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Introduction

The present “Habilitationsschrift” is composed of nine scientific papers writ-

ten throughout the years 2002-2007. It can be divided into three parts. The

first part is considered with the study of equisingular families of curves on

smooth projective surfaces. This is related to the second part which studies

special fat point schemes on projective surfaces in the spirit of the Harbourne-

Hirschowitz conjecture. Finally the third part is completely independent of

the two former. Methods from commutative algebra and computer algebra

are used to give a constructive proof of the Lifting Lemma in tropical geom-

etry. The papers in Part A ([Kei05b], [KeL05], [Kei06], [Mar05]) have all

been published in mathematical journals respectively been accepted for pub-

lication. The papers in Part B ([Mar06], [ChM07a], [ChM07b]) and in Part

C ([Mar07], [JMM07]) are more recent work. They have been submitted for

publication to mathematical journals and meanwhile they have been made

available to the public on the arXive.

In this introduction we will try to give some background on the questions

studied in the papers and to show how our results fit into this scheme. Doing

so we will also give a brief description of the main results obtained in the

papers, but we refer to the introduction of each paper for a more elaborate

description of them.

Part A

The existence of singular curves, their deformations, and the structure of

families of singular curves have attracted the constant attention of algebraic

geometers since the late nineteenth century. The foundations of the theory

were laid by mathematicians like Plücker, Severi, Segre, and Zariski. The

answers to many of their questions needed, however, modern methods. Es-

sential progress in recent years has been achieved by the work of Ciliberto,

Sernesi, Chiantini, Harris, Harbourne, Hirschowitz, Greuel, Lossen, Shustin

and many others. Before going into more detail let us fix some notation.

Let Σ be a smooth projective surface embedded by a very ample line bundle

L, let d be a positive integer, and let S1, . . . ,Sr be singularity types – either

topological or analytical. We want to consider the families V irr
|dL|(S1, . . . ,Sr) of

irreducible curves in the linear system |dL| having precisely r singular points

of the prescribed type. The type of question we are concerned with is:

(a) Is V irr
|dL|(S1, . . . ,Sr) 6= ∅?

1



2 INTRODUCTION

(b) Is V irr
|dL|(S1, . . . ,Sr) smooth of the expected dimension?

(c) Is V irr
|dL|(S1, . . . ,Sr) irreducible?

(d) What is the degree of V irr
|dL|(S1, . . . ,Sr) in |dL|?

That the dimension is the expected onemeans that the dimension of |dL| drops
for each imposed singularity type Si exactly by the number of conditions im-

posed by Si – e. g. a node imposes one condition, a cusp two. For a more

detailed introduction of the concepts we refer to Section I.1.1-1.4.

The simplest possible case of nodal plane curves was more or less completely

answered by Severi in the early 20th century. He showed that V irr
|dL|(rA1),

where L is a line in P2C , is non-empty if and only if

0 ≤ r ≤ (d− 1) · (d− 2)

2
.

Moreover, he showed that V irr
|dL|(rA1) is T-smooth (i.e. smooth and of the ex-

pected dimension) whenever it is non-empty, and he claimed that the variety

is always irreducible. Harris proved this claim, which had become known

as the Severi Conjecture by then, in 1985 (cf. [Har85]). Considering more

complicated singularities we may no longer expect such complete answers.

Hirano provides in [Hir92] a series of examples of irreducible cuspidal plane

curves of degree d = 2 · 3k, k ∈ N, imposing more than d(d−3)
2

conditions on

|dL| – that means in particular, we may hardly expect to be able to realise

all smaller quantities of cusps on an irreducible curve of degree d. Moreover,

we see that V irr
|dL|(rA2) does not necessarily have the expected dimension – ex-

amples of this behaviour were already known to Segre (cf. [Seg29]). In 1974

Jonathan Wahl (cf. [Wah74b]) showed that the family V irr
|104·L|(3636 ·A1, 900 ·A2)

of plane curves of degree 104 is non-reduced and hence singular. However,

its reduction is smooth. The first example where also the reduction is sin-

gular, is due to Luengo. In [Lue87a] he shows that the plane curve C given

by x9 + z
(
xz3 + y4

)2
has a single singular point of simple type A35 and that

V irr
|9·L|(A35) is non-smooth, but reduced at C. Thus also the smoothness will

fail in general. And finally, already Zariski (cf. [Zar35]) knew that the family

V irr
|6·L|(6 ·A2) of plane sextics consists of two connected components.

The best we may thus expect is to find numerical conditions, depending on

the divisor L, on d, and on certain invariants of the singularities, which imply

either of the properties in question. In order to see that the conditions are of

the right kind - we then call them asymptotically proper -, they should not be

too far from necessary conditions respectively they should be nearly fulfilled

for series of counterexamples. Let us make this last statement a bit more
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precise. We are looking for conditions of the kind
r∑

i=1

α(Si) < p(d),

where α is some invariant of topological respectively analytical singularity

types and p ∈ R[x] is some polynomial, neither depending on d nor on the

Si. We say that the condition is asymptotically proper, if there is a necessary

condition with the same invariants and a polynomial of the same degree. If

instead we find an infinite series of examples not having the desired property,

where, however, the above inequality is reversed for the same invariants and

some other polynomial of the same degree, we say that at least for the involved

subclass of singularity types, the condition is asymptotically proper.

While the study of nodal and cuspidal curves has a long tradition, the con-

sideration of families of more complicated singularities needed a suitable de-

scription of the tangent space of the family at a point, giving a concrete mean-

ing to “the number of conditions imposed by a singularity type”, that is to

the expected dimension of the family. Greuel and Karras in [GrK89] in the

analytical case, Greuel and Lossen in [GrL96] in the topological case identify

the tangent spaces basically with the global sections of the ideal sheaves of

certain zero-dimensional schemes associated to the singularity types. This ap-

proach – in combination with a Viro gluing type method in the existence case

– allows to reduce the existence, T-smoothness and irreducibility problem to

the vanishing of certain cohomology groups. Various efforts in this direction

culminate in asymptotically proper conditions for the existence (cf. [GLS98b])

and conditions for the T-smoothness and irreducibility, which are better than

any previously known ones (cf. [GLS00]) – all for plane curves. Due to known

examples the conditions for the T-smoothness are even asymptotically proper

for simple singularities and ordinary multiple points. All these are results for

curves in the projective plane.

Much less is known for surfaces other than the projective plane. In [KeT02]

we studied the existence of curves with prescribed singularities, and we gave

an asymptotically proper condition of the form
r∑

i=1

δ(Si) ≤ α · d2 + β · d+ γ,

where the coefficients α, β, and γ depend on the surface Σ and the divisor L,

and where δ(Si) is the delta invariant of Si. In the case of topological singular-

ity types one can replace δ by the Milnor number µ. The conditions work for

any surface Σ, and even though they are asymptotically proper, when applied

to the case of the projective plane the coefficients are worse than the previ-

ously known ones. The question of irreducibility for arbitrary surfaces was

first considered in [Kei03] and then improved in [Kei05a], and replacing δ
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by the Tjurina number τ respectively the equisingular Tjurina number τ es we

got a condition of the same type for the irreducibility. Due to the lack of suit-

able examples of reducible equisingular families of curves on general surfaces

we still do not know if these conditions are asymptotically proper for general

singularities, not even in the plane case.

In Part A of this “Habilitationsschrift” we study mainly the question of T-

smoothness of V irr
|dL|(S1, . . . ,Sr), and we restrict our attention mostly to general

surfaces in P3C , general products of curves and geometrically ruled surfaces.

In Paper I, [Kei05b], we give numerical conditions for the T-smoothness of

such a family using a new invariant for singularities introduced in Paper II,

[KeL05], and in Paper III, [Kei06], and Paper IV, [Mar05], we study series

of equisingular families showing that on general surfaces in P3C the conditions

are asymptotically proper e.g. for ordinary multiple points – as in the plane

case.

The varieties V|dL|(rA1) of (not necessarily irreducible) curves in |dL| with pre-

cisely r simple nodes (respectively the open subvarieties V irr
|dL|(rA1) of reduced

and irreducible nodal curves) in a fixed linear system |dL| on a smooth pro-

jective surface Σ are also called Severi varieties. As mentioned above, when

Σ = P2C Severi showed that these varieties are smooth of the expected dimen-

sion, whenever they are non-empty – that is, nodes always impose indepen-

dent conditions.

In [Tan82] Tannenbaum showed that also on K3-surfaces V|dL|(rA1) is always

smooth, that, however, the dimension is larger than the expected one and

thus V|dL|(rA1) is not T-smooth in this situation. If we restrict our attention

to the subvariety V irr
|dL|(rA1) of irreducible curves with r nodes, then we gain T-

smoothness again whenever the variety is non-empty. That is, while on a K3-

surface the conditions which nodes impose on irreducible curves are always

independent, they impose dependent conditions on reducible curves.

On more complicated surfaces the situation becomes even worse. Chiantini

and Sernesi study in [ChS97] Severi varieties on surfaces in P3C . They show

that on a generic quintic Σ in P3C with hyperplane section L the variety

V irr
|dL|
(

5d(d−2)
4

·A1

)
has a non-smooth reduced component of the expected dimen-

sion, if d is even. They construct their examples by intersecting a general cone

over Σ in P4C with a general complete intersection surface of type
(
2, d

2

)
in P4C

and projecting the resulting curve to Σ in P3C . Moreover, Chiantini and Cilib-

erto give in [ChC99] examples showing that the Severi varieties V irr
|dL|(rA1)

on a surface in P3C also may have components of dimension larger than the

expected one.
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Hence, even for nodal curves one can only ask for numerical conditions ensur-

ing that V irr
|dL|(rA1) is T-smooth, and Chiantini and Sernesi answer this ques-

tion by showing that on a surface of degree n ≥ 5 the condition

r <
d(d− 2n+ 8)n

4
(0.1)

implies that V irr
|dL|(rA1) is T-smooth for d > 2n−8. Note that the above example

shows that this bound is even sharp. Actually Chiantini and Sernesi prove a

somewhat more general result for surfaces with ample canonical divisor KΣ

and curves which are in |pKΣ|l for some p ∈ Q. For their proof they suppose

that for some curve C ∈ V irr
|dL|(rA1) the cohomology group H1

(
Σ,JX∗(C)/Σ(D)

)

does not vanish and derive from this the existence of a Bogomolov unstable

rank-two bundle E. This bundle in turn provides them with a curve ∆ of

small degree realising a large part of the zero-dimensional scheme X∗(C),

which leads to the desired contradiction.

This is basically the same approach used in [GLS97]. However, they allow

arbitrary singularities rather than only nodes, and get in the case of a surface

in P3C of degree n

r∑

i=1

(
τ ∗ci(Si) + 1

)2
< d ·

(
d− (n− 4) · max

{
τ ∗ci(Si) + 1

∣∣ i = 1, . . . , r
})

· n

as main condition for T-smoothness of V irr
|dL|(S1, . . . ,Sr) – see Section I.1 for

the definition of τ ∗ci –, which for nodal curves coincides with (0.1) – here τ ∗

is the (equisingular) Tjurina number and KΣ is the canonical divisor on Σ.

Moreover, for families of plane curves of degree d their result gives

r∑

i=1

(
τ ∗ci(Si) + 1

)2
< d2 + 6d

as sufficient condition for T-smoothness, which is weaker than the sufficient

condition
r∑

i=1

γ∗1(Si) ≤ (d+ 3)2 (0.2)

derived in [GLS00] and [GLS01] using the Castelnuovo function in order to

provide a curve of small degree which realises a large part of X∗(C). The

advantage of the γ∗1-invariant (introduced and studied in Paper II) is that,

while always bounded from above by (τ ∗ci+1)2, in many cases it is substantially

smaller – e. g. for an ordinarym-fold pointMm,m ≥ 3, we have γes1 (Mm) = 2m2,

while
(
τ esci (Mm) + 1

)2 ≥ (m2 + 2m+ 4)2

16
.

In Paper I we combine the methods of [GLS00] and the method of Bogomolov

instability to reproduce the result (0.2) in the plane case, and to derive a
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similar sufficient condition,
r∑

i=1

γ∗α(Si) < γ · (d · L−KΣ)2,

for T-smoothness on other surfaces – involving a generalisation γ∗α of the γ∗1-

invariant which is always bounded from above by the latter one – see Theo-

rems I.2.1, I.2.5 and I.2.6.

In Paper II we compute the new invariant not only in the case of ordinary

m-fold points but also for simple singularities, and we give an upper bound

in the case of semi-quasihomogeneous singularities – see Propositions II.1.11,

II.1.12 and II.1.13.

In Paper III we produce series of equisingular families of curves with ordinary

multiple points and in Paper IV series of equisingular families with simple

singularities both on surfaces in P3C and both showing that for these fami-

lies the above conditions are asymptotically proper – see Theorem III.1.1 and

Examples IV.1.1 and IV.1.2.

Part B

The papers in Part B are, in some sense, concerned with a weak version of the

problems considered in Part A. We still fix some linear system |dL| on a smooth

projective surface Σ embedded via L and we consider curves in this linear

system. Fixing, moreover, r points p1, . . . , pr and positive integers m1, . . . , mr

we want these curves to pass through point pi at least with multiplicitymi, i.e.

instead of prescribing the singularity type in precise terms we only prescribe

the multiplicity. This is a much weaker condition. However, at the same time

the family has the disadvantage that it is harder to describe the tangent space

to it in a satisfying way, as we will see in Paper V, [Mar06].

Let us look at the problem outlined above in a more naive way in the case

where Σ is the projective plane. Then the data which we prescribe are points

p1, . . . , pr and positive integers m1, . . . , mr and d, and we are looking for homo-

geneous polynomials of degree d such that at the point pi in local coordinates

all partial derivatives up to order mi − 1 vanish. Since we have two local

coordinates the point pi induces
mi·(mi+1)

2
conditions. A naive count therefore

predicts that we should expect a family V = V|dL|(m1, . . . , mr) of (projective)

dimension

expdim
(
V|dL|(m1, . . . , mr)

)
= max

{
d · (d− 3)

2
−

r∑

i=1

mi · (mi + 1)

2
,−1

}
,

and a straight forward example shows that the actual dimension of course

depends on the position of the points, e.g. if d = m1 = m2 = m3 = 1 then

V is empty as expected if and only if the points p1, p2 and p3 do not lie on
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a line. This shows that the interpolation problem for several variables is

harder than it is for only one. However, the dimension of V|dL|(m1, . . . , mr)

is semi-continuous in the pi, so that for a generic choice it actually is constant

and minimal. This is the justification for omitting the pi among the data

attributed to V|dL|(m1, . . . , mr). From now on we will assume that the pi are

chosen sufficiently general for the problem considered, and the main question

is:

Is dim
(
V|dL|(m1, . . . , mr)

)
= expdim

(
V|dL|(m1, . . . , mr)

)
?

We call the linear system V|dL|(m1, . . . , mr) special if its dimension and its ex-

pected dimension do not coincide.

Staying in the plane case and choosing two points, then sufficiently general

certainly just means that the points are distinct. If we now consider plane

conics passing through two distinct points with multiplicity at least 2, then

the expected dimension is

expdim
(
V|2L|(2, 2)

)
= 5 − 3 − 3 = −1,

i.e. we would not expect any such curve to exist. However, there is a unique

line through the given two points and this line counted twice is a conic which

has multiplicity two at each of the two points.C2

Of course in some sense this example is degenerate, since the curve contains a

whole component with higher multiplicity while one in general would expect

only a finite number of points in which the multiplicity is not one. One can

rephrase this by considering the incidence variety

L2,2 = {(C, (p1, p2)) ∈ |2L| ×P2C ×P2C | multpi
(C) ≥ 2}

together with the canonical projection

L2,2
β

// |2L| = P5C . (0.3)

Then the fibre of β over the double line is not finite, as expected, but one-

dimensional.

Segre, [Seg62], conjectured that this is indeed not an exceptional behaviour

but the general one if the dimension of V|dL|(m1, . . . , mr) is not the expected

one for plane curves. More precisely:
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Conjecture (Segre, 1961)

If the linear system V|dL|(m1, . . . , mr) is special then it has a multiple fixed com-

ponent.

Since then a large number of people have worked on this problem, sev-

eral more precise respectively related conjectures have been formulated, and

many partial results have been achieved. The conjecture in its whole, how-

ever, still withstands a proof.

A usual way to resolve singular, i.e. multiple, points of a curve is to blow up

the surface in these points. That way the linear system V|dL|(m1, . . . , mr) – for

fixed generic points pi – would be transformed into a complete linear system

|dL−m1 ·E1 − . . .−mr ·Er| on the the blown up surface. Harbourne, [Har86],

and Hirschowitz, [Hir89], conjectured that:

Conjecture (Harbourne–Hirschowitz, 1986/89)

V|dL|(m1, . . . , mr) is special if and only if the linear system |dL−m1 ·E1−. . .−mr ·
Er| contains a smooth rational curve of self-intersection −1 with multiplicity

at least two.

Moreover, they make very precise predictions about the structure of

V|dL|(m1, . . . , mr) and about its general elements if it is non-special. A sim-

ilar conjecture was made by Gimiliano, [Gim87]. It is evident that the

Harbourne–Hirschowitz Conjecture implies the Segre Conjecture, but it turns

out that they are actually equivalent – even including the extra statements on

the structure of V|dL|(m1, . . . , mr) and its general elements. This was proven by

Ciliberto and Miranda, [CiM01], but it can also be deduced from some results

by Nagata, [Nag59]. In [CiM01] Ciliberto and Miranda do not only show the

equivalence of the above mentioned conjectures, but they yet specify them fur-

ther by classifying the special systems with reducible general curves and the

so called homogeneous systems, i.e. those for which all mi coincide. Finally,

they show that the Segre Conjecture implies a famous conjecture by Nagata,

[Nag59], on plane curves:

Conjecture (Nagata, 1959)

If r ≥ 10 and C ∈ V|dL|(m1, . . . , mr) then
∑r

i=1mi < d · √r.

