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Develop a visionary, next generation, open source
computer algebra system, integrating all systems, libraries
and packages developed within the TRR.
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Overview

Examples:

Multigraded equivariant COX rings of
toric varieties over number fields

Graphs of groups in division algebras

Matrix groups over polynomial rings
with coefficients in number fields

Gröbner fans over fields with
discrete valuations

Visionary system surpassing the combined
capabilities of the underlying systems

GAP: computational discrete al-
gebra, group and representa-
tion theory, general purpose high
level interpreted programming
language.

Singular: polynomial computa-
tions, with emphasis on algebraic
geometry, commutative algebra,
and singularity theory.

polymake: convex polytopes,
polyhedral and stacky fans, sim-
plicial complexes and related ob-
jects from combinatorics and ge-
ometry.

ANTIC: number theoretic soft-
ware featuring computations
in and with number fields and
generic finitely presented rings.

Barakat, Boehm, Decker, Fieker, Joswig, Lübeck OSCAR: The Dream



Introduction
Examples

Dreams
Challenges

I The technical aspects:
I Integration
I Data exchange
I Tools (Gröbner basis, linear algebra, coset enumeration, . . .

I Mathematics
I Modelling
I Abstraction
I Cross-disciplinary language

- not programming language

Barakat, Boehm, Decker, Fieker, Joswig, Lübeck OSCAR: The Dream



Introduction
Examples

Dreams
Challenges

I The technical aspects:
I Integration
I Data exchange
I Tools (Gröbner basis, linear algebra, coset enumeration, . . .

I Mathematics
I Modelling
I Abstraction
I Cross-disciplinary language - not programming language

Barakat, Boehm, Decker, Fieker, Joswig, Lübeck OSCAR: The Dream



Introduction
Examples

Dreams
Challenges

Aim

This talk aims to look at the 2nd block.

Starting with (the few) projects that are/were successfully using
OSCAR. and with general progress.

Other aspects will be covered tomorrow.
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OSCAR: Success
New Software
Example: Class Field Theory
Geometry

Binomial Ideals

Binomial ideals are ideals in K [x1, . . . , xn] that are generated by
binomials, ie. polynomials with at most 2 terms. They form an
important class of ideals, containing

I toric ideals
I ideals coming from algebraic statistics

Clara Petroll implemented in her bachelor thesis special algorithms
for the primary decomposition of binomial ideals over Q.
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Binomial Ideals

In OSCAR:

I Singular for multivariate ideals
I Hecke for the abelian closure
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Shafarevich

Given a soluble finite group G , a famous theorem of Shafarevich
shows that there exist number fields (polynomials) having G as
Galois group.

The problem is to find such polynomials/ fields.

As part of his PhD, Carlo Sircana is working on this.
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Shafarevich

In OSCAR:

I Gap for lower derived series and isomorphism test for groups
I Hecke for class field theory
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mptopcom Jordan, Joswig & Kastner 2018

I enumerate all (regular) triangulations of a point configuration
I crucial, e.g., for computing tropical moduli spaces

2 4 6 8 10 12 14 16

500

1,000

1,500

2,000

2,500

threads (of which 1 master + 1 output)

tim
e
(s
)

mptopcom1
topcom

mptopcom

toy example: regular 4-cube
@ AMD Ryzen 7 1700 [32GB RAM]

I embarassingly parallel
algorithm, runs in
several hundreds of
threads

I almost linear scaling
until competition for
CPU cache/main
memory/disk space
kicks in

I output: data base
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Hecke

I relative extensions
I non-simple extensions
I class field theory
I non-commutative orders
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Nemo

Multivariate polynomials over Q and finite fields

I arithmetic
I division
I gcd

Barakat, Boehm, Decker, Fieker, Joswig, Lübeck OSCAR: The Dream



Introduction
Examples

Dreams
Challenges

OSCAR: Success
New Software
Example: Class Field Theory
Geometry

Theory

Class Field Theory: Given a number field k , the class group ClK is
the Picard group of the ring of integers (similar to the divisor class
group of a normal curve). This is a finite abelian group, one of the
core invariants of a number field.

