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Matrix factorization

Definition
Let f € S = k[xo, - , xn] be a homogeneous form. A matrix factorization of
is a pair of matrices (A, B) such that

AB=BA=f L

We will only consider the graded case: both A and B induce graded S-module
homomorphisms.

Proposition (Eisenbud, 1980)
There is a bijection between
1. linear equivalence classes of matrix factorizations (A, B) of f;
2. isomorphism classes of maximal Cohen-Macaulay S /(f)-modules

via (A, B) — coker A.
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Matrix factorization

We are particularly interested when A is consisted of linear forms:
0— S(-1)% 2, 59t 3 M := coker A — 0.

M is called an Ulrich module, that is, a maximal Cohen-Macaulay

S/(f)-module with a completely linear S-resolution and generated in degree 0.

When f is irreducible, one can check that det A = f(2nkM)

Remark
When A appears in a matrix factorization (A, B) of f, then A uniquely

determines B. Hence, we will sometimes say: “A is a matrix factorization of f".
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Ulrich complexity

Question
What is the smallest possible rank of an Ulrich module (= Ulrich complexity)

when f is a (very) general cubic in N variables?

Answer

1. When N =3 or N =4, f is linearly determinantal. In particular, there is a
rank 1 Ulrich module.

2. When N =5, f is not linearly determinantal but linearly Pfaffian. In
particular, there is a rank 2 Ulrich module.

3. When f is a cubic in 6 variables, then f is linearly Pfaffian if and only if
V(f) contains a del Pezzo surface of degree 5 (Beauville, 2000).

4. When N <9, there is a rank 9 Ulrich module (Manivel, 2018).

Want : Describe Manivel's result explicitly by computing a matrix factorization.
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X = V(f) degree d hypersurface < R = Sx

U ¢
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Let Fo:---— FL — Fp=S5 — S — 0 be the minimal S-free resolution of Z.

From the right exact sequence of R-modules
FF®sR—F®s R=R—57—0,
we have an exact sequence of free R-modules
s = GBG(—d)DGo(—2d) = GBGi(—d) - GBGo(—d) = GL — Gy — 57 — 0

where G; := F; ®s R.



Shamash’s construction

X = V(f) degree d hypersurface < R = Sx

U ¢
Z Sz
Let Fo:---— FL — Fp=S5 — S — 0 be the minimal S-free resolution of Z.

From the right exact sequence of R-modules
FF®sR—F®s R=R—57—0,
we have an exact sequence of free R-modules
s = GBG(—d)DGo(—2d) = GBGi(—d) - GBGo(—d) = G1 — Gy —+ Sz — 0

where G; := F; ®s R. The resolution becomes 2-periodic after a finite step; say
A and B, both are annihilated by f. In particular, A provides a matrix

factorization of f.
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1. Z C X C IP? a twisted cubic on a cubic surface; we have the Betti table

and hence Shamash’s construction will provide a 3 x 3 linear MF of X.



Shamash’s construction

Example

1. Z ¢ X c P? a twisted cubic on a cubic surface; we have the Betti table

and hence Shamash’s construction will provide a 3 x 3 linear MF of X.

2. Z C X C P* an elliptic normal curve on a cubic threefold; we have the
Betti table

and hence Shamash’s construction will provide a 6 x 6 linear MF of X. In
fact, since X is linearly Pfaffian but not determinantal, one can obtain a

skew-symmetric MF after a certain linear coordinate change.
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We may recover Manivel’s theorem

16 -
— 16

if there is a certain subscheme Z C X C P?
having the above Betti table when X is a general cubic sevenfold.
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Shamash’s construction

Today, we will begin with the table

We may recover Manivel’s theorem

Answer

Yes, we can find Z as a prime Fano threefold of index 1 and genus 7.

16

if there is a certain subscheme Z C X C P?
having the above Betti table when X is a general cubic sevenfold.

16

10

1
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Digestion: toward the Cartan cubic

Both approaches have strong connections between the Cartan cubic.
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Recall
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Digestion: toward the Cartan cubic

Both approaches have strong connections between the Cartan cubic.

