An explicit matrix factorization of cubic hypersurfaces of small dimension

Yeongrak Kim

Universität des Saarlandes

25. 09. 2018

Second annual meeting of TRR 195 (Tübingen)

Question

How to decompose a polynomial f = xy - zw?

Question

How to decompose a polynomial f = xy - zw?

Answer

Replace f by a 2×2 matrix

$$fI = \begin{pmatrix} f & 0 \\ 0 & f \end{pmatrix}$$
$$= \begin{pmatrix} x & z \\ w & y \end{pmatrix} \begin{pmatrix} y & -z \\ -w & x \end{pmatrix}$$

Paul Dirac

David Eisenbud

Definition

Let $f \in S = k[x_0, \dots, x_n]$ be a homogeneous form. A matrix factorization of f is a pair of matrices (A, B) such that

$$AB = BA = f \cdot I$$
.

We will only consider the graded case: both A and B induce graded S-module homomorphisms.

Definition

Let $f \in S = k[x_0, \dots, x_n]$ be a homogeneous form. A matrix factorization of f is a pair of matrices (A, B) such that

$$AB = BA = f \cdot I.$$

We will only consider the graded case: both A and B induce graded S-module homomorphisms.

Proposition (Eisenbud, 1980)

There is a bijection between

- 1. linear equivalence classes of matrix factorizations (A, B) of f;
- 2. isomorphism classes of maximal Cohen-Macaulay S/(f)-modules via $(A,B)\mapsto \operatorname{coker} A$.

We are particularly interested when \boldsymbol{A} is consisted of linear forms:

We are particularly interested when A is consisted of linear forms:

$$0 \to S(-1)^{\oplus t} \stackrel{A}{\longrightarrow} S^{\oplus t} \to M := \operatorname{coker} A \to 0.$$

We are particularly interested when A is consisted of linear forms:

$$0 \to S(-1)^{\oplus t} \stackrel{A}{\longrightarrow} S^{\oplus t} \to M := \operatorname{coker} A \to 0.$$

M is called an Ulrich module, that is, a maximal Cohen-Macaulay S/(f)-module with a completely linear S-resolution and generated in degree 0. When f is irreducible, one can check that $\det A = f^{(\operatorname{rank} M)}$.

We are particularly interested when A is consisted of linear forms:

$$0 \to S(-1)^{\oplus t} \stackrel{A}{\longrightarrow} S^{\oplus t} \to M := \operatorname{coker} A \to 0.$$

M is called an Ulrich module, that is, a maximal Cohen-Macaulay S/(f)-module with a completely linear S-resolution and generated in degree 0. When f is irreducible, one can check that $\det A = f^{(\operatorname{rank} M)}$.

Remark

When A appears in a matrix factorization (A, B) of f, then A uniquely determines B. Hence, we will sometimes say: "A is a matrix factorization of f".

Question

What is the smallest possible rank of an Ulrich module (= Ulrich complexity) when f is a (very) general cubic in N variables?

Question

What is the smallest possible rank of an Ulrich module (= Ulrich complexity) when f is a (very) general cubic in N variables?

Answer

1. When N = 3 or N = 4, f is linearly determinantal. In particular, there is a rank 1 Ulrich module.

Question

What is the smallest possible rank of an Ulrich module (= Ulrich complexity) when f is a (very) general cubic in N variables?

Answer

- 1. When N = 3 or N = 4, f is linearly determinantal. In particular, there is a rank 1 Ulrich module.
- 2. When N = 5, f is not linearly determinantal but linearly Pfaffian. In particular, there is a rank 2 Ulrich module.

Question

What is the smallest possible rank of an Ulrich module (= Ulrich complexity) when f is a (very) general cubic in N variables?

Answer

- 1. When N = 3 or N = 4, f is linearly determinantal. In particular, there is a rank 1 Ulrich module.
- 2. When N = 5, f is not linearly determinantal but linearly Pfaffian. In particular, there is a rank 2 Ulrich module.
- 3. When f is a cubic in 6 variables, then f is linearly Pfaffian if and only if V(f) contains a del Pezzo surface of degree 5 (Beauville, 2000).

Question

What is the smallest possible rank of an Ulrich module (= Ulrich complexity) when f is a (very) general cubic in N variables?