Given an ideal A, there is a similar, but more general group ClA the
ray class group.
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Theory

Class field theory shows that for all subgroups U < ClA there is
exactly one abelian elxtension K/k s.th.

Aut(K/k) = ClA /U

canonically. Furthermore this correspondence behaves well under
operations of Aut(k).

E.g. if k/Q is normal, then K/k is normal over Q iff

I A is invariant under Aut(k)

then Aut(k) acts on ClA
I U is (set) invariant under the action
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Code

Summary: Class Field Theory associates “in some natural way”
some weired finite abelian groups (related to ideals) to finite
extensions on number fields with Abelian Galois group.

oscar> k, a = NumberField(x^2-10)
oscar> Z_k = MaximalOrder(k)
oscar> I = Ideal(Z_k, 1271, Z_k(107+a))
oscar> Factorisation(I)

<31, a+14> => 1
<41, a-16> => 1

oscar> au = Automorphisms(k)
oscar> all(\phi -> \phi(I) == I, au)

false
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Code

oscar> J = lcm(\phi(I) for phi = au)
oscar> R, mR = RayClassGroup(I)

C_10, Map:C_10 -> Ideals
oscar> K = RayClassField(mR)
oscar> isNormal(K, QQ)

false
oscar> S, mS = RayClassGroup(J)
oscar> \Gamma = RayClassField(mS)
oscar> isNormal(\Gamma)

true
oscar> isSubfield(K, \Gamma)

true
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Code

oscar> L = NormalClosure(K)
oscar> L == \Gamma

false
oscar> h = induced_map(mS, mR, x->x)
oscar> U = kernel(h)
oscar> K == RayClassField(mS, quo(S, U)[2])

true
oscar> act = induced_action(mS, au)
oscar> V = intersect(phi(U) for phi = act)
oscar> NormalClosure(K) == RayClassField(mS, quo(S, V)[2])

true
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Feynman integrals

Experimental measurements of scattering processes at the Large
Hadron Collider (LHC) require theoretical computation of
scattering amplitudes (probabilities of particle interactions) as
Feynman integrals.

The LHC is the world’s largst particle accelerator with a diameter
of 9km. It is run by CERN, which a funding of about 1 billion EUR.
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Feynman integrals

A Feynman graph describes an interaction process of particles with
external impulses pi (given constant vectors) and internal impulses
zi (integration variables) which satisfy impulse conservation (the
balancing condition):
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Feynman integrals

M is the matrix of scalar products of the impulses, F = detM,
then the Feynman integral ia a linear combination of integrals∫

dz1 · · · dzm
z1 · · · zm

F (z)
D−L−E−1

2

with D a parameter, L the genus of the graph, E + 1 is the number
of external momenta, and m = LE + L(L+1)

2 .
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IBP Relations

Integrals of total differentials vanish, hence yield an
integration-by-parts identity

0 =

∫
d

(∑
i

ai (z1, . . . , zm)

z1 · · · zm
F (z)

D−L−E−1
2 dz1 · · · d̂zi · · · dzm

)
which translate into a relations

m∑
i=1

ai (z)
∂F (z)

∂zi
+ b(z)F (z) = 0. (∗)

Given a full set of relations up to a bound d in z and with
zi | ai (z), any integal reduces to master integrals.

Given

M1 = 〈a(z) with (∗)〉 M2 = 〈ziei | i ≤ m〉+ 〈ei | i > m〉

we have to calculate (M1 ∩M2)≤d .