Nagata, [Nag59], himself proved the conjecture for r being a square. In the

homogeneous case Evain, [Eva98], proved the conjecture when m is small

compared to r, and Xu, [Xu94], and Roe, [Roé01], were able to prove slightly

weaker inequalities. Szemberg, [Sze01], and Roe, [Roé03], finally relate Na-

gata’s Conjecture to Seshadri constants, that way generalising the conjecture

to other surfaces than the projective plane.

As already indicated, many special cases of the conjecture have been treated

and solved when Σ = P2C . It is classically known that the statement holds if



PART B 9

r ≤ 9, see e.g. [Nag59]. The case when all multiplicities are 2 was treated by

Arbarello and Cornalba, [ArC81], and the homogeneous case for multiplici-

ties up to 20 and the quasi-homogeneous case – i.e. where all but the largest

multiplicity coincide – was in several steps done by many authors, see e.g.

[Hir85], [CiM98] to mention only some. Similarly the case of small multiplic-

ities has been solved, see e.g. [Mig00], [Mig01], [Yan04], [Roé01], or when

r = 4k is of particular type, see [Eva99]. The conjectures have then been ex-

tended to and studied on other surfaces – e.g. K3 surfaces, rational scrolls –,

see e.g. [Laf02], [Laf06], [?], [?], [LaU03a], respectively in other varieties –

e.g. PnC , toric varieties –, see e.g. [LaU03b], [?].

The problem of speciality can be reduced to an h1-vanishing, and the method

proposed by Alexander and Hirschowitz to tackle the problem was to spe-

cialise points in such a way that fixed curves split off and an induction is

possible, see e.g. [Hir85], [Eva99], [Mig01], [AlH00]. Ran, [Ran89], pro-

posed a different approach. He degenerates the plane containing the linear

system rather than the curves. In the limit the projective plane splits and

so does the corresponding linear system, again allowing some kind of induc-

tive procedure, see e.g. [CiM98], [Yan04]. Arbarello and Cornalba used for

their result techniques from deformation theory, see [ArC81], [Mir00], and

Miranda proposed an approach using the so called interpolation matrix, see

[BoM04].

The situation when all multiplicities are two has its own and rather particular

flavour, since it can be reinterpreted as the Waring Problem. This originates

in the question whether a given integer z ∈ Z can be written as a sum of k+ 1

d-th integer powers, i.e. z = zd0 + · · · + zdk with zi ∈ Z. Replacing the integers

by linear forms we may ask whether a given homogeneous polynomial f ∈C[x, y, z]d of degree d can be written as a sum of k + 1 d-th powers of linear

forms, i.e. if there are linear forms f0, . . . , fk ∈ C[x, y, z]1 such that

f = fd0 + . . .+ fdk . (0.4)

Identifying C[x, y, z]1/C∗ with P2C and C[x, y, z]d/C∗ with PNC , N = d·(d+3)
2

, the

“d-th power” map

νd : P2C →֒ PNC : f 7→ fd

is just the d-tuple Veronese embedding of the projective plane. Moreover, f

satisfies an equation of the form (0.4) if and only if there is a k-secant plane

of Xd = νd
(P2C ) spanned by points νd(f0) = fd0 , . . . , νd(fk) = fdk containing f –

here we use of course that in C we have d-th roots. The question, if every f

has a decomposition as in (0.4) is therefore equivalent to asking whether the

k-secant variety Sk(Xd) of Xd fills the whole PNC . For a k-secant we choose k+1

points in Xd, which is two dimensional, and for a general choice they span a
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k-dimensional plane so that a straight forward dimension count says that we

should expect

expdim
(
Sk(Xd)

)
= min {3k + 2, N}

as the dimension of Sk(Xd). We thus would expect a solution to (0.4) as soon

as 3k + 2 ≥ N . However, the actual dimension of Sk(Xd) might be less than

expected, and this can be checked by choosing a general point u ∈ Sk(Xd) and

computing the dimension of the tangent space Tu
(
Sk(Xd)

)
. Terracini’s Lemma

now is the key to connect the Waring Problem to linear systems as above

being special. It states that if u ∈ Sk(Xd) is general and u ∈ 〈p0, . . . , pk〉 for

some p0, . . . , pk ∈ Xd, then we have

Tu
(
Sk(Xd)

)
= 〈Tp0(Xd), . . . , Tpk

(Xd)〉 ,
i.e. the tangent space to the k-secant variety at u is spanned by the tangent

spaces to Xd at the pi. But we thus we have that

dim
(
Sk(Xd)

)
< expdim

(
Sk(Xd)

)
(0.5)

– we then sayXd is k-defective – if and only if for general points p0, . . . , pk ∈ Xd

dim
〈
Tp0(Xd), . . . , Tpk

(Xd)
〉
< expdim

(
Sk(Xd)

)
,

which is equivalent to

dim
{
H Hyperplane

∣∣ Tpi
(Xd) ⊂ H ∀ i

}
> N − max{N + 1, 3 · (k + 1)}.

The latter again is equivalent to

dim
{
H
∣∣ H ∩Xd singular in pi ∀ i

}
> max{−1, N − 3k − 3},

which means that

V|dL|(2, . . . , 2) is special,

where L is the class of a line in P2C and we have k + 1-times the multiplicity 2.

That is the Waring Problem (0.4) has a solution if and only if 6k+4 ≥ d · (d+3)

and V|dL|(2, . . . , 2) is non-special. In particular, since V|2L|(2, 2) is special, as we

have seen above, this shows that one needs at least the sum of three squares

of linear forms in order to write a general quadratic form. The classification

of special linear systems on P2C which are homogeneous of multiplicity 2 by

Alexander and Hirschowitz shows that the case d = 4 and k = 5 is the only

other defective case of a Veronese embedding. Similar interpretations have

the linear systems which are homogeneous of multiplicity 2 for other surfaces,

and this situation is quite well understood. More precisely, a general curve

in such a system will always have a double component through all the pi, see

[Ter22], [ArC81], and see also [Laf06].

Much less is known for other multiplicities on surfaces other than the projec-

tive plane, even if we prescribe only one multiple point of multiplicity three.

In P2C such a linear system will of course be non-special, but on F0 = P1C × P1C
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this need not be the case any more. Consider the linear system |L| = |OF0(1, 2)|
on F0. Its dimension is dim |L| = 5 and a single triple point gives 6 conditions,

so that one does not expect any curve in |L| to pass through a general point

with multiplicity 3. However, F0 has the ruling |OF0(0, 1)| which has a line,

say Fp, passing through each point p of F0, and this ruling has through each

point p ∈ F0 a section, say Cp, in |OF0(1, 0)|. But then Cp + 2 · Fp ∈ |L| and it

passes through the indeed general point p with multiplicity two. This shows

V|L|(3) is special, and we call a tuple (Σ, L) of a surface and a very ample line

bundle triple-point defective if V|L|(3) is special. One can of course generalise

this immediately to the other Hirzebruch surfaces Fe (see Example VI.1.1) in

the sense that V|L|(3) is special with L = C0+(2+e)·F , where F is a fibre of the

ruling and C0 is the unique section with negative self-intersection C2
0 = −e.

In Paper VI, [ChM07a], and VII, [ChM07b], we show that these examples are

actually the typical triple-point defective surfaces. We first study the situation

where the surface Σ is regular and we show that (Σ, L) can only be triple-point

defective if Σ is ruled and V|L|(3) = |L − 3p|, for p general, contains a fibre of

the ruling with multiplicity two – see Theorem VI.1.4. In particular, Σ is a

Hirzebruch surface or, potentially, a blow-up thereof. For this result, however,

we have to impose some technical restriction on the very ample line bundles L

considered, namely that L−KΣ is very ample as well and that (L−KΣ)2 > 16.

These assumptions are imposed by the method that we use for the proof of

the statement. In the case that Σ is a Hirzebruch surface Fe the condition

(L −KΣ)2 > 16 actually comes for free if we only assume that L −KΣ is very

ample as well. In the second paper we then show that we can actually drop the

regularity assumption on Σ and that under the given technical restrictions

on L the surface Σ will be minimal. More precisely, we show that if L and

L − KΣ are very ample and (L − KΣ)2 > 16 then (Σ, L) can only be triple-

point defective if Σ is geometrically ruled and V|L|(3) = |L − 3p|, with p ∈
Σ general, contains the fibre through p of the ruling twice – see Theorem

VII.1.2. Moreover, we classify the triple-point defective linear systems on

geometrically ruled surfaces completely subject to our technical restriction –

see Theorem VII.1.3. For the Hirzebruch surfaces it turns out that the above

mentioned examples are their only triple-point defective linear systems.

The main idea of the proof is a technique involving Bogomolov instability of

certain rank two bundles which with certain modifications was already used

in [ChS97] and in [Kei05b]. For this we consider the incidence variety

L3 =
{
(C, p) ∈ |L| × Σ

∣∣ multp(C) ≥ 3
}

together with the two canonical projections

|L| L3
α

//
β

oo Σ .
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The linear system |L − 3p| in which we are interested for a general point p is

just

|L− 3p| = β
(
α−1(p)

)
.

Unless the general element in |L − 3p| has a triple component for a general

point p the map β will be generically finite, and since the situation where this

is not the case is completely understood due to [Cas22], [FrI01] and [BoC05],

we restrict our attention to the case when β is generically finite. But then

the dimension of |L − 3p| can be read off from the dimension of L3, and it

suffices to check if L3 has the expected dimension. For this we can choose a

generic point (Lp, p) ∈ L3 and compute the dimension of the tangent space.

When we studied equisingular deformations in Part A the tangent space to

the family in question was described by the global sections of some twisted

ideal sheaf. Here the situation is not quite as good any more. It turns out,

however, that we still can compute the dimension of the tangent space of L3

at (Lp, p) by considering global sections of what we call the equimultiplicity

ideal sheaf, say JZp
, twisted by L – see Section VI.3 and Proposition V.1.11.

This is proven in Paper V, [Mar06], working along the lines of the classical

proof for the equisingular case. As long as the singularity of Lp at p is not

unitangential everything works fine and the tangent space will coincide with

the global sections as usual. If, however, the singularity is unitangential then

the tangent space only surjects onto the global sections and the kernel will

be one dimensional. But this is good enough to deduce the dimension of the

tangent space from h0
(
Σ,JZp

(L)
)
, and in particular if it is not the expected

one then H1
(
Σ,JZp

(L)
)
does not vanish. By Serre’s construction, this yields

the existence of a rank two bundle Ep with first Chern class L − KΣ, with a

global section whose zero-locus is a subscheme of length at most 4, supported

at p. Moreover the assumption (L − KΣ)2 > 16 implies that Ep is Bogomolov

unstable, thus it has a destabilising divisor A. By exploiting the properties of

A and B = L−KΣ − A, we obtain the results in Paper VI.

Part C

In the third part of this “Habilitationsschrift” we are concerned with com-

putational aspects of tropical geometry. The mathematical area of tropical

geometry is still very young and when it comes to defining what one actually

means by a tropical variety the ideas vary quite a bit. Not all the present defi-

nitions lead to the same class of geometrical objects, even though there always

is a large overlap. Paper IX is concerned with showing that at least two of the

definitions absolutely coincide – one more geometric, the other more combina-

torial and computational. We will come back to this after we introduced the

necessary notation.
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All available definitions of tropical varieties agree that they should, at least

locally, be piece wise linear subsets of some Rn carrying maybe some addi-

tional structure. One way to get such an object is to start with an algebraic

variety over an algebraically closed field with a non-archimedian valuation to

the real numbers, e.g. with the field of Puiseux series

K = C{{t}} =

∞⋃

N=1

Quot
(C[[t 1

N

]])

whose elements are formal Laurent series in t
1
N for all possible N > 0, i.e.

series of the form

a =
∞∑

k=m

ak · t
k
N

for some m ∈ Z, N > 0 and ak ∈ C. K admits a non-archimedian valuation by

val(a) = m if am 6= 0. If we now consider an ideal in J � K[x1, . . . , xn] and the

algebraic variety which it defines in the torus (K∗)n, say X = V (J) ∩ (K∗)n,

then negative of the component wise valuation defines a map

− val : X → Rn : (p1, . . . , pn) 7→
(
− val(p1), . . . ,− val(pn)

)
.

The topological closure of the image of X is what we call the tropical variety

Trop(J) of J for the purposes of this work. E.g. if

J =

〈
t · (x3

1 + x3
2 + 1) +

1

t
· (x2

1 + x2
2 + x+ y + x2

1x2 + x1x
2
2) +

1

t2
· x1x2

〉
(0.6)

then Trop(J) looks like1

where the vertices are just

(2, 0), (1, 1), (1, 0), (0, 2), (0, 1), (0,−1), (−1, 0), (−1,−1), (−2,−2).

1The picture was produced by the SINGULAR procedure drawtropicalcurve from

the library tropical.lib which can be obtained via the url http://www.mathematik.uni-

kl.de/˜keilen/en/tropical.html.
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Tropical geometry evolved rather fast over the past years and the main idea

is as follows: even though the valuation map is very crude and one looses

a lot of information, many properties of algebraic varieties carry over to the

tropical world. Since tropical varieties as piece wise linear objects are easier

to deal with than algebraic varieties, and since newmethods e.g. from discrete

mathematics and combinatorics can be applied, results in the algebraic world

can be derived easier on the tropical side. To exploit the tropical world in this

sense, however, a sophisticated machinery for the translation of concepts has

to be developed.

Among the properties of algebraic varieties that are surprisingly well pre-

served under tropicalisation are for example the numbers N(d, g) of genus

g degree d plane nodal curves through 3d + g − 1 points in general position

(also referred to as Gromov-Witten invariants of P2C ). In his celebrated work

[Mik05], Mikhalkin develops a concept how properties as degree and genus

have to be translated to the tropical world and proves the Correspondence

Theorem stating that the numbers N(d, g) are equal to the numbers of tropi-

cal genus g degree d curves through 3d+g−1 points, counted with multiplicity.

He also discovered a way to determine Welschinger invariants for real curves

(which can be thought of as analogues of Gromov-Witten invariants) by means

of tropical geometry. There is no algorithm within algebraic geometry to com-

pute those numbers. The Correspondence theorem was the start for many

new developments in enumerative geometry. For example, the Caporaso-

Harris Algorithm to determine relative Gromov-Witten invariants for P2C was

reproven using tropical methods in [GaM07a]. This tropical proof was used

in [IKS06] to find a new and much faster algorithm to compute Welschinger

invariants. These are only some of many achievements in this new area (see

e.g. [GaM07b], [GaM05], [KeM06], [IKS03], [IKS04], [Shu04], [SpS04b],

[SpS04a], [Spe05], [BJS+07], [PaS04], [DFS07], [StY07], [Abo06]). Since

the area is young and very active recently, it is particularly important that

the foundations are laid carefully to which Paper IX, [JMM07], contributes.

Note that it is not a coincidence that the tropical variety corresponding to the

plane curve V (J) in (0.6) is a “curve”. It is indeed a theorem that if X is an

irreducible d-dimensional variety in the torus then Trop(J) is a rational poly-

hedral complex of pure dimension d which is connected in codimension one

(cf. [BiG84], [Stu02, Thm 9.6]). The proof given by Sturmfels, however, uses

a different description of Trop(J) in terms of initial ideals and term orders.

Given a vector ω ∈ Rn and a “monomial” tα · xβ1
1 · · ·xβn

n we can assign to it the

ω-weight or ω-degree

degω
(
tα · xβ1

1 · · ·xβn

n

)
= −α + ω1 · β1 + . . .+ ωn · βn.
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Doing so, we can define the ω-initial form inω(f) of an element f in

K[x1, . . . , xn] to be the sum of those terms of f which have the maximal ω-

degree. Note, that in this definition we treat t as if it was a variable even

though it is an element of the base field K. E.g. if

f =
4

t3
· x1 · x2 + (t− 5t2) · x5

1 · x2 −
∞∑

k=0

tk · x4
1

and ω = (1, 1) then

inω(f) =
4

t3
· x1 · x2 + t · x5

1 · x2.

Doing this for all elements of J the resulting initial forms generate the ω-

initial ideal inω(J) of J . However, since the generators are all weighted homo-

geneous with respect to the weight (−1, ω) we may as well dehomogenise with

respect to t and pass to the t-initial form t-inω(f) = inω(f)|t=1 respectively the

t-initial form t-inω(J) = inω(J)|t=1 without loosing any information. That way

we get rid of the additional variable t again. It is now an easy observation that

if a point p = (p1, . . . , pn) with valuations val(pi) = −ωi and pi = ai · tωi + h.o.t.

is in V (J) then the leading term p = (a1 · tω1, . . . , an · tωn) is a zero of inω(f) for

each f ∈ J – or alternatively, (a1, . . . , an) ∈ (C∗)n is a zero of t-inω(f) for each

f ∈ J . Since this zero (a1, . . . , an) is in the torus (C∗)n necessarily t-inω(J) does

not contain any monomial. And indeed it turns out that

Trop(J) =
{
ω ∈ Rn

∣∣ t-inω(J) is monomial-free
}
, (0.7)

which is known as the Lifting Lemma (see Theorem IX.2.13 and IX.3.1) and

is a description allowing a computational approach for its solution. In the

case thatX is a hypersurface the proof basically goes back to Newton and was

formulated for more general valuation fields in [EKL04]. A constructive proof

can be found in [Tab05]. The general case was proven in [SpS04b], but the

proof contained a gap which led to a series of papers repairing the prove using

different methods and applying to various types of non-archimedian valued

fields – in [Dra06] affinoid algebras are used, in [Kat06] flat deformations

over valuation rings are used, and recently in [Pay07] the general problem

is reduced to the hypersurface case using intersections with and projections

to tori and the last proof works for any algebraically closed non-archimedian

valued field. Paper IX gives a constructive proof of the statement over the

Puiseux series field reducing the general case to the zero dimensional case

and using a space curve version of the Newton-Puiseux Algorithm proposed

in [Mau80]. “Constructive” here means that given a point ω in the right hand

side of (0.7) which has only rational entries, then we are able to construct a

point p in V (J) with − val(p) = ω. The algorithms (see Algorithm IX.3.8 and

IX.4.8) deduced from the proof are implemented using the computer algebra

system SINGULAR and the program gfan for computing tropical varieties in
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the SINGULAR library tropical.lib which can be obtained via the following

url:

http://www.mathematik.uni-kl.de/~keilen/en/tropical.html

Of course, the input data for Singular procedures have to be restricted to

polynomials in Q(t)[x1, . . . , xn] instead of C{{t}}[x1, . . . , xn] and we can only

construct p up to a – actually any – finite number of terms, but this is sufficient

for most purposes. Where necessary field extensions of Q will be computed.