Answer

- 1. When N = 3 or N = 4, f is linearly determinantal. In particular, there is a rank 1 Ulrich module.
- 2. When N = 5, f is not linearly determinantal but linearly Pfaffian. In particular, there is a rank 2 Ulrich module.
- 3. When f is a cubic in 6 variables, then f is linearly Pfaffian if and only if V(f) contains a del Pezzo surface of degree 5 (Beauville, 2000).
- 4. When $N \leq 9$, there is a rank 9 Ulrich module (Manivel, 2018).

Question

What is the smallest possible rank of an Ulrich module (= Ulrich complexity) when f is a (very) general cubic in N variables?

Answer

- 1. When N=3 or N=4, f is linearly determinantal. In particular, there is a rank 1 Ulrich module.
- 2. When N = 5, f is not linearly determinantal but linearly Pfaffian. In particular, there is a rank 2 Ulrich module.
- 3. When f is a cubic in 6 variables, then f is linearly Pfaffian if and only if V(f) contains a del Pezzo surface of degree 5 (Beauville, 2000).
- 4. When $N \leq 9$, there is a rank 9 Ulrich module (Manivel, 2018).

Want: Describe Manivel's result explicitly by computing a matrix factorization.

$$X = V(f)$$
 degree d hypersurface \Leftrightarrow $R = S_X$ \downarrow Z S_Z

Let $F_{\bullet}: \cdots \to F_1 \to F_0 = S \to S_Z \to 0$ be the minimal S-free resolution of Z.

$$X = V(f)$$
 degree d hypersurface \Leftrightarrow $R = S_X$
 \cup
 Z
 S_Z

Let $F_{\bullet}: \cdots \to F_1 \to F_0 = S \to S_Z \to 0$ be the minimal S-free resolution of Z. From the right exact sequence of R-modules

$$F_1 \otimes_S R \to F_0 \otimes_S R = R \to S_Z \to 0,$$

we have an exact sequence of free R-modules

$$\cdots \rightarrow \textit{G}_{4} \oplus \textit{G}_{2}(-\textit{d}) \oplus \textit{G}_{0}(-2\textit{d}) \rightarrow \textit{G}_{3} \oplus \textit{G}_{1}(-\textit{d}) \rightarrow \textit{G}_{2} \oplus \textit{G}_{0}(-\textit{d}) \rightarrow \textit{G}_{1} \rightarrow \textit{G}_{0} \rightarrow \textit{S}_{Z} \rightarrow 0$$

where $G_i := F_i \otimes_S R$.

$$X = V(f)$$
 degree d hypersurface \Leftrightarrow $R = S_X$
 \cup
 Z
 S_Z

Let $F_{\bullet}: \cdots \to F_1 \to F_0 = S \to S_Z \to 0$ be the minimal S-free resolution of Z. From the right exact sequence of R-modules

$$F_1 \otimes_S R \to F_0 \otimes_S R = R \to S_Z \to 0,$$

we have an exact sequence of free R-modules

$$\cdots \rightarrow \textit{G}_{4} \oplus \textit{G}_{2}(-\textit{d}) \oplus \textit{G}_{0}(-2\textit{d}) \rightarrow \textit{G}_{3} \oplus \textit{G}_{1}(-\textit{d}) \rightarrow \textit{G}_{2} \oplus \textit{G}_{0}(-\textit{d}) \rightarrow \textit{G}_{1} \rightarrow \textit{G}_{0} \rightarrow \textit{S}_{Z} \rightarrow 0$$

where $G_i := F_i \otimes_S R$. The resolution becomes 2-periodic after a finite step; say A and B, both are annihilated by f. In particular, A provides a matrix factorization of f.

Example

1. $Z \subset X \subset \mathbb{P}^3$ a twisted cubic on a cubic surface; we have the Betti table

and hence Shamash's construction will provide a 3×3 linear MF of X.

Example

1. $Z \subset X \subset \mathbb{P}^3$ a twisted cubic on a cubic surface; we have the Betti table

and hence Shamash's construction will provide a 3×3 linear MF of X.

2. $Z \subset X \subset \mathbb{P}^4$ an elliptic normal curve on a cubic threefold; we have the Betti table

and hence Shamash's construction will provide a 6×6 linear MF of X. In fact, since X is linearly Pfaffian but not determinantal, one can obtain a skew-symmetric MF after a certain linear coordinate change.