Barakat, Boehm, Decker, Fieker, Joswig, Lübeck OSCAR: The Dream



Introduction
Examples

Dreams
Challenges

OSCAR: Success
New Software
Example: Class Field Theory
Geometry

IBP Relations

Integrals of total differentials vanish, hence yield an
integration-by-parts identity

0 =

∫
d

(∑
i

ai (z1, . . . , zm)

z1 · · · zm
F (z)

D−L−E−1
2 dz1 · · · d̂zi · · · dzm

)
which translate into a relations

m∑
i=1

ai (z)
∂F (z)

∂zi
+ b(z)F (z) = 0. (∗)

Given a full set of relations up to a bound d in z and with
zi | ai (z), any integal reduces to master integrals. Given

M1 = 〈a(z) with (∗)〉 M2 = 〈ziei | i ≤ m〉+ 〈ei | i > m〉

we have to calculate (M1 ∩M2)≤d .
Barakat, Boehm, Decker, Fieker, Joswig, Lübeck OSCAR: The Dream



Introduction
Examples

Dreams
Challenges

OSCAR: Success
New Software
Example: Class Field Theory
Geometry

IBP

Algorithm:

I Find special generators for M1, then compute M1 ∩M2 using
Gröbner bases over the field of rational functions

I Generate a large linear system of relations between IBPs in
(M1 ∩M2)≤d and compute a RREF over K, trimming the
generating system of (M1 ∩M2) along our way.

I Over a function field with a small number of variables,
determine good REF via a pivoting aimed at small size and
sparseness.

I Use this REFs over univariate function fields to find the degree
of the rational function coefficients for the result.

I Compute the coefficients via interpolation, and reduce to the
RREF.
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Feynman integrals

I In this way we solved the long-standing open problem of
determining a full set of IBPs for the non-planar hexagon box
diagram

Key algorithmic requirements:

I Fast multivariate function field arithmetic and differentiation.
I Massively parallel computations to obtain the RREF for huge

numbers of interpolation points.
I Detection of singular supporting points.
I Exploitation of symmetries.
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Smoothness of algebraic varieties
For I = 〈f1, . . . , fr 〉 ⊂ S = K [x1, . . . , xn], X = Spec(S/I ) ⊂ An

I Jacobian criterion aims at computing the singular locus of X
via codimension-sized minors of the Jacobian matrix

JI = (∂fi/∂xj)

is expensive for large codimension.
I Hironaka:

I If X is smooth at p ∈ X , there is smooth hypersurface W

X ∩ U ⊂W ∩ U

in a Zariski open subset p ∈ U ⊂ An.
I Iteration yields tree of charts:

Barakat, Boehm, Decker, Fieker, Joswig, Lübeck OSCAR: The Dream



Introduction
Examples

Dreams
Challenges

OSCAR: Success
New Software
Example: Class Field Theory
Geometry

Smoothness of algebraic varieties
For I = 〈f1, . . . , fr 〉 ⊂ S = K [x1, . . . , xn], X = Spec(S/I ) ⊂ An

I Jacobian criterion aims at computing the singular locus of X
via codimension-sized minors of the Jacobian matrix

JI = (∂fi/∂xj)

is expensive for large codimension.

I Hironaka:
I If X is smooth at p ∈ X , there is smooth hypersurface W

X ∩ U ⊂W ∩ U

in a Zariski open subset p ∈ U ⊂ An.
I Iteration yields tree of charts:

Barakat, Boehm, Decker, Fieker, Joswig, Lübeck OSCAR: The Dream



Introduction
Examples

Dreams
Challenges

OSCAR: Success
New Software
Example: Class Field Theory
Geometry

Smoothness of algebraic varieties
For I = 〈f1, . . . , fr 〉 ⊂ S = K [x1, . . . , xn], X = Spec(S/I ) ⊂ An

I Jacobian criterion aims at computing the singular locus of X
via codimension-sized minors of the Jacobian matrix

JI = (∂fi/∂xj)

is expensive for large codimension.
I Hironaka:

I If X is smooth at p ∈ X , there is smooth hypersurface W

X ∩ U ⊂W ∩ U

in a Zariski open subset p ∈ U ⊂ An.