Recall
The Lie group Es acts on a 27-dimensional vector space Vo7, i.e., on P with
three orbits:

1. Cayley plane OP?, the Severi variety of dimension 16;

2. X\ OP?, where X = Sec(OP?) = V(F¢) the Cartan cubic hypersurface;

3. P*\ X dense open.
In fact, Manivel showed that there is an Es-equivariant representation on the

Cartan cubic.
~~ Recover the Cartan cubic from the previous Betti table.
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The previous Betti table comes from the spinor tenfold
Sio(= OG(5,10)) C P*. It is natural to consider the “universal cubic”
containing Sio.
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Digestion: toward the Cartan cubic

The previous Betti table comes from the spinor tenfold
Sio(= 0G(5,10)) C P. It is natural to consider the “universal cubic”
containing Sio.

S0 C PP = P(A°C® @ APC® @ A'CP)

0 X12 X13 X14  Xi5
—X12 0 X23 X4 X25
N = —X13 —X23 0 X34 X35
—X14 —X24 —X34 0 Xa5
—X15 —X5 —x35 —xa5 O
10 generators of Syo are quadrics g1, ,gs, g1, - , gs:

g = xoy+(=1)Pf(N,i)
q: i-th entry of (y1---ys)N.
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Digestion: toward the Cartan cubic

Put 10 extra variables a1, --- ,as, b1, - - , bs of degree 1 corresponding to g;, q/,
and take F := >"(g;ai + qjb;). Shamash's construction yields:



Digestion: toward the Cartan cubic

Put 10 extra variables a1, --- ,as, b1, - - , bs of degree 1 corresponding to g;, q/,
and take F := >"(g;ai + qjb;). Shamash's construction yields:

. S e o Y - A @ @ oa
oy vy S. . a . x5 X X Xis
noy » ey L A X X X
no oy . .oy L=y . . . L@z —Xss—Xa o . X3 Xi3
n . -y -y . .-y . . . . L@ —Xes —Xoa —Xe3 . X2
—Y2 =¥s . —Ya .. =¥s . . ... ai—xis—xu—xi3—xe .
no -y . . . . .o—as . . as —as . LomXas X35 —Xa . . . . =b by
n -ys . . . as . . —a a . X5 . —Xes Xoa . . . =bi . b3
Yo o—ys ... o—as . a . —a —xss . . x5 —xus . . . —by bs
v -y . —a ... a3 —a . . —xs oxs . —xs . . —b . by
Y. Yo . LA . . . a . a Coxm . x5 . X3 oL . by . b
¥y Lomas . @ —a R U —x2 . . —bs by
v =y a . o—as oam .. xao—xwoxs . . —b . . . b
Ly —as . a . -—a . . L X Xu —xi3 . . —b bs
oy as . Lo—a a . . . . .oXea =X . X2 . . —bs . b
A —ay @ —a o L s x5 —x12 .. —by bs
Vio. . —xas . xmso—xas . =X xes —x3 . . .. b x
2. . . . Lo Xas . —Xss . X1s Xaa . X4 X3 . . . B . obo . LoX
JZ . L= Xes . LoXes —X1s . —Xoa Xua —x12 . . . .oby . X
v ... L X —xs xis L xs o—xs oxi . . . b . x
Y5 o S T X —Xia X X3 —Xa2 S bs xo
cas oA a3 a2 a . . . . b by b3 bs bs
35 . —Xas —X3 —Xo5 —X15 . . . . . =bi —by —bs —bs . . . Xo
a4 Xa5 . X34 —Xp4 —X14 . . —b —by —bs . .obs L . Lox
axsm Xu . —X3 X3 by —b . . b .obs X0
axs X4 X3 . —x2—b . by . by . .obs . L X

axs xu x3 x2 . b by . b . . b . - X
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Digestion: toward the Cartan cubic

But still F (in 26 variables) is different from the Cartan cubic F¢ (in 27
variables). We need 1 more variable. The missing term comes from the identity

5
Z qiq; = 0.
i=1

Therefore, via the correspondence, >, , aib; should appear in J(F).
We put an extra variable w and define

Fc:=F+ W(Z a;b;).