The algorithm basically consists of two steps. If dim(X) = d then in a first step

we choose d generic hyperplanes inKn whose tropicalisation passes through ω

and cut X with these hyperplanes so that we reduce to the zero-dimensional

case. Then considering t as a variable we have the germ at the origin of

a space curve and we can use a space curve version of the Newton-Puiseux

algorithm. We can, however, not work over the Puiseux series field for this

– not even theoretically, and much less computationally. We have instead to

pass to power series and polynomials.

An easy coordinate transformation allows to assume that ω is the origin and

we may anyhow assume that the generators are actually contained in

RN = C[[t 1
N

]]
,

the ring of formal power series in t
1
N . Replacing then K by Quot(RN) the ideal

J ∩RN [x1, . . . , xn] defines a flat, surjective family of curves whose general fibre

are just the Quot(RN)-points of V (J) and whose special fibre is the zero locus

of t-inω(J). Thus, if V (J ∩ RN [x1, . . . , xn]) is zero-dimensional so is V (t-inω(J))

– in particular, it is non-empty. Now adding a generic ω-quasi homogeneous

linear form a straight forward application of Krull’s Principle Ideal Theorem

shows that the dimension drops by one. It is slightly tricky though to ensure

that this happens simultaneously in J , J ∩ RN [x1, . . . , xn] and t-inω(J). How-

ever, even though the ideas are rather straight forward the proof that the

dimension behaves well when passing from J to J ∩ RN [x1, . . . , xn] and finally

to t-inω(J) needs quite a bit of consideration – see e.g. Section IX.6.

Moreover, in order to do computations we need to compute t-inω(J) from a

given generator set of J , and it is in general not enough just to take the t-

initial forms of the generators as one knows from general Gröbner basis the-

ory. The computations are done by extending the weight vector (−1, ω) on

the monomials in (t, x1, . . . , xn) to an actual monomial ordering, say >ω. Note,

since the input in t need not be polynomial the ordering will be local with

respect to t. The idea then is that the t-initial forms of a standard basis com-

puted from the given generators with respect to >ω will generate t-inω(J) – see

Theorem VIII.6.10. In particular, if the input data is actually polynomial in t

as well, then the computations can be done using SINGULAR – see Corollary
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VIII.6.11. This was previously known for the case where there are no xi (see

[GrP96]).

In order to show that this works out it is necessary to first develop the theory

of standard bases for mixed power series and polynomial rings, i.e. rings of

the form

K[[t]][x].

with t = (t1, . . . , tm) and x = (x1, . . . , xn). This is done the Paper VIII. We

follow along the lines of [GrP02] and [DeS07] generalising the results where

necessary. Basically, the main results for this standard bases theory are the

proofs of the Division Theorems VIII.2.1 and VIII.3.3, and they can be seen as

easy generalisations of Grauert-Hironaka’s respectively Mora’s Division The-

orem (the latter in the form stated and proven first by Greuel and Pfister,

see [GGM+94], [GrP96]; see also [Mor82], [Grä94]). From there we can de-

velop the theory of standard bases using Buchberger’s Criterion (see Theorem

VIII.4.5) and Schreyer’s Theorem (see Theorem VIII.5.3) basically translat-

ing the standard proofs word by word with only very few modifications. We

treat only formal power series, while Grauert (see [Gra72]) and Hironaka

(see [Hir64]) considered convergent power series with respect to certain val-

uations which includes the formal case. It should be rather straight forward

how to adjust Theorem VIII.2.1 accordingly. Many authors contributed to the

further development (see e.g. [Bec90] for a standard basis criterion in the

power series ring) and to generalisations of the theory, e.g. to algebraic power

series (see e.g. [Hir77], [AMR77], [ACH05]) or to differential operators (see

e.g. [GaH05]). This list is by no means complete.
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PAPER I

Smoothness of Equisingular Families of Curves

Abstract: Francesco Severi (cf. [Sev21]) showed that equisingular

families of plane nodal curves are T-smooth, i. e. smooth of the ex-

pected dimension, whenever they are non-empty. For families with

more complicated singularities this is no longer true. Given a di-

visor D on a smooth projective surface Σ it thus makes sense to

look for conditions which ensure that the family V irr
|D|
(
S1, . . . ,Sr

)
of

irreducible curves in the linear system |D|l with precisely r singu-

lar points of types S1, . . . ,Sr is T-smooth. Considering different sur-

faces including the projective plane, general surfaces in P3C , products
of curves and geometrically ruled surfaces, we produce a sufficient

condition of the type

r∑

i=1

γα(Si) < γ · (D − KΣ)2,

where γα is some invariant of the singularity type and γ is some con-

stant. This generalises the results in [GLS01] for the plane case,

combining their methods and the method of Bogomolov instability,

used in [ChS97] and [GLS97]. For many singularity types the γα-

invariant leads to essentially better conditions than the invariants

used in [GLS97], and for most classes of geometrically ruled sur-

faces our results are the first known for T-smoothness at all.

This paper is published as [Kei05b] Thomas Keilen, Smoothness of

equisingular families of curves, Trans. Amer. Math. Soc. 357 (2005),

no. 6, 2467–2481.

1. Introduction

The varieties V|D|(rA1) (respectively the open subvarieties V irr
|D| (rA1)) of re-

duced (respectively reduced and irreducible) nodal curves in a fixed linear

system |D|l on a smooth projective surface Σ are also called Severi varieties.

When Σ = P2C Severi showed that these varieties are smooth of the expected

dimension, whenever they are non-empty – that is, nodes always impose inde-

pendent conditions. It seems natural to study this question on other surfaces,

but it is not surprising that the situation becomes harder.

Tannenbaum showed in [Tan82] that also on K3-surfaces V|D|(rA1) is always

smooth, that, however, the dimension is larger than the expected one and

21
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thus V|D|(rA1) is not T-smooth in this situation. If we restrict our attention

to the subvariety V irr
|D| (rA1) of irreducible curves with r nodes, then we gain T-

smoothness again whenever the variety is non-empty. That is, while on a K3-

surface the conditions which nodes impose on irreducible curves are always

independent, they impose dependent conditions on reducible curves.

On more complicated surfaces the situation becomes even worse. Chiantini

and Sernesi study in [ChS97] Severi varieties on surfaces in P3C . They show

that on a generic quintic Σ in P3C with hyperplane section H the variety

V irr
|dH|
(5d(d−2)

4
·A1

)
has a non-smooth reduced component of the expected dimen-

sion, if d is even. They construct their examples by intersecting a general cone

over Σ in P4C with a general complete intersection surface of type
(
2, d

2

)
in P4C

and projecting the resulting curve to Σ in P3C . Moreover, Chiantini and Cilib-

erto give in [ChC99] examples showing that the Severi varieties V irr
|dH|(rA1)

on a surface in P3C also may have components of dimension larger than the

expected one.

Hence, one can only ask for numerical conditions ensuring that V irr
|dH|(rA1) is

T-smooth, and Chiantini and Sernesi answer this question by showing that

on a surface of degree n ≥ 5 the condition

r <
d(d− 2n+ 8)n

4
(1.1)

implies that V irr
|dH|(rA1) is T-smooth for d > 2n−8. Note that the above example

shows that this bound is even sharp. Actually Chiantini and Sernesi prove a

somewhat more general result for surfaces with ample canonical divisor KΣ

and curves which are in |pKΣ|l for some p ∈ Q. For their proof they suppose

that for some curve C ∈ V irr
|dH|(rA1) the cohomology group H1

(
Σ,JX∗(C)/Σ(D)

)

does not vanish and derive from this the existence of a Bogomolov unstable

rank-two bundle E. This bundle in turn provides them with a curve ∆ of

small degree realising a large part of the zero-dimensional scheme X∗(C),

which leads to the desired contradiction.

This is basically the same approach used in [GLS97]. However, they allow

arbitrary singularities rather than only nodes, and get in the case of a surface

in P3C of degree n

r∑

i=1

(
τ ∗ci(Si) + 1

)2
< d ·

(
d− (n− 4) · max

{
τ ∗ci(Si) + 1

∣∣ i = 1, . . . , r
})

· n

as main condition for T-smoothness of V irr
|dH|(S1, . . . ,Sr), which for nodal curves

coincides with (1.1). Moreover, for families of plane curves of degree d their

result gives
r∑

i=1

(
τ ∗ci(Si) + 1

)2
< d2 + 6d
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as sufficient condition for T-smoothness, which is weaker than the sufficient

condition
r∑

i=1

γ∗1(Si) ≤ (d+ 3)2 (1.2)

derived in [GLS00] and [GLS01] using the Castelnuovo function in order to

provide a curve of small degree which realises a large part of X∗(C). The

advantage of the γ∗1-invariant is that, while always bounded from above by

(τ ∗ci + 1)2, in many cases it is substantially smaller – e. g. for an ordinary m-

fold pointMm, m ≥ 3, we have γes1 (Mm) = 2m2, while

(
τ esci (Mm) + 1

)2 ≥ (m2 + 2m+ 4)2

16
.

In this paper we combine the methods of [GLS00] and the method of Bogo-

molov instability to reproduce the result (1.2) in the plane case, and to derive

a similar sufficient condition,
r∑

i=1

γα(Si) < γ · (D −KΣ)2,

for T-smoothness on other surfaces – involving a generalisation γ∗α of the γ∗1-

invariant which is always bounded from above by the latter one.

Note that a series of irreducible plane curves of degree d with r singularities

of type Ak, k arbitrarily large, satisfying

r · k2 =

r∑

i=1

τ ∗(Ak)
2 = 9d2 + terms of lower order

constructed by Shustin (cf. [Shu97]) shows that asymptotically we cannot ex-

pect to do essentially better in general. For a survey on other known results

on Σ = P2C we refer to [GLS00] and [GLS01], and for results on Severi vari-

eties on other surfaces see [Tan80, GrK89, GLS98a, FlM01, Fla01].

In this section we introduce the basic concepts and notations used throughout

the paper, and we state several important known facts. Section 2 contains the

main results and Section 3 their proofs.

1.1. General Assumptions and Notations

Throughout this article Σ will denote a smooth projective surface over C.
We will denote by Div(Σ) the group of divisors on Σ and by KΣ its canonical

divisor. If D is any divisor on Σ, OΣ(D) shall be the corresponding invertible

sheaf and we will sometimes writeHν(X,D) instead ofHν
(
X,OX(D)

)
. A curve

C ⊂ Σ will be an effective (non-zero) divisor, that is a one-dimensional locally

principal scheme, not necessarily reduced; however, an irreducible curve shall

be reduced by definition. |D|l denotes the system of curves linearly equivalent

to D. We will use the notation Pic(Σ) for the Picard group of Σ, that is Div(Σ)
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modulo linear equivalence (denoted by ∼l), and NS(Σ) for the Néron–Severi

group, that is Div(Σ) modulo algebraic equivalence (denoted by ∼a). Given a

reduced curve C ⊂ Σ we will write g(C) for its geometric genus.

Given any closed subscheme X of a scheme Y , we denote by JX = JX/Y the

ideal sheaf of X in OY . If X is zero-dimensional we denote by deg(X) =∑
z∈Y dimC(OY,z/JX/Y,z) its degree. If X ⊂ Σ is a zero-dimensional scheme

on Σ and D ∈ Div(Σ), we denote by
∣∣JX/Σ(D)

∣∣
l
the linear system of curves C

in |D|l with X ⊂ C.

Given two curves C and D in Σ and a point z ∈ Σ, and let f, g ∈ OΣ,z be local

equations at z of C and D respectively, then we will denote by i(C,D; z) =

i(f, g) = dimC(OΣ,z/〈f, g〉) the intersection multiplicity of C and D at z.

1.2. Singularity Types

The germ (C, z) ⊂ (Σ, z) of a reduced curve C ⊂ Σ at a point z ∈ Σ is called

a plane curve singularity, and two plane curve singularities (C, z) and
(
C ′, z′

)

are said to be topologically (respectively analytically equivalent) if there is a

homeomorphism (respectively an analytical isomorphism) Φ : (Σ, z) → (Σ, z′)

such that Φ(C) = C ′. We call an equivalence class with respect to these equiv-

alence relations a topological (respectively analytical) singularity type.

When dealing with numerical conditions for T-smoothness some topological

(respectively analytical) invariants of the singularities play an important role.

We gather some results on them here for the convenience of the reader.

Let (C, z) be the germ at z of a reduced curve C ⊂ Σ and let f ∈ R = OΣ,z be a

representative of (C, z) in local coordinates x and y. For the analytical type of

the singularity the Tjurina ideal

Iea(f) =

〈
∂f

∂x
,
∂f

∂y
, f

〉

plays a very important role, as does the equisingularity ideal

Ies(f) =
{
g ∈ R

∣∣ f + εg is equisingular over C[ε]/(ε2)
}
⊇ Iea(f)

for the topological type. They give rise to the following invariants of the topo-

logical (respectively analytical) singularity type S of (C, z).

(a) Analytical Invariants:

(1) τ(S) = dimC (R/Iea(f)
)
is the Tjurina number, i. e. the dimension

of the base space of the semiuniversal deformation of (C, z).

(2) τci(S) = max
{

dimC(R/I)
∣∣ Iea(f) ⊆ I a complete intersection

}
.

(3) γeaα (S) = max
{
γα(f ; I)

∣∣ Iea(f) ⊆ I a complete intersection
}
.

(b) Topological Invariants:



1. INTRODUCTION 25

(1) τ es(S) = dimC (R/Ies(f)
)
is the codimension of the µ-constant stra-

tum in the semiuniversal deformation of (C, z).

(2) τ esci (S) = max
{

dimC(R/I)
∣∣ Ies(C, z) ⊆ I a complete intersection

}
.

(3) γesα (S) = max
{
γα(f ; I)

∣∣ Ies(C, z) ⊆ I a complete intersection
}
.

Here, for an ideal I containing Iea(f) and a rational number 0 ≤ α ≤ 1 we

define

γα(f ; I) = max
{
(1 + α)2 · dimC(R/I), λα(f ; I, g)

∣∣ g ∈ I, i(f, g) ≤ 2 · dimC(R/I)
}
,

where for g ∈ I

λα(f ; I, g) =

(
α · i(f, g) − (1 − α) · dimC(R/I)

)2

i(f, g) − dimC(R/I)
.

Note that by Lemma 1.1 i(f, g) > dimC(R/I) for all g ∈ I and γα(f, g) is thus a

well-defined positive rational number.

Throughout this article we will frequently treat

topological and analytical singularities at the same

time. Whenever we do so, we will write τ ∗(S) for

τ es(S) respectively for τ(S), and analogously we

use the notation τ ∗ci(S) and γ∗α(S). Analogously we

will write X∗(C) for the zero-dimensional schemes

Xes(C) respectively for Xea(C) introduced in Sub-

section 1.3.

One easily sees the following relations:

(1 + α)2 · τ ∗ci(S) ≤ γ∗α(S) ≤
(
τ ∗ci(S) + α

)2 ≤
(
τ ∗(S) + α

)2
. (1.3)

In [KeL05] the γ∗α-invariant has been calculated for the simple singularities,

S γeaα (S) = γesα (S)

Ak, k ≥ 1 (k + α)2

Dk, 4 ≤ k ≤ 4 +
√

2 · (2 + α) (k+2α)2

2

Dk, k ≥ 4 +
√

2 · (2 + α) (k − 2 + α)2

Ek, k = 6, 7, 8 (k+2α)2

2

and for the topological singularity typeMm of an ordinary m-fold point

γesα (Mm) = 2 · (m− 1 + α)2.
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Moreover, upper and lower bounds for the γes0 -invariant and for the γes1 -

invariant of a topological singularity type given by a convenient semi-

quasihomogeneous power series can be found there. They also show that

τ esci (Mm) =





(m+1)2

4
, if m ≥ 3 odd,

m2+2m
4

, if m ≥ 4 even,

1, if m = 2.

These results show in particular that the upper bound for γ∗α(S) in (1.3) may

be attained, while it may as well be far from the actual value.

The proof of the following lemma can be found in [Shu97] Lemma 4.1.

Lemma 1.1

Let (C, z) be a reduced plane curve singularity given by f ∈ OΣ,z and let I ⊆
mΣ,z ⊂ OΣ,z be an ideal containing the Tjurina ideal Iea(C, z). Then for any

g ∈ I we have

dimC(OΣ,z/I) < dimC (OΣ,z/(f, g)
)

= i(f, g).