I Iteration yields tree of charts:

Barakat, Boehm, Decker, Fieker, Joswig, Lübeck OSCAR: The Dream



Introduction
Examples

Dreams
Challenges

OSCAR: Success
New Software
Example: Class Field Theory
Geometry

Smoothness of algebraic varieties
For I = 〈f1, . . . , fr 〉 ⊂ S = K [x1, . . . , xn], X = Spec(S/I ) ⊂ An

I Jacobian criterion aims at computing the singular locus of X
via codimension-sized minors of the Jacobian matrix

JI = (∂fi/∂xj)

is expensive for large codimension.
I Hironaka:

I If X is smooth at p ∈ X , there is smooth hypersurface W

X ∩ U ⊂W ∩ U

in a Zariski open subset p ∈ U ⊂ An.
I Iteration yields tree of charts:

Barakat, Boehm, Decker, Fieker, Joswig, Lübeck OSCAR: The Dream



Introduction
Examples

Dreams
Challenges

OSCAR: Success
New Software
Example: Class Field Theory
Geometry

Smoothness of algebraic varieties
For I = 〈f1, . . . , fr 〉 ⊂ S = K [x1, . . . , xn], X = Spec(S/I ) ⊂ An

I Jacobian criterion aims at computing the singular locus of X
via codimension-sized minors of the Jacobian matrix

JI = (∂fi/∂xj)

is expensive for large codimension.
I Hironaka:

I If X is smooth at p ∈ X , there is smooth hypersurface W

X ∩ U ⊂W ∩ U

in a Zariski open subset p ∈ U ⊂ An.
I Iteration yields tree of charts:

Barakat, Boehm, Decker, Fieker, Joswig, Lübeck OSCAR: The Dream



Introduction
Examples

Dreams
Challenges

OSCAR: Success
New Software
Example: Class Field Theory
Geometry

Symmetric GIT-Algorithm

Algorithm to compute GIT-fans with symmetries (B., Keicher, Ren,
2016) via a fan traversal, combining Gröbner bases with
computations in polyhedral geometry and group theory.

I Each GIT-cone is an intersection of orbit cones.
I Determine all orbit cones via monomial containment tests.
I Traverse fan by passing through codim 1 faces to neighbours.
I Hash GIT-cones via the binary vector encoding which orbit

cones occur in the corresponding intersection. Hash interacts
well with symmetry group action.

I Compute in each orbit only a single representative.
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well with symmetry group action.

I Compute in each orbit only a single representative.
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Mori Chamber Decomposition of Mov(M0,6)

Cox ring of the moduli space of stable genus zero curves with 6
marked points M0,6 is Z16-graded, has 40 generators,

225 relations,
and a natural S6-action.

Example

The GIT-fan decomposition of the moving cone Mov(M0,6) ⊂ R16

classifies all small modifications (rational maps which are
isomorphisms on open subsets which have a complement of
codimension ≥ 2).

The moving cone Mov(M0,6) has
176 512 225

GIT-cones of maximal dimension 16, which decompose into
249 605

orbits under the S6-action.
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Timings

I Singular on 1 core takes 16 days for fan traversal.

I Symmetric GIT-fan algorithm implemented by Christian
Reinbold using GPI-Space on 640 cores takes 12.5 minutes.
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parallel efficiency
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Tropical varieties

I Algorithm to compute
tropical links via
Puiseux expansions
(Tommy Hofmann, Yue
Ren, 2016).

I Using fan traversal by
Christian Reinbold.

I Puiseux expansions by
Santiago Laplagne.

I A parallel and
symmetric algorithm for
computing tropical
varieties by Dominik
Bendle.

Example (Tropicalization G(3, 8))
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Norm Equations: Theory

Given a maximal order Zk and some integer a, try to find all (up to
units) α ∈ Zk s.th.

N(α) = a

This is an important building block in Diophantine Equations.