Today, we will begin with the table

Today, we will begin with the table

We may recover Manivel's theorem if there is a certain subscheme $Z \subset X \subset \mathbb{P}^8$ having the above Betti table when X is a general cubic sevenfold.

Today, we will begin with the table

We may recover Manivel's theorem if there is a certain subscheme $Z \subset X \subset \mathbb{P}^8$ having the above Betti table when X is a general cubic sevenfold.

Answer

Yes, we can find Z as a prime Fano threefold of index 1 and genus 7.

Both approaches have strong connections between the Cartan cubic.

Both approaches have strong connections between the Cartan cubic.

Recall

The Lie group E_6 acts on a 27-dimensional vector space V_{27} , *i.e.*, on \mathbb{P}^{26} with three orbits:

- 1. Cayley plane \mathbb{OP}^2 , the Severi variety of dimension 16;
- 2. $X \setminus \mathbb{OP}^2$, where $X = \text{Sec}(\mathbb{OP}^2) = V(F_{\mathcal{C}})$ the Cartan cubic hypersurface;
- 3. $\mathbb{P}^{26} \setminus X$ dense open.

Both approaches have strong connections between the Cartan cubic.

Recall

The Lie group E_6 acts on a 27-dimensional vector space V_{27} , *i.e.*, on \mathbb{P}^{26} with three orbits:

- 1. Cayley plane \mathbb{OP}^2 , the Severi variety of dimension 16;
- 2. $X \setminus \mathbb{OP}^2$, where $X = Sec(\mathbb{OP}^2) = V(F_C)$ the Cartan cubic hypersurface;
- 3. $\mathbb{P}^{26} \setminus X$ dense open.

In fact, Manivel showed that there is an E_6 -equivariant representation on the Cartan cubic.

Both approaches have strong connections between the Cartan cubic.

Recall

The Lie group E_6 acts on a 27-dimensional vector space V_{27} , *i.e.*, on \mathbb{P}^{26} with three orbits:

- 1. Cayley plane \mathbb{OP}^2 , the Severi variety of dimension 16;
- 2. $X \setminus \mathbb{OP}^2$, where $X = Sec(\mathbb{OP}^2) = V(F_C)$ the Cartan cubic hypersurface;
- 3. $\mathbb{P}^{26} \setminus X$ dense open.

In fact, Manivel showed that there is an E_6 -equivariant representation on the Cartan cubic.

Necover the Cartan cubic from the previous Betti table.

The previous Betti table comes from the spinor tenfold $\mathcal{S}_{10}(=\mathit{OG}(5,10)) \subset \mathbb{P}^{15}$. It is natural to consider the "universal cubic" containing \mathcal{S}_{10} .

The previous Betti table comes from the spinor tenfold $S_{10}(=OG(5,10)) \subset \mathbb{P}^{15}$. It is natural to consider the "universal cubic" containing S_{10} .

$$S_{10} \subset \mathbb{P}^{15} = \mathbb{P}(\wedge^0 \mathbb{C}^5 \oplus \wedge^2 \mathbb{C}^5 \oplus \wedge^4 \mathbb{C}^5)$$

$$N = \begin{pmatrix} 0 & x_{12} & x_{13} & x_{14} & x_{15} \\ -x_{12} & 0 & x_{23} & x_{24} & x_{25} \\ -x_{13} & -x_{23} & 0 & x_{34} & x_{35} \\ -x_{14} & -x_{24} & -x_{34} & 0 & x_{45} \\ -x_{15} & -x_{25} & -x_{35} & -x_{45} & 0 \end{pmatrix}$$

10 generators of S_{10} are quadrics $q_1, \dots, q_5, q_1', \dots, q_5'$:

$$\begin{cases} q_i = x_0 y_i + (-1)^i \operatorname{Pf}(N, i) \\ q'_i = i \text{-th entry of } (y_1 \cdots y_5) N. \end{cases}$$

Put 10 extra variables $a_1, \dots, a_5, b_1, \dots, b_5$ of degree 1 corresponding to q_i, q_i' , and take $F := \sum (q_i a_i + q_i' b_i)$. Shamash's construction yields:

Put 10 extra variables $a_1, \dots, a_5, b_1, \dots, b_5$ of degree 1 corresponding to q_i, q_i' , and take $F := \sum (q_i a_i + q_i' b_i)$. Shamash's construction yields:

But still F (in 26 variables) is different from the Cartan cubic F_C (in 27 variables). We need 1 more variable.