1.3. Singularity Schemes

For a reduced curve C ⊂ Σ we recall the definition of the zero-dimensional

schemes Xes(C) and Xea(C) from [GLS00]. They are defined by the ideal

sheaves JXes(C)/Σ and JXea(C)/Σ respectively, given by the stalks JXes(C)/Σ,z =

Ies(f) and JXea(C)/Σ,z = Iea(f) respectively, where f ∈ OΣ,z is a local equation

of C at z. We call Xes(C) the equisingularity scheme of C and Xea(C) the

equianalytical singularity scheme of C.

1.4. Equisingular Families

Given a divisor D ∈ Div(Σ) and topological or analytical singularity types

S1, . . . ,Sr, we denote by V = V|D|(S1, . . . ,Sr) the locally closed subspace of |D|l
of reduced curves in the linear system |D|l having precisely r singular points

of types S1, . . . ,Sr. By V irr = V irr
|D| (S1, . . . ,Sr) we denote the open subset of V

of irreducible curves. If a type S occurs k > 1 times, we rather write kS than

S, k. . .,S. We call these families of curves equisingular families of curves.

We say that V is T-smooth at C ∈ V if the germ (V, C) is smooth of the (ex-

pected) dimension dim |D|l−deg
(
X∗(C)

)
. By [Los98] Proposition 2.1 (see also

[GrK89], [GrL96], [GLS00]) T-smoothness of V at C follows from the vanish-

ing of H1
(
Σ,JX∗(C)/Σ(C)

)
, since the tangent space of V at C may be identified

with H0
(
Σ,JX∗(C)/Σ(C)

)
/H0(Σ,OΣ).



2. THE MAIN RESULTS 27

2. The Main Results

In this section we give sufficient conditions for the T-smoothness of equisingu-

lar families of curves on certain surfaces with Picard number one, including

the projective plane, general surfaces in P3C and general K3-surfaces –, on gen-

eral products of curves, and on geometrically ruled surfaces. Since we do not

have any general relation between the γ-invariants used in the conditions for

our smoothness results and the invariants used in [KeT02] for the existence

results, we are in general only able to say that the families produced here are

T-smooth if they are non-empty. However, if you consider singularity types

where the γ-invariant is known explicitely (see [KeL05]), you can check the

conditions for non-emptyness in [KeT02], and you will find that they are in

general fulfilled as well.

2.1. Surfaces with Picard Number One

Theorem 2.1

Let Σ be a surface such that NS(Σ) = L ·Z with L ample, let D = d ·L ∈ Div(Σ),

let S1, . . . ,Sr be topological or analytical singularity types, and let KΣ = κ · L.
Suppose that d ≥ max{κ + 1,−κ} and

r∑

i=1

γ∗α(Si) < α · (D −KΣ)2 = α · (d− κ)2 · L2 with α = 1
max{1,1+κ} . (2.1)

Then either V irr
|D| (S1, . . . ,Sr) is empty or it is T-smooth. 2

Corollary 2.2

Let d ≥ 3, H ⊂ P2C be a line, and S1, . . . ,Sr be topological or analytical singu-

larity types. Suppose that
r∑

i=1

γ∗1(Si) < (d+ 3)2. (2.2)

Then either V irr
|dH|(S1, . . . ,Sr) is empty or T-smooth. 2

As soon as for one of the singularities we have γ∗1(Si) > 4 · τ ∗ci(Si), e. g. simple

singularities or ordinary multiple points which are not simple double points,

then the strict inequality in (2.2) can be replaced by “≤”, which then is the

same sufficient condition as in [GLS01] Theorem 1 (see also (1.2)).

In particular, V irr
|dH|(Mm1 , . . . ,Mmr

), mi ≥ 3, is therefore T-smooth as soon as

r∑

i=1

2 ·m2
i ≤ (d+ 3)2.

Moreover, this condition has the right assymptotics, as the examples in

[GLS01] show. For further results in the plane case see [Wah74a, GrK89,

Lue87a, Lue87b, Shu87, Vas90, Shu91, Shu94, GrL96, Shu96, Shu97,

GLS98a, Los98, GLS00, GLS01].



28 I. SMOOTHNESS OF EQUISINGULAR FAMILIES OF CURVES

A smooth complete intersection surface with Picard number one satisfies the

assumptions of Theorem 2.1. Thus by the Noether–Lefschetz Theorem (cf.

[GrH85]) the result applies in particular to general surfaces in P3C . Moreover,

if in Theorem 2.1 we have κ > 0, i. e. α < 1, then the strict inequality in

Condition (2.1) may be replaced by “≤”, since in (3.9) the second inequality is

strict, as is the second inequality in (3.10).

Corollary 2.3

Let Σ ⊂ P3C be a smooth hypersurface of degree n ≥ 5, letH ⊂ Σ be a hyperplane

section, and suppose that the Picard number of Σ is one. Let d ≥ n− 3 and let

S1, . . . ,Sr be topological or analytical singularity types. Suppose that

r∑

i=1

γ∗ 1
n−3

(Si) ≤
n

n− 3
· (d− n + 4)2.

Then either V irr
|D| (S1, . . . ,Sr) is empty or it is T-smooth. 2

In particular, V irr
|dH|(Mm1 , . . . ,Mmr

), mi ≥ 3, is therefore T-smooth as soon as

r∑

i=1

2 ·
(
mi −

n− 4

n− 3

)2

≤ n

n− 3
· (d− n+ 4)2,

which is better than the conditions derived from [GLS97]. The condition

r ≤ n · (n− 3)

(n− 2)2
· (d− n+ 4)2,

which gives the T-smoothness of V|dH|(rA1) is weaker than the condition pro-

vided in [ChS97], but for n = 5 it reads r ≤ 10
9
· (d− 1)2 and comes still close to

the sharp bound 5
4
· (d− 1)2 provided there for odd d.

A general K3-surface has also Picard number one..

Corollary 2.4

Let Σ be a smooth K3-surface with NS(Σ) = L ·Z, L ample, and set n = L2. Let

d ≥ 1, and let S1, . . . ,Sr be topological or analytical singularity types. Suppose

that
r∑

i=1

γ∗1(Si) < d2n.

Then either V irr
|dL|(S1, . . . ,Sr) is empty or it is T-smooth. 2

The best previously known condition for T-smoothness on K3-surfaces

r∑

i=1

(
τ ∗ci(Si) + 1

)2
< d2n

is thus completely replaced.
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2.2. Products of Curves

If Σ = C1×C2 is the product of two smooth projective curves, then for a general

choice of C1 and C2 the Néron–Severi group will be generated by two fibres of

the canonical projections, by abuse of notation also denoted by C1 and C2. If

both curves are elliptic, then “general” just means that the two curves are

non-isogenous. (Cf. [Kei01] Appendix G.)

Theorem 2.5

Let C1 and C2 be two smooth projective curves of genera g1 and g2 with g1 ≥ g2,

such that for Σ = C1 × C2 the Néron–Severi group is NS(Σ) = C1Z⊕ C2Z.
Let D ∈ Div(Σ) such that D ∼a aC1 + bC2 with a ≥ max

{
2 − 2g2, 2g2 − 1

}
and

b ≥ max
{
2 − 2g1, 2g1 − 1

}
, let S1, . . . ,Sr be topological or analytical singularity

types. Suppose that
r∑

i=1

γ∗0(Si) < γ · (D −KΣ)2, (2.3)

where the constant γ may be read off the following table with A = a−2g2+2
b−2g1+2

g1 g2 γ

0, 1 0, 1 1
4

≥ 2 0, 1 min
{

1
4g1
, 1

4·(g1−1)·A

}

≥ 2 ≥ 2 min
{

1
4g1+4g2−4

, A
4·(g2−1)

, 1
4·(g1−1)·A

}

Then either V irr
|D| (S1, . . . ,Sr) is empty or it is T-smooth. 2

In particular, on a product of non-isogenous elliptic curves for nodal curves

we reproduce the previous sufficient condition

r <
ab

2
,

for T-smoothness of V irr
|aC1+bC2|(rA1) from [GLS97], while the previous general

condition (
m2
i + 2mi + 5

)2

32
< ab

for T-smoothness of V irr
|aC1+bC2|(Mm1 , . . . ,Mmr

), mi ≥ 3, has been replaced by

r∑

i=1

4 · (mi − 1)2 < ab,

which is better from mi = 7 on.

Note that the conefficient γ in Theorem 2.5 depends on the ratio of a and b

unless both g1 and g2 are at most one. This means that in general an asymp-

totical behaviour can only be examined if the ratio remains unchanged.
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2.3. Geometrically Ruled Surfaces

Let π : Σ = PC(E) → C be a geometrically ruled surface with normalised

bundle E (in the sense of [Har77] V.2.8.1). The Néron–Severi group of Σ is

NS(Σ) = C0Z ⊕ FZ with intersection matrix (−e 1
1 0 ) where F ∼= P1C is a fibre of

π, C0 a section of π with OΣ(C0) ∼= OP(E)(1), g = g(C) the genus of C, e = Λ2E
and e = − deg(e) ≥ −g. For the canonical divisor we have KΣ ∼a −2C0 + (2g −
2 − e) · F .
Theorem 2.6

Let π : Σ → C be a geometrically ruled surface with g = g(C). Let D ∈ Div(Σ)

such that D ∼a aC0 + bF with b > max
{
2g − 2 + ae

2
, 2 − 2g + ae

2
, ae
}
and a > 2,

and let S1, . . . ,Sr be topological or analytical singularity types. Suppose that

r∑

i=1

γ∗0(Si) < γ · (D −KΣ)2, (2.4)

where with A = a+2
b+2−2g− ae

2
the constant γ satisfies

γ =





1
4
, if g ∈ {0, 1},

min
{

1
4g
, 1

4·(g−1)·A

}
, if g ≥ 2.

Then either V irr
|D| (S1, . . . ,Sr) is empty or it is T-smooth. 2

The results of [GLS97] only applied to eight Hirzebruch surfaces and a few

classes of fibrations over elliptic curves, while our results apply to all geomet-

rically ruled surfaces. Moreover, the results are in general better, e. g. for

the Hirzebruch surface P1C × P1C already the previous sufficient condition for

T-smoothness of families of curves with r cusps and b = 3a the condition

9r < 2a2 + 8a

has been replaced by the slightly better condition

8r < 3a2 + 8a+ 4.

For ordinary multiple points the difference will becomemore significant. Even

for families of nodal curves the new conditions would always be slightly better,

but for those families T-smoothness is guaranteed anyway by [Tan80].

Note that, as for products of curves, the conefficient γ in Theorem 2.6 depends

on the ratio of a and b unless g is at most one.

3. The Proofs

The following Lemma is the technical key to the above results. Us-

ing the method of Bogomolov unstable vector bundles, it gives us a

“small” curve which passes through a “large” part of X∗(C), provided that
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h1
(
Σ,JX∗(C)/Σ(D)

)
6= 0. We will then show that its existence contradicts (2.1),

(2.3), or (2.4) respectively.

Lemma 3.1

Let Σ a smooth projective surface, and let D ∈ Div(Σ) and X ⊂ Σ be a zero-

dimensional scheme satisfying

(0) D −KΣ is big and nef, and D +KΣ is nef,

(1) ∃ C ∈ |D|l irreducible : X ⊆ X∗(C),

(2) h1
(
Σ,JX/Σ(D)

)
> 0, and

(3) 4·deg(X0) < (D−KΣ)2 for all local complete intersection schemesX0 ⊆ X.

Then there exists a curve ∆ ⊂ Σ and a zero-dimensional local complete inter-

section scheme X0 ⊆ X ∩∆ such that with the notation supp(X0) = {z1, . . . , zs},
Xi = X0,zi

and1 εi = min{deg(Xi), i(C,∆; zi) − deg(Xi)} ≥ 1 we have

(a) D.∆ ≥ deg(X0) +
∑s

i=1 εi,

(b) deg
(
X0

)
≥
(
D −KΣ − ∆

)
.∆,

(c)
(
D −KΣ − 2 · ∆

)2
> 0, and

(d)
(
D −KΣ − 2 · ∆

)
.H > 0 for all H ∈ Div(Σ) ample.

Moreover, it follows

0 ≤ 1
4
· (D −KΣ)2 − deg

(
X0

)
≤
(

1
2
· (D −KΣ) − ∆

)2
. (3.1)

Proof: Choose X0 ⊆ X minimal such that still h1
(
Σ,JX0/Σ(D)

)
> 0. By As-

sumption (0) the divisor D −KΣ is big and nef, and thus h1
(
Σ,OΣ(D)

)
= 0 by

the Kawamata–Viehweg Vanishing Theorem. Hence X0 cannot be empty.

Due to the Grothendieck-Serre duality we have

0 6= H1
(
Σ,JX0/Σ(D)

) ∼= Ext1
(
JX0/Σ(D −KΣ),OΣ

)
.

That is, there is an extension

0 → OΣ → E → JX0/Σ(D −KΣ) → 0. (3.2)

The minimality of X0 implies that E is locally free and X0 is a local complete

intersection scheme (cf. [Laz97] Proposition 3.9). Moreover, we have

c1(E) = D −KΣ and c2(E) = deg(X0). (3.3)

By Assumption (3) and (3.3) we have

c1(E)2 − 4 · c2(E) = (D −KΣ)2 − 4 · deg(X0) > 0,

1Since X0 ⊆ X∗(C) ⊆ Xea(C), Lemma 1.1 applies to the local ideals of X0, that is for the

points z ∈ supp(X0) we have i(C, ∆; z) ≥ deg(X0, z) + 1.
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and thus E is Bogomolov unstable (cf. [Laz97] Theorem 4.2). This, however,

implies that there exists a divisor ∆0 ∈ Div(Σ) and a zero-dimensional scheme

Z ⊂ Σ such that

0 → OΣ(∆0) → E → JZ/Σ(D −KΣ − ∆0) → 0 (3.4)

is exact, and such that

(2∆0 −D +KΣ)2 ≥ c1(E)2 − 4 · c2(E) > 0 (3.5)

and

(2∆0 −D +KΣ).H > 0 for all ample H ∈ Div(Σ). (3.6)

Tensoring (3.4) with OΣ(−∆0) leads to the following exact sequence

0 → OΣ → E(−∆0) → JZ/Σ (D −KΣ − 2∆0) → 0, (3.7)

and we deduce h0
(
Σ, E(−∆0)

)
6= 0.

Now tensoring (3.2) with OΣ(−∆0) leads to

0 → OΣ(−∆0) → E(−∆0) → JX0/Σ (D −KΣ − ∆0) → 0. (3.8)

Let H be some ample divisor. By (3.6) and since D −KΣ is nef by (0):

−∆0.H < −1
2
· (D −KΣ).H ≤ 0.

Hence −∆0 cannot be effective, that is H0
(
Σ,OΣ(−∆0)

)
= 0. But the long

exact cohomology sequence of (3.8) then implies

0 6= H0
(
Σ, E(−∆0)

)
→֒ H0

(
Σ,JX0/Σ (D −KΣ − ∆0)

)
.

In particular we may choose a curve

∆ ∈
∣∣JX0/Σ(D −KΣ − ∆0)

∣∣
l
.

Thus (c) and (d) follow from (3.5) and (3.6). It remains to show (a) and (b).

We note that C ∈ |D|l is irreducible and that ∆ cannot contain C as an irre-

ducible component: otherwise applying (3.6) with some ample divisor H we

would get the following contradiction, since D +KΣ is nef by (0),

0 ≤ (∆ − C).H < −1
2
· (D +KΣ).H ≤ 0.

Since X0 ⊂ C ∩ ∆ the Theorem of Bézout implies (a):

D.∆ = C.∆ =
∑

z∈C∩∆

i(C,∆; z) ≥
s∑

i=1

(
deg(Xi) + εi

)
= deg(X0) +

s∑

i=1

εi.

Finally, by (3.3) and (3.4) we get (b):

deg(X0) = c2(E) = ∆0.(D −KΣ − ∆0) + deg(Z) ≥ (D −KΣ − ∆).∆.

Equation (3.1) is just a reformulation of (b).

Using this result we can now prove the main theorems.
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Proof of Theorem 2.1: Let C ∈ V irr
|D| (S1, . . . ,Sr). It suffices to show that the

cohomology group h1
(
Σ,JX∗(C)/Σ(D)

)
vanishes.

Suppose this is not the case. Since for X0 ⊆ X∗(C) any local complete inter-

section scheme and z ∈ supp(X0) we have

4 · deg(Xz) ≤
4

(1 + α)2
· γ∗α(C, z) ≤

1

α
· γ∗α(C, z) (3.9)

Lemma 3.1 applies and there is curve ∆ ∈ |δ · L|l and a local complete in-

tersection scheme X0 ⊆ X∗(C) satisfying the assumptions (a)-(d) there and

Equation (3.1). That is, fixing the notation l =
√
L2, supp(X0) = {z1, . . . , zs},

Xi = X0,zi
and εi = min{deg(Xi), i(C,∆; zi) − deg(Xi)} ≥ 1, we have

(a) d · δ · l2 ≥ deg(X0) +
∑s

i=1 εi,

(b) deg(X0) ≥ (d− κ− δ) · δ · l2,

and

δ · l ≤ (d−κ)·l
2

−
√

(d−κ)2·l2
4

− deg(X0) =
2 · deg(X0)

(d− κ) · l +
√

(d− κ)2 · l2 − 4 · deg(X0)
.