Algorithm: find all (integral) ideals of the correct norm (which is
easy as there is unique factorisation), find the principal ones and
take generators.
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Theory

Let a =
∏

Pni
i be an integral ideal of norm N(a) = a, then

I ni ≥ 0 (integrality)
I N(a) =

∏
N(Pi )

ni

I N(Pi ) = pfii for a prime number p|a

Hence:

I the possible Pi are primes above prime numbers dividing a
(hence are known)

I each pi |a gives rise to a linear equation for the possible
exponents ni

I . . . and a sign condition: we need all non-negative solutions of
a linear equation!
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Solution

Assume, for simplicity, a = pk

lP = Factorisation(p*Z_k)
fi = [Valuation(p, Norm(P)) for P = lP]
sol = SolveNonNegative(fi, [k])
for s = sol

A = prod(P[i]^s[i] for i=1:length(lP))
fl, g = isPrincipal(A)
if fl

print("Found: ", g)
end

end
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Variety

R, [x,y] = PolynomialRing(Q, 2)
A = AffineVariety(y^2-x^3+3*x+1)
P = ProjectiveClosure(A)
K = FunctionField(P)
L = CanonicalRing(P)
T = TropicalVariety(P)
Genus(P)
Genus(T)
P2 = ChangeRing(P, GF(13))
Genus(P2)
UnramifiedCover(P2)
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Algebraic Geometry

K = QQ
R, [x,y,z] = PolynomialRing(K, 3)
X = Spec(R)
Xf = PrincipalOpenSet(X, x^3+3y+z)
I = ideal(R, ...)
F = Sheaf(X, I)
Y = sub(X, F)
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Algebraic Geometry

Z, mp = BlowUp(Y)
G = pullback(Z, mp)
isSmooth(G)
GenericPoints(Z)
AssociatedPoints(Z)
U = CoordinateSystems(Z)
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Matroids

G = some graph
M = Matroid(G)
ConnectedComponents(M)
Dual(M)

V, mp = sub(VectorSpace(K, n), ...)
N = Matroid(V)
ConfigurationPolynomial(N)
Q = ConfigurationBilinearForm(N)
W = DegeneracyScheme(Q, 2)
AssociatedPoints(W)
isReduced(W)

Barakat, Boehm, Decker, Fieker, Joswig, Lübeck OSCAR: The Dream



Introduction
Examples

Dreams
Challenges

Norm Equation
Geometry
Groups
Combinatorics

Representation Theory

G = QuaterionGroup(8)
C = CharacterTable(G)
\chi = IrreducibleCharacters(C)[5]
SchurIndices(\chi)
[<2, 2>, <2, InfPlc(Q)>]
\rho = Representation(\chi)
ChangeRing(\rho, NumberField(x^2+2))
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Combinatorial types of finite metric spaces

H = Hypersimplex(2,6)
save_data(vertices(H), generators(group.symmetric(6)),

"h26.dat")
run(‘mptopcom --regular < h26.dat > h26.db‘)
T = Database.Open("h26.db")
print (size(T))
339

I Sturmfels & Yu 2004: the 339 combinatorial types of regular
triangulations of ∆(2, 6) classify the combinatorial types of
(tight spans of) finite metric spaces on six taxa

I mptopcom supposed to run on a cluster, not interactively
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What makes a good computer algebra system?

The best system is the one I know how to use!
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Making people use something new is hard:

I it is new: thus incomplete
I it is new: thus buggy
I it is new: I don’t know how to use it

Solving any and all of them for OSCAR is easy and hard: it requires
people to use OSCAR and help implement it.
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More challenges:

Finding the “right” abstraction.

Which is not always the same abstraction in math and computer
algebra.

Worse: it depends on the user: expert vs. non-expert.
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More challenges:

Mathematics is inexact, a lot of crucial information is from context!
(I know what I am doing)

Mathematics is inconsistent: a specific adjective has different
meaning depending on the context even when applied to the
identical object.

Thus choices have to be made.
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Goals

Different, conflicting goals:

I Expert: big, bigger, huge examples

can be complicated and
strange to use

I non-Expert: small (or impossible) examples from a wide area
of mathematics, to combine to an interesting result.
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