either part of a canonical linear system, or .%, is complete.

Special cases:
» C may have a vanishing theta null 6y: Q is a cone.
€ may be bielliptic: I, is a cone
4,2 may be canonical themselves
% may be linear equivalent to .%, (self-residual)

v
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€ bielliptic +— % self-residual
L(e+ 6y) even «— C hyperelliptic
l(e+ 6y) odd +— £ canonical

Note: /(e + 6,) odd and ¢ bielliptic does not happen.



Realizing a quartic as a prym curve

Required data: X: smooth plane quartic, and one of:
(a) Point in P? to project from to get X — P!

(b) {4,%} Galois-stable as a set; equivalently:

{4 — e, 25 — kc}; a point on Kum(X) = Jac(X)/(+£1).
(Indeed, the "Fibre” of the Prym map C/C + X is known to be the Kummer variety
blown up at the origin)

With (b) we can construct Q and T.
For (a) one can use link with degree 2 and 1 del Pezzo surfaces to construct C.



Software needs

v

For determining Jac(C)(k): p-adic computations; S-units in number fields

v

For computing X from C etc.: basic commutative algebra; elimination (images
of maps)

For experimental checking: period matrices of algebraic curves.
For Chabauty computations: Computing with divisor classes over Q, and F,,.

v

v



