Essential bases, semigroups and toric degenerations

Annual meeting SFB/TRR 195 $27.09.2018,\ \mathrm{T\ddot{u}bingen}$

Ghislain Fourier

Flag variety and Plücker ideal —

Throughout the talk, we consider the **flag variety**

$$\mathcal{F}_n = \{ (U_1, \dots, U_{n-1}) \mid U_i \subset U_{i+1}, \dim U_i = i \}.$$

We want to see this embedded into

$$\mathcal{F}_n \subset \mathbb{P}(\mathbb{C}^n) \times \mathbb{P}(\Lambda^2 \mathbb{C}^n) \times \ldots \times \mathbb{P}(\Lambda^{n-1} \mathbb{C}^n).$$

By fixing coordinates for each $\mathbb{P}(\Lambda^i \mathbb{C}^n)$, X_{j_1,\ldots,j_i} , the image is described by the **Plücker relations**, for example

$$X_{12}X_{34} - X_{13}X_{24} + X_{14}X_{23} = 0.$$

So the homogeneous (all Plücker coordinates have degree 1) coordinate ring of the flag variety is

$$\mathbb{C}[\mathcal{F}_n] = \mathbb{C}[X_J \mid 1 \le |J| \le n - 1]/\mathcal{I}.$$

Let us **degenerate** the flag variety!

We want to construct a family \mathcal{X}_t such that

 $X_t \cong \mathcal{F}_n$ for $t \neq 0$, X_0 being interesting

There are various tools, one idea is to associate a degree/weight to each Plücker coordinate and consider the initial ideal.

Describe the possible degree vector, such that the initial ideal is monomial free?

\longrightarrow tropical flag variety.

First steps by Bossinger-Lamboglia-Mincheva-Mohammadi, but this is quite hard, even for "easier" varieties such as the Grassmannian of planes.

We need more tools ... use Representation Theory of the $\mathfrak{sl}_n(\mathbb{C})$.

Representation Theory and bases —

Recall:

 $\Lambda^i \mathbb{C}^n$ is a simple module for the Lie algebra $\mathfrak{sl}_n(\mathbb{C})$, so each Plücker coordinate is the **dual element of a weight vector**.

Moreover,

$$\Lambda^i \mathbb{C}^n \cong U(\mathfrak{sl}_n)/I \cong U(\mathfrak{n}^-)/I.$$

Here: $e_1 \wedge \ldots \wedge e_i$ is mapped to 1 and $U(\mathfrak{n}^-)$ is spanned by monomials in a basis of \mathfrak{n}^-

 \longrightarrow monomials in $f_{i,j}$, i > j

We set

$$\deg f_{i,j} = (i-j)(n-j+1),$$

and consider the associated graded algebra and module.

This is actually a **good choice**, as the vanishing ideal of the associated graded module is monomial!

Representation Theory and bases —

$$e_{k_1} \wedge \ldots \wedge e_{k_\ell} \mapsto \prod_{i>j} f_{i,j}^{m_{i,j}} \leftarrow$$
essential monomial

and we set

$$S(\omega_{\ell}) := \{\underline{m} \mid \underline{m} \text{ essential } \} \subset \mathbb{R}^{\binom{n-1}{2}}.$$

 \rightarrow Lattice points in a convex polytope $P(\omega_i)$.

More general: Let $\lambda = m_1 \omega_1 + \ldots + m_{n-1} \omega_{n-1}$ and $V(\lambda)$ be the simple \mathfrak{sl}_n -module.

(Feigin-F-Littelmann, '11) The essential monomials for $V(\lambda)$ satisfy

$$P(\lambda) = \sum m_i P(\omega_i) \text{ and } S(\lambda) = \sum m_i S(\omega_i).$$

The semigroup of essential monomials is finitely generated

$$\bigcup_{\lambda \in P^+} \left(S(\lambda) \times \lambda \right) \subset \mathbb{Z}^N \times P^+.$$

Short excursion

Stanley: Two poset polytopes, '86

For a given finite poset, say (P, \geq) , Stanley introduced two polytopes, the **order polytope**

$$\mathcal{O}_P = \{ (x_q) \in \mathbb{R}^{|P|} \mid x_q \ge x_p \text{ if } q \ge p \text{ and } 0 \le x_q \le 1 \}$$

and the **chain polytope**

$$\mathcal{C}_P = \{(x_q) \in \mathbb{R}^{|P|} \mid x_q \ge 0 \text{ and } \sum_{q \in \text{ chain }} x_q \le 1\}$$

- Ideals vs. anti-chains.
- There is a piecewise linear transfer map, the polytopes are Ehrhart equivalent (Stanley).
- The two polytopes are unimodular equivalent if and only if there is no star-subposet (Hibi-Li '16).