But still F (in 26 variables) is different from the Cartan cubic $F_{\mathcal{C}}$ (in 27 variables). We need 1 more variable. The missing term comes from the identity

$$\sum_{i=1}^5 q_i q_i' = 0.$$

Therefore, via the correspondence, $\sum_{i=1}^{5} a_i b_i$ should appear in J(F).

But still F (in 26 variables) is different from the Cartan cubic F_C (in 27 variables). We need 1 more variable. The missing term comes from the identity

$$\sum_{i=1}^5 q_i q_i' = 0.$$

Therefore, via the correspondence, $\sum_{i=1}^{5} a_i b_i$ should appear in J(F). We put an extra variable w and define

$$F_{\mathcal{C}} := F + w(\sum a_i b_i).$$

But still F (in 26 variables) is different from the Cartan cubic $F_{\mathcal{C}}$ (in 27 variables). We need 1 more variable. The missing term comes from the identity

$$\sum_{i=1}^5 q_i q_i' = 0.$$

Therefore, via the correspondence, $\sum_{i=1}^{5} a_i b_i$ should appear in J(F). We put an extra variable w and define

$$F_{\mathcal{C}} := F + w(\sum a_i b_i).$$

Proposition (K.-Schreyer)

 $F_{\mathcal{C}}$ is the Cartan cubic form.

In our experiment, we computed a matrix factorization of F_C :

In our experiment, we computed a matrix factorization of F_C :

which is the Hessian matrix $\mathcal{H}(F_{\mathcal{C}})$.

Theorem (K.-Schreyer)

Let f be a homogeneous cubic polynomial such that $\det(\mathcal{H}(\log f)) \neq 0$. Suppose that $\mathcal{H}(f)$ induces a matrix factorization of f. Then f is linearly equivalent to one of the following:

Theorem (K.-Schreyer)

Let f be a homogeneous cubic polynomial such that $det(\mathcal{H}(\log f)) \neq 0$. Suppose that $\mathcal{H}(f)$ induces a matrix factorization of f. Then f is linearly equivalent to one of the following:

- $f = x_0(x_1^2 + \cdots + x_n^2);$
- \diamond f= the equation of the secant variety of the one of 4 Severi varieties: $v_2(\mathbb{P}^2), \mathbb{P}^2 \times \mathbb{P}^2, Gr(2,6), \mathbb{OP}^2.$

Theorem (K.-Schreyer)

Let f be a homogeneous cubic polynomial such that $\det(\mathcal{H}(\log f)) \neq 0$. Suppose that $\mathcal{H}(f)$ induces a matrix factorization of f. Then f is linearly equivalent to one of the following:

- $\diamond f = x_0^3$;
- $\phi f = x_0^2 x_1;$
- $f = x_0(x_1^2 + \cdots + x_n^2);$
- \diamond f = the equation of the secant variety of the one of 4 Severi varieties: $v_2(\mathbb{P}^2), \mathbb{P}^2 \times \mathbb{P}^2, Gr(2,6), \mathbb{OP}^2.$

Key idea

XJC-correspondence [Pirio-Russo, 2014].

In the case, the partial derivatives of such an f induces a (2,2)-Cremona transformation, and the Hessian matrix $\mathcal{H}(f)$ induces a cubic Jordan algebra structure.

In the case, the partial derivatives of such an f induces a (2,2)-Cremona transformation, and the Hessian matrix $\mathcal{H}(f)$ induces a cubic Jordan algebra structure.

Problem

Collect more examples and do the experiments for higher degrees.

In the case, the partial derivatives of such an f induces a (2,2)-Cremona transformation, and the Hessian matrix $\mathcal{H}(f)$ induces a cubic Jordan algebra structure.

Problem

Collect more examples and do the experiments for higher degrees.

Example

Let g be the hyperdeterminant of a generic $2 \times 2 \times 2$ hypermatrix (in 8 variables). Then g is a quartic homogeneous form, invariant under the $SL(2)^3$ -action. A result of Ein and Shepherd-Barron implies that the partial derivatives of g induces a (3,3)-Cremona transformation. We observed that the Hessian matrix $\mathcal{H}(g)$ does not give a matrix factorization of g but of g^2 .