Proposition (K.-Schreyer)

Fc is the Cartan cubic form.
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Cubics whose Hessian give matrix factorizations

In our experiment, we computed a matrix factorization of Fc:
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Cubics whose Hessian give matrix factorizations

In our experiment, we computed a matrix factorization of Fc:

YioY: Ys o Ya ¥ . 35 a3 2 a
. oy ysoy L. W Xas  Xs5  Xo5 X5
no oy yoo. . B L . W A —Xas . X3 X4 Xu
no oy . oy -y . . Loow L@y X5 —Xa . X3 X3
Vi S . =Y .. =5 ... w L m—xos—xa X3 . X1
v =y3 . - B I woo a1 —Xis —X14 —X13 —X12
n o=y . . . .o—as . LA —ay . . —Xes X3 —X3 . . —=b b
woo. -y . LA .. —a . @m . xis . —xs xwm . . . —b bs
Yo o—ys . ... o—as .. a . . —ai-xs . . x5 —xu. . . —b b
n oo . ya . . as . . . L@ —a LoTXs X5 . —X3 . . by . . by
¥ 2 .as . . .o—as a Loxs . o—xis . oxi3 . . —by . b
yi o—ya . .o—as . . . . L@ —ar . .o—Xs X5 . .o—xi2 . . —by bs
R ] oA . maa X3 —Xu X3 —b L bs
7 Loy Lo—a . a3 . —ar . . . Lo—xs . X —x3 . . —b . . bs
5. =Y . .a . —a a . . . L X —Xua x2 . . —bs . bs
v —ys . .. —ay @ —a . . . . . . . —xpox3 —x» . . .—by bs
oo . Loow LTXes . X —Xos . —Xu Xoa —Xo3 . . . . b . . . X
Y2 .. w . . X —X35 . X5 Xsa . —Xa X3 . . . . . obo . LX
ys.o.owo . —xas . X5 —Xi5 . —Xo X . —x . . . . . b . . x
Voo oW .. X o—xs x5 . .. X o—xi3ox2 - . . .. b . X
s woo. . . . X34 Xoa —X14 —Xo3 X3 —X12 . . . . . b xo
as a a3 @ a : : . . b by by by bs
a5 . —Xa5 —X35 —X5 —X15 - . . . . . —bi —by —b3y —bs . . . )
A Xas . X —Xo4 —Xis .. —bi—b —bs . bs X
ayxs X . —Xe3—xi3 . —bi —b . . by .obs . LX
axs X4 X3 . —x2—bi . by . b . .obs . Lox
aixis xu xi3 x2 . b by . by . .obs . . X

which is the Hessian matrix H(Fc).
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Theorem (K.-Schreyer)

Let f be a homogeneous cubic polynomial such that det(#(log f)) # 0.
Suppose that H(f) induces a matrix factorization of f. Then f is linearly
equivalent to one of the following:
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Cubics whose Hessian give matrix factorizations

Theorem (K.-Schreyer)

Let f be a homogeneous cubic polynomial such that det(#(log f)) # 0.
Suppose that H(f) induces a matrix factorization of f. Then f is linearly
equivalent to one of the following:

o f=x3;

o f=x¢xi;

o F=x0d+ - +x);

o f = the equation of the secant variety of the one of 4 Severi varieties:
v (P?),P? x P2, Gr(2,6), OP2.

Key idea
XJC-correspondence [Pirio-Russo, 2014].
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In the case, the partial derivatives of such an f induces a (2,2)-Cremona
transformation, and the Hessian matrix #(f) induces a cubic Jordan algebra
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Cubics whose Hessian give matrix factorizations

In the case, the partial derivatives of such an f induces a (2,2)-Cremona
transformation, and the Hessian matrix #(f) induces a cubic Jordan algebra

structure.

Problem
Collect more examples and do the experiments for higher degrees.

Example

Let g be the hyperdeterminant of a generic 2 X 2 x 2 hypermatrix (in 8
variables). Then g is a quartic homogeneous form, invariant under the
SL(2)*-action. A result of Ein and Shepherd-Barron implies that the partial
derivatives of g induces a (3, 3)-Cremona transformation. We observed that

the Hessian matrix H(g) does not give a matrix factorization of g but of g2.
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