Polytopes —

Using Polymake, we can compute the **f**-vector of the polytopes:

(20, 122, 376, 690, 807, 615, 302, 91, 15) vs (20, 122, 372, 670, 766, 571, 276, 83, 14).

Conjecture (Hibi-Li)

The difference of the \mathbf{f} -vectors is non-negative.

- Our polytope is a chain polytope, Gelfand-Tsetlin is an order polytope.
- Inspired by our work: Marked chain and marked order polytopes (Ardila-Bliem-Salazar).
- $P(\lambda)$ is a marked chain polytope, the Gelfand-Tsetlin polytope is a marked order polytope.
- Two such polytopes are Ehrhart equivalent but not unimodular equivalent (in general).
- Much more dualities between the two polytopes for our most favorite poset.
- More general, marked poset polytopes and conjecture on the f-vector \longrightarrow Polymake, OSCAR?

Degeneration and a maximal cone —

Back to Plückers for the flag variety: we obtain t-deformed Plücker relations, for example the relation

$$t^0 X_{12} t^5 X_{34} - t^2 X_{13} t^3 X_{24} + t^2 X_{14} t^4 X_{23} = 0.$$

Theorem (Feigin-F-Littelmann)

This defines our family \mathcal{X}_t , and X_0 is an irreducible toric variety (defined by binomials) with moment polytope $P(\lambda)$.

This result does not depend on the precise degree but on the cone defined by

(a)
$$a_{i+1,i} + a_{i+2,i+1} \ge a_{i+2,i}$$
 for $1 \le i \le n-2$

and

(b)
$$a_{j,i} + a_{j+1,i+1} \ge a_{j+1,i} + a_{j,i+1}$$
 for $1 \le i < j \le n - 2$.

Degeneration and a maximal cone —

What about the faces of the cone?

(a)
$$a_{i+1,i} + a_{i+2,i+1} \ge a_{i+2,i}$$
 for $1 \le i \le n-2$

In $U(\mathfrak{n}^-)$ we have: $x \otimes y - y \otimes x = [x, y]$, which implies with strict inequalities

$$\operatorname{gr} U(\mathfrak{n}^-) \cong S(\mathfrak{n}^-).$$

Short excursion

Universal linear degenerate flag variety [Cerulli Irelli-Fang-Feigin-F-Reineke]

$$\pi: \{ (U_1, \ldots, U_{n-1}, f_1, \ldots, f_{n-2}) \mid \dim U_i = i, f_i U_i \subset U_{i+1} \} \longrightarrow \operatorname{End}(\mathbb{C}^n)^{n-2}$$

- $\pi^{-1}(\mathrm{id},\ldots,\mathrm{id})\cong \mathcal{F}_n.$
- $\pi^{-1}(0,\ldots,0) \cong \prod \operatorname{Gr}(k,n).$
- Irreducible or normal or flat fibres are described.
- The PBW fibres correspond to some (a) inequalities being strict.

- A maximal cone in the tropical flag variety –

Translating back to Plücker coordinates: We define $\mathcal{C} \subset \mathbb{R}^{2^n-2}$ by the equalities and inequalities

•
$$s_{1,...,k} = 0$$
 für $1 \le k \le n-1$

● For any
$$1 \le i < j \le n$$
 and $i \le k < \ell < j$:
 $s_{1,...,i-1,i+1,...,k,j} = s_{1,...,i-1,i+1,...,l,j}$.

③ For a given I, there are precise subsets J_1 and J_2 with $s_I = s_{J_1} + s_{J_2}$.

$$s_{1,\dots,i-1,i+1} + s_{1,\dots,i,i+2} \ge s_{1,\dots,i-1,i+2} \text{ for } 1 \le i \le n-2$$

 $o s_{1,\dots,i-1,j} + s_{1,\dots,i,j+1} \ge s_{1,\dots,i-1,j+1} + s_{1,\dots,i,j} \text{ for } 1 \le i < j-1 \le n-2$

Theorem (Fang-Feigin-F-Makhlin)

 \mathcal{C} is a maximal cone in the tropical flag variety.

Remark

Recently, Makhlin described another maximal cone of the tropical flag variety, providing the Gelfand-Tsetlin degeneration.

- General setup: G/B —

General setup:

We consider G/B, a generalized flag variety, then

$$\mathbb{C}[G/B] \cong \bigoplus_{\lambda \in P^+} V(\lambda)^*.$$

Let $(\beta_1, \ldots, \beta_N)$ a sequence of positive roots and U^- a maximal unipotent subgroup.