But then together with (a) and (b) we deduce

s∑

i=1

εi ≤ δ · (δ + κ) · l2 ≤ 1

α
·
(

2 · deg(X0)

(d− κ) · l +
√

(d− κ)2 · l2 − 4 · deg(X0)

)2

. (3.10)

Applying the Cauchy inequality this leads to

s∑

i=1

deg(Xi)
2

εi
≥ deg(X0)

2

∑s
i=1 εi

≥ α · (d− κ)2 · l2
4

·
(

1 +
√

1 − 4·deg(X0)
(d−κ)2·l2

)2

.

Setting

β =

∑s
i=1

deg(Xi)2

εi

α · (d− κ)2 · l2 , γ =

∑s
i=1

deg(Xi)2

εi

α · deg(X0)
,

we thus have

β ≥ 1

4
·
(
1 +

√
1 − 4β

γ

)2

,

and hence, β ≥
(

γ
γ+1

)2
. But then, applying the Cauchy inequality once more,

we find

α · (d− κ)2 · l2 =
α · γ
β

· deg(X0) ≤ α ·
(
γ + 2 +

1

γ

)
· deg(X0)

≤
s∑

i=1

(
deg(Xi)

2

εi
+ 2α deg(Xi) + α2εi

)
≤

r∑

i=1

γ∗α(Si),

in contradiction to Equation (2.1).
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Proof of Theorem 2.5: Let C ∈ V irr
|D| (S1, . . . ,Sr). It suffices to show that the

cohomology group h1
(
Σ,JX∗(C)/Σ(D)

)
vanishes.

Suppose this is not the case. Since for X0 ⊆ X∗(C) any local complete inter-

section scheme and z ∈ supp(X) we have

deg(Xz) ≤ γ∗0(C, z),

and since γ ≤ 1
4
, Lemma 3.1 applies and there is curve ∆ ∼a α · C1 + β · C2

and a local complete intersection scheme X0 ⊆ X∗(C) satisfying the assump-

tions (a)-(d) there and Equation (3.1). That is, fixing the notation supp(X0) =

{z1, . . . , zs}, Xi = X0,zi
and εi = min{deg(Xi), i(C,∆; zi) − deg(Xi)} ≥ 1, we have

(a) aβ + bα ≥ deg(X0) +
∑s

i=1 εi,

(b) deg(X0) ≥ (a− 2g2 + 2 − α) · β + (b− 2g1 + 2 − β) · α, and
(c) 0 ≤ α ≤ a−2g2+2

2
and 0 ≤ β ≤ b−2g1+2

2
.

The last inequalities follow from (d) in Lemma 3.1 replacing the ample divisor

H by the nef divisors C2 respectively C1.

From (b) and (c) we deduce

deg(X0) ≥
a− 2g2 + 2

2
· β +

b− 2g1 + 2

2
· α,

and thus

deg(X0)
2 ≥ 4 · a− 2g2 + 2

2
· b− 2g1 + 2

2
· α · β =

(D −KΣ)2

2
· α · β. (3.11)

Considering now (a) and (b) we get

0 <

s∑

i=1

εi ≤ ∆.(∆ +KΣ) = 2αβ + (2g1 − 2) · α + (2g2 − 2) · β ≤ αβ

2γ
,

where the last inequality holds only if α 6= 0 6= β. In particular, we see α 6= 0

if g2 ≤ 1 and β 6= 0 if g1 ≤ 1. But this together with (3.11) gives
s∑

i=1

εi ≤
deg(X0)

2

γ · (D −KΣ)2
.

If α = 0, then from (a) and (b) we deduce again

0 <

s∑

i=1

εi ≤ (2g2 − 2) · β ≤ 4 · (g1 − 1)

A
· deg(X0)

2

(D −KΣ)2
≤ deg(X0)

2

γ · (D −KΣ)2
,

and similarly, if β = 0,

0 <
s∑

i=1

εi ≤ (2g1 − 2) · α ≤ 4 · (g1 − 1) · A · deg(X0)
2

(D −KΣ)2
≤ deg(X0)

2

γ · (D −KΣ)2
.

Applying the Cauchy inequality, we finally get

γ · (D −KΣ)2 ≤ deg(X0)
2

∑s
i=1 εi

≤
s∑

i=1

deg(Xi)
2

εi
≤

r∑

i=1

γ∗0(Si),
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in contradiction to Assumption (2.3).

Proof of Theorem 2.6: Let C ∈ V irr
|D| (S1, . . . ,Sr). It suffices to show that the

cohomology group h1
(
Σ,JX∗(C)/Σ(D)

)
vanishes.

Suppose this is not the case. Since for X0 ⊆ X∗(C) any local complete inter-

section scheme and z ∈ supp(X) we have

deg(Xz) ≤ γ∗0(C, z),

and since γ ≤ 1
4
, Lemma 3.1 applies and there is curve ∆ ∼a α · C0 + β · F and

a local complete intersection scheme X0 ⊆ X∗(C) satisfying the assumptions

(a)-(d) there and Equation (3.1).

Remember that the Néron–Severi group of Σ is generated by a section C0

of π and a fibre F with intersection pairing given by (−e 1
1 0 ). Then KΣ ∼a

−2C0 + (2g − 2 − e) · F . Note that

α ≥ 0 and β ′ := β − e
2
α ≥ 0.

If we set b′ = b− ae
2
, κ1 = a + 2 and κ2 = b+ 2 − 2g − ae

2
= b′ + 2 − 2g, we get

(D −KΣ)2 = −e · (a + 2)2 + 2 · (a+ 2) · (b+ 2 + e− 2g) = 2 · κ1 · κ2. (3.12)

Now fixing the notation supp(X0) = {z1, . . . , zs}, Xi = X0,zi
, and finally εi =

min{deg(Xi), i(C,∆; zi) − deg(Xi)} ≥ 1, the conditions on ∆ and deg(X0) take

the form

(a) aβ ′ + b′α ≥ deg(X0) +
∑s

i=1 εi,

(b) deg(X0) ≥ κ1 · β ′ + κ2 · α− 2αβ ′, and

(c) 0 ≤ α ≤ κ1

2
and 0 ≤ β ′ ≤ κ2

2
.

The last inequalities follow from (d) in Lemma 3.1 replacing the ample divisor

H by the nef divisors F respectively C0 + e
2
· F .

From (b) and (c) we deduce

deg(X0) ≥
κ1

2
· β ′ +

κ2

2
· α,

and thus, taking (3.12) into account,

deg(X0)
2 ≥ 4 · κ1

2
· κ2

2
· α · β ′ =

(D −KΣ)2

2
· α · β ′. (3.13)

Considering now (a) and (b) we get

0 <

s∑

i=1

εi ≤ ∆.(∆ +KΣ) = 2αβ ′ + (2g − 2) · α− 2β ′ ≤ αβ ′

2γ
,
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where the last inequality holds if β ′ 6= 0. We see, in particular, that β ′ 6= 0 if

g ≤ 1. But this together with (3.13) gives for β ′ 6= 0
s∑

i=1

εi ≤
deg(X0)

2

γ · (D −KΣ)2
.

If β ′ = 0, then we deduce from (a) and (b)

0 <
s∑

i=1

εi ≤ (2g − 2) · α ≤ 4 · (g − 1) · A · deg(X0)
2

(D −KΣ)2
≤ deg(X0)

2

γ · (D −KΣ)2
.

Applying the Cauchy inequality, we finally get

γ · (D −KΣ)2 ≤ deg(X0)
2

∑s
i=1 εi

≤
s∑

i=1

deg(Xi)
2

εi
≤

r∑

i=1

γ∗0(Si),

in contradiction to Assumption (2.4).



PAPER II

A new Invariant for Plane Curve Singularities

Abstract: In [GLS01] the authors gave a general sufficient nu-

merical condition for the T-smoothness (smoothness and expected

dimension) of equisingular families of plane curves. This condition

involves a new invariant γ∗ for plane curve singularities, and it is

conjectured to be asymptotically proper. In [Kei05b], similar suf-

ficient numerical conditions are obtained for the T-smoothness of

equisingular families on various classes surfaces. These conditions

involve a series of invariants γ∗
α, 0 ≤ α ≤ 1, with γ∗

1 = γ∗. In the

present paper we compute (respectively give bounds for) these in-

variants for semiquasihomogeneous singularities.

This paper is published as [KeL05] Thomas Keilen and Christoph

Lossen, A new invariant for plane curve singularities, Rend. Semin.

Mat. Torino 63 (2005), no. 1, 15–42.

When studying numerical conditions for the T-smoothness of equisingular

families of curves, new invariants of plane curve singularities V (f) ⊂ (C2, 0)

turn up. These invariants are defined as the maximum of a function depend-

ing on the codimension of complete intersection ideals containing the Tju-

rina ideal, respectively the equisingularity ideal, of f , and on the intersection

multiplicity of f with elements of the complete intersection ideals. In Sec-

tion 1 we will define these invariants, and we will calculate them for several

classes of singularities, the main results being Proposition 1.11, Proposition

1.12 and Proposition 1.13. It is the upper bound in Lemma 1.8 which ensures

that the conditions for T-smoothness with these new conditions (see [GLS00],

[GLS01], [Kei05b]) improve than the previously known ones (see [GLS97]).

In the remaining sections we introduce some notation and we gather some

necessary, though mainly well-known technical results used in the proofs of

Section 1.

We should like to point out that the definition of the invariant γ∗1 below is a

modification of the invariant “γ∗” defined in [GLS01], and it is always bound

from above by the latter. Moreover, the latter can be replaced by it in the

conditions of [GLS01] Proposition 2.2.

Notation

Throughout this paper R = C{x, y} will be the ring of convergent power series

in the variables x and y, and m = 〈x, y〉 �R will be its maximal ideal.

37
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1. The γ∗α-Invariants

For the definition of the γ∗α-invariants the Tjurina ideal, respectively the eq-

uisingularity ideal in the sense of [Wah74b], play an essential role. For the

convenience of the reader we recall their definitions.

Definition 1.1

Let f ∈ m be a reduced power series. The Tjurina ideal of f is defined as

Iea(f) =

〈
∂f

∂x
,
∂f

∂y
, f

〉
,

and the equisingularity ideal of f is defined as

Ies(f) =
{
g ∈ R

∣∣ f + εg is equisingular over C[ε]/(ε2)
}
⊇ Iea(f).

Their codimensions

τ(f) = dimCR/Iea(f),

respectively

τ es(f) = dimCR/Ies(f),

are analytical, respectively topological, invariants of the singularity type de-

fined by f . Note that τ es(f) is the codimension of the µ-constant stratum in the

equisingular deformation of the plane curve singularity defined by f . It can

be computed in terms of multiplicities of the strict transform of f at essential

infinitely near points in the resolution tree of
(
V (f), 0

)
(cf. [Shu91]).

Definition 1.2

Let f ∈ m be a reduced power series, and let 0 ≤ α ≤ 1 be a rational number.

If I is a zero-dimensional ideal in R with Iea(f) ⊆ I ⊆ m and g ∈ I, we define

λα(f ; I, g) :=

(
α · i(f, g) + (1 − α) · dimC(R/I)

)2

i(f, g) − dimC(R/I)
,

and

γα(f ; I) := max
{
(1 + α)2 · dimC(R/I), λα(f ; I, g)

∣∣ g ∈ I, i(f, g) ≤ 2 · dimC(R/I)
}
,

where i(f, g) denotes the intersection multiplicity of f and g. Note that, by

Lemma 1.3, i(f, g) > dimC(R/I) for all g ∈ I. Thus γα(f ; I) is a well-defined

positive rational number.

We then set

γeaα (f) := max
{
0, γα(f ; I)

∣∣ I ⊇ Iea(f) is a complete intersection ideal
}

and

γesα (f) := max
{
0, γα(f ; I)

∣∣ I ⊇ Ies(f) is a complete intersection ideal
}

Note that if f ∈ m \ m2, then Iea(f) = Ies(f) = R and there is no zero-

dimensional complete intersection ideal containing any of those two, hence

γeaα (f) = γesα (f) = 0.
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Lemma 1.3

Let f ∈ m2 be reduced, and let I be an ideal such that Iea(f) ⊆ I ⊆ m.

Then, for any g ∈ I, we have

dimC(R/I) < dimC (R/〈f, g〉) = i(f, g).

Proof: Cf. [Shu97] Lemma 4.1; the idea is mainly to show that not both

derivatives of f can belong to 〈f, g〉.

Up to embedded isomorphism the Tjurina ideal only depends on the analytical

type of the singularity. More precisely, if f ∈ R any power series, u ∈ R a unit

and φ : R → R an isomorphism, then Iea(u · f ◦ φ) = {g ◦ φ | g ∈ Iea(f)}. Thus
the following definition makes sense.

Definition 1.4

Let S be an analytical, respectively topological, singularity type, and let f ∈ R

be a representative of S. We then define

γeaα (S) := γeaα (f),

respectively

γesα (S) := max{γesα (g) | g is a representative of S}.

Since i(f, g) > dimC(R/I) in the above situation, we deduce the following

lemma.

Lemma 1.5

Let f ∈ m2 be reduced, Iea(f) ⊆ I ⊆ m be a zero-dimensional ideal, and 0 ≤
α < β ≤ 1, then γα(f ; I) < γβ(f ; I).

In particular, for any analytical, respectively topological, singularity type

γeaα (S) < γeaβ (S) respectively γesα (S) < γesβ (S).

For reasons of comparison let us also recall the definition of τ eaci , τ
es
ci , κ and δ.

Definition 1.6

For f ∈ R we define

τ eaci (f) := max{0, dimC(R/I) | I ⊇ Iea(f) a complete intersection},

and

τ esci (f) := max{0, dimC(R/I) | I ⊇ Ies(f) a complete intersection}.

Again, for analytically equivalent singularities the values coincide, so that for

an analytical singularity type S, choosing some representative f ∈ R, we may

define

τ eaci (S) := τci(f).
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For a topological singularity type we set

τ esci (S) := max{τ esci (g) | g a representative of S}.
Note that obviously

τ eaci (S) ≤ τ(S) and τ esci (S) ≤ τ es(S),

where τ(S) is the Tjurina number of S and τ es(S) is as defined in Definition

1.1.

Definition 1.7

For f ∈ R and O = R/〈f〉, we define the δ-invariant

δ(f) = dimC Õ/O
where O ⊂ Õ is the normalisation of O, and the κ-invariant

κ(f) = i

(
f, α · ∂f

∂x
+ β · ∂f

∂x

)
,

where (α : β) ∈ P1C is generic.

δ and κ are topological (thus also analytical) invariants of the singularity de-

fined by f so that for the topological, respectively analytical, singularity type

S given by f we can set

δ(S) = δ(f) and κ(S) = κ(f).

Throughout this article we will sometimes treat topological

and analytical singularities at the same time. Whenever we

do so, we will write I∗(f) for Iea(f) respectively for Iea(f), and

analogously we will use the notation γ∗α, τ
∗
ci and τ

∗.

The following lemma is again obvious from the definition of γα(f ; I), once we

take into account that κ(f) = i(f, g) for a generic element g ∈ Iea(f) of f and

that for a fixed value of d = dimC(R/I) the function i 7→ (αi+(1−α)·d)2
i−d takes its

maximum on [d+ 1, 2d] for the minimal possible value i = d+ 1.

Lemma 1.8

Let f ∈ m2 be reduced, and let I be an ideal in R such that Iea(f) ⊆ I ⊆ m.

Then

(1 + α)2 · dimC(R/I) ≤ γα(f ; I) ≤
(
dimC(R/I) + α

)2
.

Moreover, if κ(f) ≤ 2 · dimC(R/I), then

γα(f ; I) ≥
(
α · κ(f) + (1 − α) · dimC(R/I)

)2

κ(f) − dimC(R/I)
.

In particular, for any analytical, respectively topological, singularity type S
(1 + α)2 · τ ∗ci(S) ≤ γ∗α(S) ≤

(
τ ∗ci(S) + α

)2
,
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and if κ(S) ≤ 2 · τ ∗ci(S), then

γ∗α(S) ≥
(
α · κ(S) + (1 − α) · τ ∗ci(S)

)2

κ(S) − τ ∗ci(S)
.

In order to make the conditions for T-smoothness in [Kei05b] as sharp as

possible, it is useful to know under which circumstances the term (1 + α)2 ·
dimC(R/I) involved in the definition of γ∗α(f) is actually exceeded.

Lemma 1.9

If S is a topological or analytical singularity type such that κ(S) < 2 · τ ∗ci(S),

then

(1 + α)2 · τ ∗ci(S) < γ∗α(S).

This is in particular the case, if S 6= A1 and τ ∗ci(S) = τ ∗(S), i. e. if the Tju-

rina ideal, respectively the equisingularity ideal, of some representative is a

complete intersection.

Proof: Lemma 1.8 gives

γ∗α(S) ≥
(
α · κ(S) + (1 − α) · τ ∗ci(S)

)2

κ(S) − τ ∗ci(S)
.

If we consider the right-hand side as a function in κ(S), it is strictly decreasing

on the interval [0, 2 · τ ∗ci(S)] and takes its minimum thus at 2 · τ ∗ci(S). By the

assumption on κ(S) we, therefore, get

γ∗α(S) > (1 + α)2 · τ ∗ci(S).

Suppose now that τ ∗ci(S) = τ ∗(S) and S 6= A1. By Lemma 1.10 we know δ(S) <

τ es(S) ≤ τ(S). On the other hand we have κ(S) ≤ 2 · δ(S) (see [GLS05]).

Therefore, κ(S) < 2 · τ ∗ci(S).

Lemma 1.10

If S 6= A1 is any analytical or topological singularity type, then δ(S) < τ es(S).

