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Nonnegative Polynomials

A polynomial f ∈ R[x] is called nonnegative if f(x) ≥ 0 for all x ∈ Rn.
Certifying the nonnegativity of a polynomial is crucial for polynomial
optimization.

How to certify a polynomial f ∈ R[x] is nonnegative?

This is an NP-hard problem.

One way is to check whether f is sum of squares of polynomials
(SOS).

Hilbert(1888) showed that there exists nonnegative polynomials
that cannot be represented as sum of squares.

The AM-GM inequality can be used to check the nonnegativity
the circuit polynomials.
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Polynomials Supported on a Circuit

Motzkin Polynomial (1967): Consider the Motzkin polynomial

f(x, y) = x4y2 + x2y4 + 1− 3x2y2

f(x, y) ≥ 0 due to the classical AM-GM
inequality.
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Maximal Mediated Sets

A set L ⊆ Zn is called ∆-mediated if every point in L−∆ is midpoint
of two distinct points in L ∩ (2Z)n.

Theorem (Reznick (1989))

There exists the maximal ∆-mediated set (MMS), ∆∗, that contains
every ∆-mediated set.

Maximal mediated set tells us when a nonnegative circuit polynomial is
SOS.

Theorem (Reznick (1989), de Wolff, Iliman (2014))

A nonnegative circuit polynomial f is SOS if and only if “inner term”
is in MMS.
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MMS Algorithm

Given a set of points L ⊂ Zn, we define a set
of averages:

A(L) =

{
s + t

2
|s, t ∈ L ∩ (2Z)

n
, s 6= t

}
Reznick’s MMS algorithm(1989):

Input: ∆: finite set of points in (2Z)n

Output: ∆∗: the ∆-mediated subset of Zn

that contains every ∆-mediated set

1: ∆0 ← Conv(∆) ∩ Zn

2: repeat

3: ∆n ← A(∆n−1) ∪∆

4: until Pn = Pn−1

5: ∆∗ ← ∆n

∆0∆0 ∩ (2Z)2∆1∆0 ∩ (2Z)2∆2∆∗

Fact:

∆ ∪A(∆) ⊆ ∆∗ ⊆ conv(∆) ∩ Zn

Task: Decide how dense ∆∗ is in conv(∆) ∩ Zn, so we define the h-ratio:

H(∆) =
|∆∗ − (∆ ∪A(∆))|

|(conv(∆) ∩ Zn)− (∆ ∪A(∆))|
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Main Question: What is the distribution on H when n > 2?

Observations:

Even though the algoritm looks easy, there are too many simplices
to consider. In dimension 4, maximal degree 8 there are more than
300000 simplices to check. This makes it hard to write to database.

Thus, we need to get rid of the redundant data. In fact, instead of
simplicies one can consider the underlying lattice.
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∆1 =

{[
0
0

]
,

[
2
4

]
,

[
4
2

]}

M∆1
=

[
2 4
4 2

]

L∆1
= 〈(2, 4), (4, 2)〉

∆2 =

{[
0
0

]
,

[
2
0

]
,

[
4
6

]}

M∆2
=

[
2 4
0 6

]

L∆2
= 〈(2, 4), (0, 6)〉

T (x) =

[
1 0
2 −1

]
x
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Thank you for your attention!

Oguzhan Yürük (TU Berlin) September 28, 2018 8 / 8