We call the sequence **birational** if

$$U^-_{\beta_1} \times \ldots \times U^-_{\beta_N} \longrightarrow U^-$$

is birational. Then

$$U(\mathfrak{n}^{-}) = \langle f_{\beta_1}^{\ell_1} \cdots f_{\beta_N}^{\ell_N} \mid \ell_i \ge 0 \rangle_{\mathbb{C}}.$$

Question: Is this if and only if? Does proper imply birational in this setup?

Remark

We can play the same game for Grassmann varieties, G/P, spherical varieties...

– General setup: G/B —

The set $\{f_{\beta_1}^{\ell_1} \cdots f_{\beta_N}^{\ell_N} \mid \ell_i \geq 0\}$ is not necessarily a basis of $U(\mathfrak{n}^-)$:

- If all β_i are pairwise distinct, then this is a basis (PBW Theorem).
- Let $\underline{w_0} = s_{i_1} \dots s_{i_N} \in W$, then $\{f_{\alpha_1}^{\ell_1} \dots f_{\alpha_N}^{\ell_N} \mid \ell_i \ge 0\}$ is not linearly independent.

We fix a lexicographic order \geq on $\mathbb{Z}_{\geq 0}^N$, to obtain a basis (of **essential** monomials).

- In the first case, the basis is parametrized by lattice points in the positive orthant.
- In the second case and choosing the opposite lexicographic order, the basis is parametrized by lattice points in the **string cone** C_{w_0} (Berenstein-Zelevinsky, Littelmann). There is an iterative and an explicit description of the string cone.
- In the general case, ... ?

Essential semi group and cone —

Let $\lambda \in P^+$ and $V(\lambda)$ the corresponding simple G-module. Then

$$V(\lambda) = U(\mathfrak{n}^-).v_\lambda,$$

our chosen birational sequence and lexicographic order on $\mathbb{Z}_{\geq 0}^N$ induce a monomial basis for $V(\lambda)$. We denote

$$S(\lambda) = \{\underline{m} \in \mathbb{Z}_{\geq 0}^N \mid f^{\underline{m}} \text{ is essential for } V(\lambda)\}.$$

Remark

How to compute this? Use GAP and canonical bases of quantum groups, to compute the essential monomials.

Since $V(\lambda + \mu) \subset V(\lambda) \otimes V(\mu)$, we obtain a semigroup

$$S(G, \beta_1, \dots, \beta_N, \geq) = \bigcup_{\lambda \in P^+} (S(\lambda) \times \lambda) \subset \mathbb{Z}^N \times P^+.$$

Conjecture

For any choice of birational sequence and lexicographic order, $S(G, \beta_1, \ldots, \beta_N, \geq)$ is finitely generated.

Conjecture

For any choice of birational sequence and lexicographic order, $S(G, \beta_1, \ldots, \beta_N, \geq)$ is finitely generated.

Remark

- This conjecture is true for our previous examples, especially the string cone and the Lusztig cone.
- Gornitskii proposed a local criterium to check that the semigroup is finitely generated.

Conjecture

The semigroup is generated by all essential monomial for $\lambda \leq \rho$.

Remark

By considering for every $f^{\underline{m}}.v_{\lambda}$ the dual element $\zeta_{\underline{m},\lambda}$, we obtain a basis of $\mathbb{C}[G/B] \longrightarrow$ Standard-Monomial-Theory.

Example: (back to beginning)

The set of all Plücker coordinates of length j is a basis for $V(\omega_j)^*$. The basis of $\mathbb{C}[G/B]$ is then given by semi-standard Young tableaux.

$$\mathcal{C} := \overline{\mathbb{R}_{\geq 0} S(G, \beta_1, \dots, \beta_N, \geq)} \subset \mathbb{R}^N \times \mathbb{R}P^+.$$

Suppose $S(G, \beta_1, \ldots, \beta_N, \geq)$ is finitely generated and saturated, then $P(\lambda) \cap \mathbb{Z}^N = S(\lambda)$.

Theorem (Alexeev-Brion)

There is a toric degeneration of G/B, such that the moment polytope of the special fibre is $P(\lambda)$.

Homogeneous order and PBW degenerate flag varieties —

Given G/B, then there are sequences and orders such that the semigroup is finitely generated and saturated

 \longrightarrow String polytopes, Lusztig polytopes

Question:

Is there a choice such that the semigroup is generated by degree 1?

- Plücker coordinates in type A.
- Known for type C, G.
- String polytopes do not work for type B, D, E, F, G.

Homogeneous order and PBW degenerate flag varieties –

Question:

For given G/B, is there a homogeneous order such that the semigroup is finitely generated and saturated?

- String and Lusztig polytopes do not work.
- Type A, C, G are solved.

Proposition

Suppose there exists such an order, then the PBW degenerate variety G/B^a is a flat degeneration of G/B.

 \longrightarrow framework of PBW degenerations, so far only in type A, C

Thank you!