Proof: If (C, z) is a representative of S and if T ∗(C, z) is the essential subtree

of the complete embedded resolution tree of (C, z), then

δ(S) =
∑

p∈T ∗(C,z)

multp(C) · (multp(C) − 1)

2

and

τ es(S) =
∑

p∈T ∗(C,z)

multp(C) · (multp(C) + 1)

2
− # free points in T ∗(C, z) − 1,

where multp(C) denotes the multiplicity of the strict transform of C at p (see

[GLS05]). Setting εp = 0 if p is satellite, εp = 1 if p 6= z is free, and εz = 2, then
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multp(C) ≥ εp and therefore

τ es(S) = δ(S) +
∑

p∈T ∗(C,z)

(
multp(C) − εp

)
≥ δ(S).

Moreover, we have equality if and only if multz(C) = 2, multp(C) = 1 for all

p 6= z and there is no satellite point, but this implies that S = A1.

For some classes of singularities we can calculate the γ∗α-invariant concretely,

and for some others we can at least give an upper bound, which in general is

much better than the one derived from Lemma 1.8. We restrict our attention

to singularities having a convenient semi-quasihomogeneous representative

f ∈ R (see Definition 4.1). Throughout the following proofs we will frequently

make use of monomial orderings, see Section 2.

Proposition 1.11 ((Simple Singularities))

Let α be a rational number with 0 ≤ α ≤ 1. Then we obtain the following

values for γesα (S) = γeaα (S), where S is a simple singularity type.

S γeaα (S) = γesα (S)

Ak, k ≥ 1 (k + α)2

Dk, 4 ≤ k ≤ 4 +
√

2 · (2 + α) (k+2α)2

2

Dk, k ≥ 4 +
√

2 · (2 + α) (k − 2 + α)2

Ek, k = 6, 7, 8 (k+2α)2

2

Proof: Let Sk be one of the simple singularity types Ak, Dk or Ek, and let

f ∈ R be a representative of Sk. Note that the Tjurina ideal Iea(f) and the

equisingularity ideal Ies(f) coincide, and hence so do the γ∗α-invariants, i. e.

γeaα (Sk) = γesα (Sk).

Moreover, in the considered cases the Tjurina ideal is indeed a complete inter-

section ideal with dimC (R/Iea(f)
)

= k, so that in particular the given values

are upper bounds for (1 + α)2 · dimC(R/I) for any complete intersection ideal I

containing the Tjurina ideal. By Lemma 1.8 we know

(α · κ(Sk) + (1 − α) · k)2

κ(Sk) − k
≤ γα(Sk) ≤ (k + α)2.

Note that κ(Ak) = k + 1, κ(Dk) = k + 2 and κ(Ek) = k + 2, which in particular

gives the result for Sk = Ak. Moreover, it shows that for Sk = Dk or Sk = Ek
we have

γα(Sk) ≥
(k + 2α)2

2
.
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If we fix a complete intersection ideal I with Iea(f) ⊆ I, then

λα(f ; I, g) =

(
α · i(f, g) + (1 − α) · dimC(R/I)

)2

i(f, g) − dimC(R/I)
,

with g ∈ I such that i(f, g) ≤ 2 · dimC(R/I), considered as a function in i(f, g)

is maximal, when i(f, g) is minimal. If i(f, g) − dimC(R/I) ≥ 2, then

λα(f ; I, g) ≤ (k + 2α)2

2
.

It therefore remains to consider the case where

i(f, g) − dimC(R/I) = 1 (1.1)

for some I and some g ∈ I, and to maximise the possible dimC(R/I).

We claim that for Sk = Dk with f = x2y − yk−1 as representative, dimC(R/I) ≤
k − 2, and thus I = 〈x, yk−2〉 and g = x are suitable with

λα(f ; I, x) = (k − 2 + α)2,

which is greater than (k+2α)2

2
if and only if k ≥ 4 +

√
2 · (2 + α). Suppose, there-

fore, dimC(R/I) = k − 1. Then yk−1, x3 ∈ Iea(f) = 〈xy, x2 − (k − 1) · yk−2〉 ⊂ I,

the leading ideal L<ls

(
Iea(f)

)
= 〈x3, xy, yk−2〉 ⊂ L<ls

(I), and since by Propo-

sition 2.3 dimC(R/I) = dimC (R/L<ls
(I)
)
, either L<ls

(I) = 〈x3, xy, yk−3〉 or

L<ls
(I) = 〈x2, xy, yk−2〉. In the first case there is a power series g ∈ I such

that g ≡ yk−3 + ax + bx2 (mod I), and hence I ∋ yg ≡ yk−2 (mod I), i. e.

yk−2 ∈ I. But then x2 ∈ I and x2 ∈ L<ls
(I), in contradiction to the assumption.

In the second case, similarly, there is a g ∈ I such that g ≡ x2 (mod I), and

hence x2 ∈ I which in turn implies that yk−2 ∈ I. Thus I = 〈x2, xy, yk−2〉, and
dimC(I/mI) = 3 which by Remark 3.7 contradicts the fact that I is a complete

intersection.

If Sk = E6, then f = x3 − y4 is a representative and Iea(f) = 〈x2, y3〉. Suppose
that dimC(R/I) = k − 1 = 5, then L<ds

(I) = 〈x2, y3, xy2〉 and H0
R/I = H0

R/L<ds
(I),

in contradiction to Lemma 3.6, since H0
R/L<ds

(I)(2) = 2 and H0
R/L<ds

(I)(3) = 0.

Thus dimC(R/I) ≤ 4 and λα(f ; I, g) ≤ (4 + α)2 ≤ (6+2α)2

2
.

If Sk = E7, then f = x3 − xy3 is a representative and Iea(f) = 〈3x2 − y3, xy2〉 ∋
x3, y5. If dimC(R/I) ≤ 4, then λα(f ; I, g) ≤ (4 + α)2 ≤ (7+2α)2

2
, and we are done.

It thus remains to exclude the cases where dimC(R/I) ∈ {5, 6}. For this we

note first that if there is a g ∈ I such that L<ls
(g) = y2, then

g ≡ y2 + ax+ bx2 + cxy + dx2y (mod I), (1.2)

and therefore y2g ≡ y4 (mod I), which implies y4 ∈ I and hence x2y ∈ I. Anal-

ogously, if there is a g ∈ I such that L<ls
(g) = x2y, then g ≡ x2y (mod I) and

again x2y, y4 ∈ I. Suppose now that dimC(R/I) = 6, then L<ls
(I) = 〈y2, x3〉 or

L<ls
(I) = 〈y3, xy2, x2y, x3〉. In both cases we thus have x2y, y4 ∈ I. However, in
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the first case then x2y ∈ L<ls
(I), in contradiction to the assumption. While in

the second case we find I = 〈xy2, x2y, 3x2−y3〉, and dimC(I/mI) = 3 contradicts

the fact that I is a complete intersection by Lemma 3.7. Suppose, therefore,

that dimC(R/I) = 5. Then L<ls
(I) = 〈y2, x2y, x3〉, or L<ls

(I) = 〈y3, xy2, x2〉, or
L<ls

(I) = 〈y3, xy, x3〉. In the first case, we know already that y4, x2y ∈ I. Look-

ing once more on (1.2) we consider the cases a = 0 and a 6= 0. If a = 0, then

yg ≡ y3 (mod I), and thus y3 ∈ I, which in turn implies x2 ∈ I. Similarly, if

a 6= 0, then xg ≡ ax2 (mod I) implies x2 ∈ I. But then also x2 ∈ L<ls
(I), in

contradiction to the assumption. In the second case there is a g ∈ I such that

g ≡ x2 + ax2y (mod I), and thus yg ≡ x2y ∈ I. But then also x2 ∈ I and y3 ∈ I,

so that I = 〈y3, xy2, x2〉. However, dimC(I/mI) = 3 contradicts again the fact

that I is a complete intersection. Finally in the third case there is a g ∈ I with

g ≡ xy+ax2+bx2y (mod I), and thus xg ≡ x2y (mod I) implies x2y ∈ I and then

xy+ax2 ∈ I. Therefore, I = 〈xy+ax2, 3x2−y3〉, and for for h ∈ I and for generic

b, c ∈ C we have i(f, h) ≥ i(x, h)+i
(
x2−y3, b·(xy+ax2)+c·(3x2−y3)

)
≥ 3+5 = 8,

in contradiction to (1.1).

Finally, if Sk = E8 with representative f = x3 − y5 and Iea(f) = 〈x2, y4〉,
we get for dimC(R/I) ≤ 5 that λα(f ; I, g) ≤ (5 + α)2 ≤ (8+2α)2

2
. It therefore

remains to exclude the cases dimC(R/I) ∈ {6, 7}. If dimC(R/I) = 7 then

L<ds
(I) = 〈x2, y4, xy3〉. But then H0

R/L<ds
(I)(3) = 2 and H0

R/L<ds
(I)(4) = 0 are

in contradiction to Lemma 3.6. And if dimC(R/I) = 6, then L<ls
(I) = 〈y3, x2〉

or L<ls
(I) = 〈y4, xy2, x2〉. In the first case there is some g ∈ I such that

g ≡ y3 + ax + bxy + cxy2 + dxy3 (mod I), and thus xg ≡ xy3 (mod I) and

xy3 ∈ I. But then yg ≡ axy + bxy2 (mod I) and hence axy + bxy2 ∈ I. Since

neither xy ∈ L<ls
(I) nor xy2 ∈ L<ls

(I), we must have a = 0 = b. Therefore,

g ≡ y3 + cxy2 (mod I) and I = 〈x2, y3 + cxy2〉, which for h ∈ I and a, b ∈ C
generic gives i(f, g) ≥ i

(
x3 − y4, ax2 + b · (y3 + cxy2)

)
≥ 8, in contradiction to

(1.1). In the second case, there is g ∈ I such that g ≡ xy2 +axy3 (mod I), there-

fore yg ≡ xy3 (mod I) and xy3 ∈ I. But then xy2 ∈ I and I = 〈y4, xy2, x2〉. This,
however, is not a complete intersection, since dimC(I/mI) = 3, in contradiction

to the assumption.

This finishes the proof.

Proposition 1.12 ((Ordinary Multiple Points))

Let α be a rational number with 0 ≤ α ≤ 1, and let Mk denote the topological

singularity type of an ordinary k-fold point with k ≥ 3. Then

γesα (Mk) = 2 · (k − 1 + α)2.

In particular

γesα (Mk) > (1 + α)2 · τ esci (Mk).
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Proof: Note that for any representative f ofMk we have

Ies(f) = Iea(f) + mk =

〈
∂fk
∂x

,
∂fk
∂y

〉
+ mk,

where fk is the homogeneous part of degree k of f , so that we may assume f

to be homogeneous of degree k.

If I is a complete intersection ideal with mk ⊂ Ies(f) ⊆ I, then by Lemma 3.10

dimC(R/I) ≤
(
k − mult(I) + 1

)
· mult(I).

We note moreover that for any g ∈ I

i(f, g) ≥ mult(f) · mult(g) ≥ k · mult(I),

and that for a fixed I we may attain an upper bound for λα(f ; I, g) by replacing

i(f, g) by a lower bound for i(f, g).

Hence, if mult(I) ≥ 2, we have

λα(f ; I, g) ≤
(
k − (1 − α) · (mult(I) − 1)

)2 · mult(I)2

mult(I) ·
(
mult(I) − 1

) ≤ 2 · (k − 1 + α)2, (1.3)

while dimC(R/I) ≤ k − 1 for mult(I) = 1 and the above inequality (1.3) is still

satisfied. To see dimC(R/I) ≤ k−1 for mult(I) = 1 note that the ideal I contains

an element g of order 1 with g1 = ax + by as homogeneous part of degree 1

and the partial derivatives of f ; applying a linear change of coordinates we

may assume g1 = x and f =
∏k

i=1(x − aiy) with pairwise different ai, and

we may consider the negative degree lexicographical monomial ordering >

giving preference to y; if some ai = 0, then L>
(
∂f
∂x

)
= yk−1, while otherwise

L>
(
∂f
∂y

)
= yk−1, so that in any case 〈x, yk−1〉 ⊆ L>(I), and by Proposition 2.3

therefore dimC(R/I) = dimC (R/L>(I)
)
≤ dimC(R/〈x, yk−1〉) = k − 1.

Equation (1.3) together with Lemma 3.10 shows

γesα (Mk) ≤ 2 · (k − 1 + α)2.

On the other hand, considering the representative f = xk − yk, we have

Ies(f) = 〈xk−1, yk−1, xayb | a+ b = k〉,

and I = 〈yk−1, x2〉 is a complete intersection ideal containing Ies(f). Moreover,

i
(
f, x2

)
= 2k, dimC(R/I) = 2 · (k − 1), thus

γesα (Mk) ≥
(
α · i(f, x2) + (1 − α) · dimC(R/I)

)2

i
(
f, x2

)
− dimC(R/I)

= 2 · (k − 1 + α)2.

The “in particular” part then follows right away from Corollary 3.11.
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Since a convenient semi-quasihomogeneous power series of multiplicity 2 de-

fines an Ak-singularity and one with a homogeneous leading term defines an

ordinary multiple point, the following proposition together with the previous

two gives upper bounds for all singularities defined by a convenient semi-

quasihomogeneous representative.

Proposition 1.13 ((Semiquasihomogeneous Singularities))

Let Sp,q be a singularity type with a convenient semi-quasihomogeneous repre-

sentative f ∈ R, q > p ≥ 3.

Then γesα (Sp,q) ≥ (q−(1−α)·⌊ q
p⌋)2

⌊ q
p⌋ ≥ q·(p−1+α)2

p
and we obtain the following upper

bound for γesα (f):

p, q γesα (f)

q ≥ 39 ≤ 3 · (q − 2 + α)2

q
p
∈ (1, 2) ≤ 3 · (q − 1 + α)2

q
p
∈ [2, 4) ≤ 2 · (q − 1 + α)2

q
p
∈ [4,∞) ≤ (q − 1 + α)2

Proof: To see the claimed lower bound for γesα (Sp,q) recall that (see [GLS05])

Ies(f) =
〈
∂f
∂x
, ∂f
∂y
, xαyβ

∣∣ αp+ βq ≥ pq
〉
. (1.4)

In particular, Ies(f) ⊆
〈
y, xq−⌊ q

p
⌋〉, dimC(R/I) = q −

⌊
q
p

⌋
and i(f, y) = q, which

implies the claim.

Let now I be a complete intersection ideal with Ies(f) ⊆ I. Applying

Lemma 3.10 and d(I) ≤ q, we first of all note that

(1 + α)2 · dimC(R/I) ≤ (1 + α)2 · (q + 1)2

4
≤ 2 · (q − 1 + α)2.

Moreover, if q
p
≥ 3, then

(1 + α)2 · dimC(R/I) ≤ (1 + α)2 ·
(
q2 + 4q + 3

)

6
≤ (q − 1 + α)2.

since dimC(R/I) ≤ dimC (R/Ies(f)
)
≤ (p+1)·(q+1)

2
by (1.4).
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It therefore suffices to show

λα(f ; I, g) ≤





3 · (q − 2 + α)2, if q ≥ 39,

3 · (q − 1 + α)2, if q
p
∈ (1, 2),

2 · (q − 1 + α)2, if q
p
∈ [2, 4),

(q − 1 + α)2, if q
p
∈ [4,∞),

(1.5)

where g ∈ I with i(f, g) ≤ 2 · dimC(R/I). Recall that

λα(f ; I, g) =

(
α · i(f, g) + (1 − α) · dimC(R/I)

)2

i(f, g) − dimC(R/I)
.

Fixing I and considering λα(f ; I, g) as a function in i(f, g), where due to (1.12)

the latter takes values between dimC(R/I) + 1 and 2 · dimC(R/I), we note that

the function is monotonously decreasing. In order to calculate an upper bound

for λα(f ; I, g) we may therefore replace i(f, g) by some lower bound, which still

exceeds dimC(R/I) + 1. Having done this we may then replace dimC(R/I) by

an upper bound in order to find an upper bound for λ(f ; I, g).

Note that for q ≥ 39 we have

54

19
· (q − 1 + α)2 ≤ 3 · (q − 2 + α)2. (1.6)

Fix I and g, and let L(p,q)(g) = xAyB be the leading term of g w. r. t. the weighted

ordering <(p,q) (see Definition 2.1). By Remark 4.2 we know

i(f, g) ≥ Ap +Bq. (1.7)

Working with this lower bound for i(f, g) we reduce the problem to find suit-

able upper bounds for dimC(R/I). For this purpose we may assume that

L(p,q)(g) is minimal, and thus, in particular, B ≤ mult(I).

If A = 0, in view of Remark 3.8 we therefore have

B = mult(I) ≤ d(I) + 1

2
≤ q + 1

2
,

and thus by Lemma 3.10 then

dimC(R/I) ≤ B · (q −B + 1). (1.8)

Moreover, for A = 0 Lemma 4.4 applies with h = g and we get

dimC(R/I) ≤ B · q − 1 −
B−1∑

i=1

⌊
qi
p

⌋
≤ B · q − 1 −

⌊
q

p

⌋
· B · (B − 1)

2
. (1.9)

Since xαyβ ∈ I for αp+ βq ≥ pq, we may assume Ap+Bq ≤ pq. But then, since

dimC(R/I) ≤ dimCR/〈∂f∂y , g, xαyβ | αp + βq ≥ pq
〉
, we may apply Lemma 4.5
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with h = ∂f
∂y

and C = p− 1. This gives

dimC(R/I) ≤ Ap+Bq −AB −
A−1∑

i=1

⌊
pi
q

⌋
−

B−1∑

i=1

⌊
qi
p

⌋
− min

{
A,
⌈
q
p

⌉}
, (1.10)

and if B = 0 we get in addition

dimC(R/I) ≤ A · (p− 1). (1.11)

Finally note that by Lemma 1.3

i(f, g) > dimC(R/I). (1.12)

Let us now use the inequalities (1.6)-(1.12) to show (1.5). For this we have to

consider several cases for possible values of A and B.

Case 1: A = 0, B ≥ 1.

If B = 1, then by (1.9) and (1.12) we have λα(f ; I, g) ≤ (q − 1 + α)2.

We may thus assume that B ≥ 2. By (1.7) and (1.8)

λα(f ; I, g) ≤ B2 ·
(
q − (1 − α) · (B − 1)

)2

B · (B − 1)
≤ 2 · (q − 1 + α)2.

If, moreover, q
p
≥ 3, then we may apply (1.9) to find

λα(f ; I, g) ≤ B2 ·
(
q − (1 − α) · (B − 1)

)2
⌊
q
p

⌋
· B·(B−1)

2
+ 1

≤ (q − 1 + α)2.

Taking (1.6) into account, this proves (1.5) in the case A = 0 and B ≥ 1.

Case 2: A = 1, B ≥ 1.

From (1.10) we deduce

dimC(R/I) ≤ B · (q − 1) + (p− 1) −
⌊
q
p

⌋
· B·(B−1)

2
.

Since p−1+α
q−1+α

≤ p
q
we thus get

λα(f ; I, g) ≤
(
B + p−1+α

q−1+α

)2

B +
⌊
q
p

⌋
· B·(B−1)

2
+ 1

· (q − 1 + α)2

≤






(B+ 1
3
)2

3B2

2
−B

2
+1

· (q − 1 + α)2 ≤ (q − 1 + α)2, if q
p
≥ 3,

(B+ 1
2
)2

B2+1
· (q − 1 + α)2 ≤ 5

4
· (q − 1 + α)2, if q

p
≥ 2,

2 · (B+1)2

B2+B+2
· (q − 1 + α)2 ≤ 16

7
· (q − 1 + α)2, if q

p
> 1.

Once more we are done, since 16
7
≤ 54

19
.

Case 3: A ≥ 2, B ≥ 1.
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Note that ⌊r⌋ ≥ r − 1 for any rational number r, and set s = q
p
, then by (1.10)

dimC(R/I) ≤ Ap+Bq−(A−1)·(B−1)−A · (A− 1)

2s
−s · B · (B − 1)

2
−1−min

{
A, ⌈s⌉

}
.

This amounts to

λα(f ; I, g) ≤
(
Ap +Bq − (1 − α) ·

(
(A− 1) · (B − 1) + A·(A−1)

2s
+ s·B·(B−1)

2
+ 1 + min{A, ⌈s⌉}

))2

(A− 1) · (B − 1) + A·(A−1)
2s

+ s·B·(B−1)
2

+ 3

≤
(
A · (p− 1 + α) +B · (q − 1 + α)

)2

(A− 1) · (B − 1) + A·(A−1)
2s

+ s·B·(B−1)
2

+ 3
≤ ϕ(A,B) · (q − 1 + α)2,

where

ϕ(A,B) =

(
A
s

+B
)2

(A− 1) · (B − 1) + A·(A−1)
2s

+ s·B·(B−1)
2

+ 3
.

For the last inequality we just note again that p−1+α
q−1+α

≤ p
q

= 1
s
, while for the sec-

ond inequality a number of different cases has to be considered. We postpone

this for a moment.

In order to show (1.5) in the case A ≥ 2 and B ≥ 1 it now suffices to show

ϕ(A,B) ≤





54
19
, if s ≥ 1,

2, if s ≥ 2,

1, if s ≥ 4.

(1.13)

Elementary calculus shows that for B ≥ 1 fixed the function [2,∞) → R : A 7→
ϕ(A,B) takes its maximum at

A = max

{
2,

16 − 3B

2 + 1
s

}
.

If B ≤ 3, then the maximum is attained at A = 16−3B
2+ 1

s

, and

ϕ(A,B) ≤ ϕ

(
16 − 3B

2 + 1
s

, B

)
=

8sB − 8B + 64

4s2B − 4s2 − 4sB + 28s− 1
.

Again elementary calculus shows that the function B 7→ ϕ
(

16−3B
2+ 1

s

, B
)

is

monotonously decreasing on [1, 3] and, therefore,

ϕ(A,B) ≤ ϕ

(
13

2 + 1
s

, 1

)
=

8s+ 56

24s− 1
=: ψ1(s).

Since also the function ψ1 is monotonously decreasing on [1,∞) and ψ1(1) =
64
23

≤ 54
19
, ψ1(2) = 72

47
≤ 2 and ψ1(4) = 88

95
≤ 1 Equation (1.13) follows in this case.

As soon as B ≥ 4 the maximum for ϕ(A,B) is attained for A = 2 and

ϕ(A,B) ≤ ϕ(2, B) =
2 · (sB + 2)2

s3B2 − s3B + 2s2B + 4s2 + 2s
.
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Once more elementary calculus shows that the function B 7→ ϕ(2, B) is

monotonously decreasing on [4,∞). Thus

ϕ(A,B) ≤ ϕ(2, 4) =
4 · (1 + 2s)2

6s3 + 6s2 + s
=: ψ2(s).

Applying elementary calculus again, we find that the function ψ2 is

monotonously decreasing on [1,∞), so that we are done since ψ2(1) = 36
13

≤ 54
19
,

ψ2(2) = 50
37

≤ 2 and ψ2(4) = 81
121

≤ 1.

Let us now come back to proving the missing inequality above. We have to

show

A+B ≤ (A− 1) · (B − 1) +
A · (A− 1)

2s
+
s · B · (B − 1)

2
+ 1 + min

{
A, ⌈s⌉

}
,

or equivalently

A · (A− 1)

2s
+
s · B · (B − 1)

2
+ 2 + min

{
A, ⌈s⌉

}
+ AB − 2A− 2B ≥ 0.

If B ≥ 2, then AB ≥ 2A and s·B·(B−1)
2

+ 2 + min
{
A, ⌈s⌉

}
≥ 2B, so we are done.

It remains to consider the case B = 1, and we have to show

A2 − A− 2sA+ 2s · min
{
A, ⌈s⌉

}
≥ 0.

If A ≤ ⌈s⌉ or A = 2 this is obvious. We may thus suppose that A > ⌈s⌉ and

A ≥ 3. Since A2

3
≥ A it remains to show

2A2

3
− 2sA+ 2s · ⌈s⌉ ≥ 0.

For this

2A2

3
− 2sA+ 2s · ⌈s⌉ ≥






2A2

3
− 2sA ≥ 0, if A ≥ 3s,

2A2

3
− 4sA

3
≥ 0, if 2s ≤ A ≤ 3s,

2A2

3
− sA ≥ 0, if 3s

2
≤ A ≤ 2s,

2A2

3
− 2sA

3
≥ 0, if ⌈s⌉ ≤ A ≤ 3s

2
.

Case 4: A ≥ 1, B = 0.

Applying (1.10) and (1.11) we get

λα(f ; I, g) ≤






A2·(p−1+α)2

A
≤





A
s2
· (q − 1 + α)2

A · (q − 2 + α)2



 for any A, and

A2·(p−1+α)2PA−1
i=1 ⌊ pi

q
⌋+min{A,⌈ q

p
⌉} ≤ ϕν,s(A) · (q − 1 + α)2, if A ≥ 3,

where

ϕν,s(A) =
A2

s2

A·(A−1)
2s

− (A− 1) + ν
=

2A2

sA2 − (2s2 + s) · A+ 2 · (ν + 1) · s2

with ν = 2 for s ∈ (1, 2] and ν = 3 for s ∈ (2,∞).
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In particular, due to the first two inequalities we may thus assume that

A >





3, if q ≥ 39,

3s2, if s ∈ (1, 2),

2s2, if s ∈ [2, 4),

s2, if s ∈ [4,∞).

Note that ϕ3,s(A) ≤ 1 for s ≥ 4, since

A ≥ s2 =
9s2

16
+

7s2

16
≥ s · (1 + 2s)

2 · (s− 2)
+

s

s− 2
·
√
s2 − 3s+ 33

4
.

This gives (1.5) for s ≥ 4.

If now s ∈ (2, 4), then ϕ3,s is monotonously decreasing on
[
2s2,∞

)
, as is s 7→

ϕ3,s

(
2s2
)
on [2, 4), and thus

ϕ3,s(A) ≤ ϕ3,s

(
2s2
)

=
4s2

2s3 − 2s2 − s+ 4
≤ 8

5
≤ 2,

while for s = 2 the function ϕ2,2 is monotonously decreasing on [8,∞) and thus

ϕ2,2(A) ≤ 16
9
≤ 2. This finishes the case s ∈ [2, 4).

Let’s now consider the case s ∈ (1, 2) and q ≥ 39 parallel. Applying elementary

calculus, we find that ϕ2,s takes its maximum on [3,∞) at A = 12s
1+2s

and is

monotonously decreasing on
[

12s
1+2s

,∞
)
. Moreover, the function s 7→ ϕ2,s

(
12s

1+2s

)

is monotonously decreasing on (1, 2). If s ≥ 7
6
, then

ϕ2,s(A) ≤ ϕ2,s

(
12s

1+2s

)
≤ ϕ2, 7

6

(
21
5

)
=

54

19
.

Due to (1.6) it thus remains to consider the case s ∈
(
1, 7

6

)
and A > 3. If A ≥ 8,

then

ϕ2,s(A) ≤ ϕ2,1(8) =
64

23
≤ 54

19
,

since the function s 7→ ϕ2,s(8) is monotonously decreasing on [1, 2).

So, we are finally stuck with the case A ∈ {4, 5, 6, 7} and 1 ≤ q
p

= s ≤ 7
6
. We

want to apply Lemma 3.10. For this we note first that by Lemma 4.6 in our

situation d(I) ≤ p+ 1 and A = mult(I) ≤ p+2
2
. But then

dimC(R/I) ≤ A · (p− A+ 2)

and thus,

λα(f ; I, g) ≤ A2 ·
(
p− (1 − α) · (A− 2)

)2

A · (A− 2)
≤ A

(A− 2)
· (q−2+α)2 ≤ 2 · (q−2+α)2.

This finishes the proof.
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Remark 1.14

In the proof of the previous proposition we achieved for almost all cases

λα(f ; I, g) ≤ 54
19

· (q − 1 + α)2, apart from the single case L<(p,q)
(g) = x3. The

following example shows that indeed in this case we cannot, in general, ex-

pect any better coefficient than 3. More precisely, the example shows that the

bound

3 · (q − 2 + α)2

is sharp for the family of singularities given by xq − yq−1, q ≥ 39. A closer

investigation should allow to lower the bound on q, but we cannot get this for

all q ≥ 4, as the example of E6 and E8 show.

Moreover, we give series of examples for which the bound (q−1+α)2 is sharp,

respectively for which 2 · (q − 1 + α)2 is a lower bound.

Example 1.15

Throughout these examples q > p ≥ 3 are integers.

(a) Let f = xq − yq−1, then γesα (f) ≥ 3 · (q − 2 + α)2. In particular, for q ≥ 39,

γesα (f) = 3 · (q − 2 + α)2.

For this we note that I = 〈x3, yq−2〉 is a complete intersection ideal in R

with Ies(f) =
〈
xq−1, yq−2, xαyβ

∣∣ α · (q − 1) + βq ≥ q · (q − 1)
〉
⊆ I, since

2 · (q − 1) + (q − 3) · q = q2 − q − 2 < q · (q − 1) and thus x2yq−3 6∈ Ies(f).

This also shows that the monomial xiyj with 0 ≤ i ≤ 2 and 0 ≤ j ≤ q − 3

form a C-basis of R/I, so that dimC(R/I) = 3q− 6. Since i
(
f, x3

)
= 3q− 3,

the claim follows.

(b) Let q
p
< 2 and f = xq − yp, then

γesα (f) ≥ 2 · (q − 1 + α)2.

By the assumption on p and q we have (q−2)·p+q < pq and hence xq−2y 6∈
Ies(f). Thus Ies(f) =

〈
xq−1, yp−1, xαyβ

∣∣ αp+βq ≥ pq
〉
⊆ I = 〈y2, xq−1〉, and

we are done since dimC(R/I) = 2q − 2 and i
(
f, y2

)
= 2q.

(c) Let f ∈ R be convenient, semi-quasihomogeneous of ord(p,q)(f) = pq, and

suppose that in f no monomial xky, k ≤ q − 2, occurs (e. g. f = xq − yp),

then γesα (f) ≥ (q − 1 + α)2. In particular, if q
p
≥ 4, then

γesα (f) = (q − 1 + α)2.

By the assumption, Ies(f) ⊆ I = 〈xq−1, y〉, since ∂f
∂x

≡ xq−1 · u(x) (mod y)

for a unit u and ∂f
∂y

≡ 0
(
mod 〈y, xq−1〉

)
. Hence we are done since

dimC(R/I) = q − 1 and i(f, y) = q.

(d) Let f = y3 − 3x8y + 3x12, then f does not satisfy the assumptions of (c),

but still γesα (f) = (11 + α)2 = (q − 1 + α)2.
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For this note that I = 〈y − x4, x11〉 contains Ies(f), dimC(R/I) = 11 and

i
(
f, y − x4

)
= 12.

(e) Let f = 7y3+15x7−21x5y, then f is semi-quasihomogeneous with weights

(p, q) = (3, 7) and convenient, but γes0 (f) ≤ 25 < 36 = (q − 1)2. This shows

that (q − 1)2 is not a general lower bound for γes0 (Sp,q).
We note first that Ies(f) = 〈x7, y2 − x5, x6 − x4y〉 is not a complete inter-

section and dimC (R/Ies(f)
)

= 11. Let now I be a complete intersection

ideal with Ies(f) ⊂ I and let h ∈ I such that L<(3,7)
(h) = xAyB is minimal,

in particular, ord(3,7)(h) = 3A+ 7B is minimal. Then dimC(R/I) ≤ 10 and

i(f, g) ≥ 3A+ 7B for all g ∈ I.

If, therefore, 3A+ 7B ≥ 14, then

dimC(R/I)2

i(f, g) − dimC(R/I)
≤ 25.

We may thus assume that 3A + 7B ≤ 13, in particular B < 2. If B = 0,

and hence A ≤ 4, then by Lemma 4.5 dimC(R/I) ≤ 2A, so that

dimC(R/I)2

i(f, g) − dimC(R/I)
≤ 4A ≤ 16.

Similarly, if B = 1 and A = 2, then by the same Lemma dimC(R/I) ≤ 9

and i(f, g) ≥ 13, so that

dimC(R/I)2

i(f, g) − dimC(R/I)
≤ 81

4
.

So it remains to consider the case B = 1 and A ∈ {0, 1}. That is h =

xAy+h′ with ord(3,7)(h
′) ≥ 9+3A. Consider the ideal J =

〈
xαyβ

∣∣ 3α+7β ≥
21
〉
⊆ I. Then x4−A ·h ≡ x4y (mod J), and thus x6−x4y ≡ x6 (mod 〈h〉+J),

i. e. 〈h, x6 − x4y〉 + J = 〈h, x6〉 + J . Moreover, x6 6∈ 〈h〉 + J , so that

dimC (R/〈g, x6−x4y〉+J
)
≤ 6+A. If we can show that 〈g, x6−x4y〉+J $ I,

then
dimC(R/I)2

i(f, g) − dimC(R/I)
≤ (5 + A)2

3A+ 7 − 5 −A
≤ 25

2
.

We are therefore done, once we know that y2 − x5 6∈ 〈g, x6〉 + J . Suppose

there was a g such that gh = y2 −x5
(
mod 〈x6〉+ J

)
. Then y2 = L<(3,7)

(g) ·
L<(3,7)

(h), which in particular means A = 0 and L<(3,7)
(h) = L<(3,7)

(g) = y.

But then the coefficients of 1, x and x2 in h and g must be zero, so that

x5 cannot occur with a non-zero coefficient in the product. This gives the

desired contradiction.

2. Local Monomial Orderings

Throughout the proofs of the auxilary statements in Section 4 we make use of

some results from computer algebra concerning properties of local monomial

orderings. In this section we recall the relevant definitions and results.
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Definition 2.1

A monomial ordering is a total ordering < on the set of monomials{
xαyβ

∣∣ α, β ≥ 0
}
such that for all α, β, γ, δ, µ, ν ≥ 0

xαyβ < xγyδ =⇒ xα+µyβ+ν < xγ+µyδ+ν .

A monomial ordering < is called local if 1 > xαyβ for all (α, β) 6= (0, 0), and it

is a local degree ordering if

α + β > γ + δ =⇒ xαyβ < xγyδ.

Finally, if < is any local monomial ordering, then we define the leading mono-

mial L<(f) with respect to < of a non-zero power series f ∈ R to be the maxi-

mal monomial xαyβ such that the coefficient of xαyβ in f does not vanish. For

f = 0, we set L<(f) := 0.

If I�R is an ideal in R, then L<(I) = 〈L<(f) | f ∈ I〉 is called its leading ideal.

We will give now some examples of local monomial orderings which are used

in the proofs.

Example 2.2

Let α, β, γ, δ ≥ 0 be integers.

(a) The negative lexicographical ordering <ls is defined by the relation

xαyβ <ls x
γyδ :⇐⇒ α > γ or (α = γ and β > δ).

(b) The negative degree reverse lexicographical ordering <ds is defined by

the relation

xαyβ <ds x
γyδ :⇐⇒ α + β > γ + δ or (α + β = γ + δ and β > δ).

(c) If positive integers p and q are given, then we define the local weighted

degree ordering <(p,q) with weights (p, q) by the relation

xαyβ <(p,q) x
γyδ :⇐⇒ αp+ βq > γp+ δq or

(αp+ βq = γp+ δq and β < δ).

We note that <ds is a local degree ordering, while <ls is not and <(p,q) is if and

only if p = q.

Let us finally recall some useful properties of local orderings (see e. g. [GrP02]

Corollary 7.5.6 and Proposition 5.5.7).

Proposition 2.3

Let < be any local monomial ordering, and let I be a zero-dimensional ideal in

R.

(a) The monomials of R/L<(I) form a C-basis of R/I. In particular

dimC(R/I) = dimC (R/L<(I)
)
.
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(b) If < is a degree ordering, then the Hilbert Samuel functions of R/I and

of R/L<(I) coincide (see Definition 3.1, and see also Remark 3.3).

3. The Hilbert Samuel Function

A useful tool in the study of the degree of zero-dimensional schemes and their

subschemes is the Hilbert Samuel function of the structure sheaf, that is of

the corresponding Artinian ring.

Definition 3.1

Let I � R be a zero-dimensional ideal.

(a) The function

H1
R/I : Z→ Z : d 7→





dimC (R/(I + md+1)
)
, d ≥ 0,

0, d < 0,

is called the Hilbert Samuel function of R/I.

(b) We define the slope of the Hilbert Samuel function of R/I to be the func-

tion

H0
R/I : N→ N : d 7→ H1

R/I(d) −H1
R/I(d− 1).

Thus

H0
R/I(d) = dimC (md

/
((I ∩ md) + md+1)

)
,

is just the number d + 1 of linearly independent monomials of degree d

in md, minus the number of linearly independent monomials of degree d

in
(
I ∩ md

)
+ md+1.

Note that if m = m/I denotes the maximal ideal of R/I and Grm(R/I) =⊕
d≥0 md/md+1 the associated graded ring, then

H0
R/I(d) = dimC (md/md+1

)

is just the dimension of the graded piece of degree d of Grm(R/I).

(c) Finally, we define the multiplicity of I to be

mult(I) := min
{

mult(f)
∣∣ 0 6= f ∈ I

}
,

and the degree bound of I as

d(I) := min
{
d ∈ N ∣∣ md ⊆ I

}
.

Let us gather some straight forward properties of the slope of the Hilbert

Samuel function.

Lemma 3.2

Let J ⊆ I � R be zero-dimensional ideals.

(a) H0
R/I(d) = d+ 1 for all 0 ≤ d < mult(I).
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(b) H0
R/I(d) ≤ H0

R/I(d− 1) for all d ≥ mult(I).

(c) H0
R/I(d) ≤ mult(I).

(d) H0
R/I(d) = 0 for all d ≥ d(I) and H0

R/I 6= 0 for all d < d(I). In particular

dimC(R/I) =

d(I)−1∑

d=0

H0
R/I(d).

(e) H0
R/I(d) ≤ H0

R/J(d) for all d ∈ N.

(f) d(I) and mult(I) are completely determined by H0
R/I .

Proof: For (a) we note that I ⊆ md for all d ≤ mult(I) and thus H0
R/I(d) =

dimC (md/md+1
)

= d+ 1 for all 0 ≤ d < mult(I).

By definition we see that H0
R/I(d) is just the number of linearly independent

monomials of degree d in md, which is d + 1, minus the number of linearly

independent monomials, say m1, . . . , mr, of degree d in
(
I ∩ md

)
+ md+1. We

note that then the set

{xm1, . . . , xmr, ym1, . . . , ymr} ⊆ m ·
(
(I ∩ md) + md+1

)
⊆
(
I ∩ md+1

)
+ md+2

contains at least r + 1 linearly independent monomials of degree d + 1, once

r was non-zero. However, for d = mult(I) and g = gd + h.o.t ∈ I with ho-

mogeneous part gd 6= 0 of degree d, we have gd ∈
(
I ∩ md

)
+ md+1, that is,

d = mult(I) is the smallest integer d for which there is a monomial of degree d

in
(
I ∩ md

)
+ md+1. Thus for d ≥ mult(I) − 1

H0
R/I(d+ 1) ≤ (d+ 2) − (r + 1) = d+ 1 − r = H0

R/I(d),

which proves (b), while (c) is an immediate consequence of (a) and (b).

If d ≥ d(I), thenH1
R/I(d) = dimC(R/I) is independent of d, and henceH0

R/I(d) =

0 for all d ≥ d(I). In particular,

d(I)−1∑

i=0

H0
R/I(d) = H1

R/I(d(I) − 1) −H1
R/I(−1) = dimC(R/I).

Moreover, md(I)−1+I 6= I = I+md(I), so thatH0
R/I

(
d(I)−1

)
6= 0, and by (b) then

H0
R/I(d) 6= 0 for all d < d(I). This proves (d), and (e) and (f) are obvious.

Remark 3.3

Let < be a local degree ordering on R, then the Hilbert Samuel functions of

R/I and of R/L<(I) coincide by Proposition 2.3, and hence we have as well

H0
R/I = H0

R/L<(I), d(I) = d
(
L<(I)

)
, and mult(I) = mult

(
L<(I)

)
,

since by the previous lemma the multiplicity and the degree bound only de-

pend on the slope of the Hilbert Samuel function.
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Remark 3.4

The slope of the Hilbert Samuel function of R/I gives rise to a histogram

as the graph of the function H0
R/I . By the Lemma 3.2 we know that up to

mult(I)−1 the histogram is just a staircase with steps of height one, and from

mult(I) − 1 on it can only go down, which it eventually will do until it reaches

the value zero for d = d(I). This means that we get a histogram of form shown

in Figure 1.

H0
R/I(d)

dd(I)mult(I)

mult(I)

FIGURE 1. The histogram of H0
R/I for a general ideal I.

Note also, that by Lemma 3.2 (a) the area of the histogram is just dimC(R/I)!

Example 3.5

In order to understand the slope of the Hilbert Samuel function better, let us

consider some examples.

(a) Let f = x2 − yk+1, k ≥ 1, and let I = Iea(f) = 〈x, yk〉 the equisingularity

ideal of an Ak-singularity. Then d(I) = k, mult(I) = 1 and dimC(R/I) = k.

k

FIGURE 2. The histogram of H0
R/I for an Ak-singularity

(b) Let f = x2y − yk−1, k ≥ 4, and let I = Iea(f) = 〈xy, x2 − (k − 1) · yk−2〉 the
equisingularity ideal of a Dk-singularity. Then x

3, xy, yk−1 ∈ I, and thus

mk−1 ⊂ I, which gives d(I) = k−1, mult(I) = 2 and dimC(R/I) = k, which

shows that the bound in Lemma 3.10 need not be obtained.

(c) Let f = x3 − y4 and let I = Iea(f) = 〈x2, y3〉 the equisingularity ideal of

an E6-singularity. Then d(I) = 4, mult(I) = 2 and dimC(R/I) = 6.

Let f = x3 − xy3 and let I = Iea(f) = 〈3x2 − y3, xy2〉 the equisingularity

ideal of an E7-singularity. Then x3, xy2, y5 ∈ I, and thus m5 ⊂ I, which

gives d(I) = 5, mult(I) = 2 and dimC(R/I) = 7.
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k − 1

FIGURE 3. The histogram of H0
R/I for a Dk-singularity

Let f = x3 − y5 and let I = Iea(f) = 〈x2, y4〉 the equisingularity ideal of

an E8-singularity. Then d(I) = 6, mult(I) = 2 and dimC(R/I) = 8.

4 5 6

FIGURE 4. The histogram of H0
R/I for E6, E7 and E8.

(d) Let I = 〈x3, x2y, y3〉, then d(I) = 4, mult(I) = 3 and dimC(R/I) = 7.

4

FIGURE 5. The histogram of H0
R/I for I = 〈x3, x2y, y3〉.

The following result providing a lower bound for the minimal number of gen-

erators of a zero-dimensional ideal in R is due to A. Iarrobino.

Lemma 3.6

Let I �R be a zero-dimensional ideal. Then I cannot be generated by less than

1 + sup
{
H0
R/I(d− 1) −H0

R/I(d)
∣∣ d ≥ mult(I)

}
elements.

In particular, if I is a complete intersection ideal then for d ≥ mult(I)

H0
R/I(d− 1) − 1 ≤ H0

R/I(d) ≤ H0
R/I(d− 1).

Proof: See [Iar77] Theorem 4.3 or [Bri77] Proposition III.2.1.

Moreover, by the Lemma of Nakayama and Proposition 2.3 we can compute

the minimal number of generators for a zero-dimensional ideal exactly.

Lemma 3.7

Let I � R be zero-dimensional ideal and let < denote any local ordering on R.

Then the minimal number of generators of I is

dimC(I/mI) = dimC (R/L<(I)
)
− dimC (R/L<(mI)

)
.
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Remark 3.8

If we apply Lemma 3.6 to a zero-dimensional complete intersection ideal I�R,

i. e. a zero-dimensional ideal generated by two elements, then we know that

the histogram of H0
R/I will be as shown in Figure 6; that is, up to the value

d(I)mult(I)

mult(I)

FIGURE 6. The histogram of H0
R/I for a complete intersection.

d = mult(I) the histogram of H0
R/I is an ascending staircase with steps of

height and length one, then it remains constant for a while, and finally it is

a descending staircase again with steps of height one, but a possibly longer

length. In particular we see that

mult(I) ≤





d(I)+1
2

, if d(I) is odd,

d(I)
2
, if d(I) is even.

(3.1)

Example 3.9

Let I = mk for k ≥ 1. Then d(I) = mult(I) = k and dimC(R/I) =
(
k+1
2

)
.

k

k

FIGURE 7. The histogram of H0
R/mk . The shaded region is the

maximal possible value of dimC(R/I) for a complete intersection

ideal I containing mk.

Lemma 3.10

Let I � R be a zero-dimensional complete intersection ideal, then

dimC(R/I) ≤
(
d(I) − mult(I) + 1

)
· mult(I).
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In particular

dimC(R/I) ≤






(d(I)+1)2

4
, if d(I) odd,

d(I)2+2d(I)
4

, if d(I) even.

Proof: By Remark 3.4 we have to find an upper bound for the area A of the

histogram of H0
R/I . This area would be maximal, if in the descending part the

steps had all length one, i. e. if the histogram was as shown in Figure 8. Since

H0
R/I(d)

dd(I)mult(I) d(I) − mult(I)

mult(I)

FIGURE 8. Maximal possible area.

the two shaded regions have the same area, we get

A ≤
(
d(I) − mult(I) + 1

)
· mult(I).

Consider now the function

ϕ :
[
mult(I), d(I)+1

2

]
−→ R : x 7→

(
d(I) − x+ 1

)
· x,

then this function is monotonously increasing, which finishes the proof in view

of Equation (3.1).

Corollary 3.11

For an ordinary m-fold pointMm we have

τ esci (Mm) =






(m+1)2

4
, if m ≥ 3 odd,

m2+2m
4

, if m ≥ 4 even,

1, if m = 2.

Proof: Let f be a representative ofMm. Then

Ies(f) =

〈
∂f

∂x
,
∂f

∂x

〉
+ mm,

and as in the proof of Proposition 1.12 we may assume that f is a homoge-

neous of degree m.

In particular, if m = 2, then Ies(f) = m is a complete intersection and

τ esci (M2) = 1. We may therefore assume that m ≥ 3.
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For any complete intersection ideal I with mm ⊂ Ies(f) ⊆ I we automatically

have d(I) ≤ m, and by Lemma 3.10

τ esci (f) ≤





(m+1)2

4
, if m odd,

m2+2m
4

, if m ≥ 4 even.

Consider now the representative f = xm−ym. Ifm = 2k is even, then the ideal

I = 〈xk, yk+1〉 is a complete intersection with Ies(f) ⊂ I and

τ esci (f) ≥ dimC(R/I) = k2 + k =
m2 + 2m

4
.

Similarly, if m = 2k − 1 is odd, then the ideal I = 〈xk, yk〉 is a complete inter-

section with Ies(f) ⊂ I and

τ esci (f) ≥ dimC(R/I) = k2 =
m2 + 2m+ 1

4
.

Remark 3.12

Let I � R be any zero-dimensional ideal, not necessarily a complete intersec-

tion, then still

dimC(R/I) ≤
(

d(I) − mult(I) − 1

2

)
· mult(I).

Proof: The proof is the same as for the complete intersection ideal, just that

we cannot ensure that the histogram goes down to zero at d(I) with steps of

size one. The dimension is thus bounded by the region of the histogram in

Figure 9.

H0
R/I(d)

dd(I)mult(I)

mult(I)

FIGURE 9. Maximal possible area.

4. Semi-Quasihomogeneous Singularities

Definition 4.1

A non-zero polynomial of the form f =
∑

α·p+β·q=d aα,βx
αyβ is called quasihomo-

geneous of (p, q)-degree d. Thus the Newton polygon of a quasihomogeneous

polynomial has just one side of slope −p
q
.
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A quasihomogeneous polynomial is said to be non-degenerate if it is reduced,

that is if it has no multiple factors, and it is said to be convenient if d
p
, d
q
∈ Z

and a d
p
,0 and a0, d

q
are non-zero, that is if the Newton polygon meets the x-axis

and the y-axis.

If f = f0+f1 with f0 quasihomogeneous of (p, q)-degree d and for any monomial

xαyβ occurring in f1 with a non-zero coefficient we have α · p+ β · q > d, we say

that f is of (p, q)-order d, and we call f0 the (p, q)-leading form of f and denote

it by lead(p,q)(f). We denote the (p, q)-order of f by ord(p,q)(f).

A power series f ∈ R is said to be semi-quasihomogeneous with respect to the

weights (p, q) if the (p, q)-leading form is non-degenerate.

Remark 4.2

Let f ∈ R with deg(p,q)(f) = pq and let f0 denote its (p, q)-leading form.

(a) If gcd(p, q) = r, then f0 has r factors of the form aix
q
r − biy

p
r , i = 1, . . . , r.

If, moreover, f0 is non-degenerate, then these will all be irreducible and

pairwise different, i. e. not scalar multiples of each other.

(b) If f is irreducible, then f0 has only one irreducible factor, possibly of

higher multiplicity.

(c) If f0 is non-degenerate, then f has r = gcd(p, q) branches f1, . . . , fr,

which are all semi-quasihomogeneous with irreducible (p, q)-leading

form aix
q
r − biy

p
r for pairwise distinct points (ai : bi) ∈ P1C , i = 1, . . . , r.

The characteristic exponents of fi are
q
r
and p

r
for all i = 1, . . . , r, and

thus fi admits a parametrisation of the form
(
xi(t), yi(t)

)
=
(
αit

p
r + h.o.t, βit

q
r + h.o.t

)
.

(d) If f0 is non-degenerate, i. e. f is semi-quasihomogeneous, and g ∈ R,

then

i(f, g) ≥ ord(p,q)(g).

Proof:

(a) If αp + βq = pq, then p | βq and hence p | βr, so that β · r
p
is a natural

number. Similarly α · r
q
is a natural number. We may therefore consider

the transformation

f0

(
x

r
q , y

r
p

)
∈ C[x, y]r

which is a homogeneous polynomial of degree r. Thus f0

(
x

r
q , y

r
p

)
factors

in r linear factors aix− biy, i = 1, . . . , r, so that f0 factors as

f0 =
r∏

i=1

(
aix

q
r − biy

p
r

)
. (4.1)

Since gcd
(
p
r
, q
r

)
= 1, the factors aix

q
r − biy

p
r are irreducible once neither

ai nor bi is zero.
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If f0 is non-degenerate, then the irreducible factors of f0 are pairwise

distinct. So, ai = 0 implies r = p and still aix
q
r − biy

p
r = biy irreducible,

while bi = 0 similarly gives r = q and aix
q
r − biy

p
r = aix irreducible.

Thus, in any case the factors in (4.1) are irreducible and, hence, pairwise

distinct.

(b) With the notation from Lemma 4.3 and the factorisation of f0 from (4.1)

we get

g =

∏r
i=1 aiu

bq
r v

pq

r2 − biu
ap
r v

pq

r2

uapv
pq
r

=

r∏

i=1

(aiu− bi).

By assumption f is irreducible, hence according to Lemma 4.3 g has at

most one, possibly repeated, zero. But thus the factors of f0 all coincide

– up to scalar multiple.

(c) The first assertion is an immediate consequence from (a) and (b), while

the “in particular” part follows by Puiseux expansion.

(d) Let g0 be the (p, q)-leading form of g. Using the notation from (c) we have

i(f, g) =
r∑

i=1

i(fi, g) =
r∑

i=1

ord
(
g(xi(t), yi(t))

)

=

r∑

i=1

ord
(
g0

(
αit

p
r , βit

q
r

)
+ h.o.t

)
≥

r∑

i=1

ord(p,q)(g)

r
= ord(p,q)(g).

Lemma 4.3

Let f ∈ R with ord(p,q)(f) = pq and let f0 denote its (p, q)-leading form. Let

r = gcd(p, q) and a, b ≥ 0 such that qb− pa = r. Finally set

g =
f0

(
ubv

p
r , uav

q
r

)

uapv
pq
r

∈ C[u].

Then the number of different zeros of g is a lower bound for the number of

branches of f .

Proof: See [BrK86] Remark on p. 480.

The following investigations are crucial for the proof of Proposition 1.13.

Lemma 4.4

Let f ∈ R be convenient semi-quasihomogeneous with leading form f0 and

ord(p,q)(f) = pq, let I =
〈
xαyβ

∣∣ αp+ βq ≥ pq
〉
, and let h ∈ R. Then

dimCR/(〈h〉 + Ies(f)
)
< dimCR/(〈h〉 + I

)
.

In particular, if L(p,q)(h) = yB with B ≤ p, then

dimCR/〈h〉 + Ies(f) ≤ Bq − 1 −
B−1∑

i=1

⌊
qi
p

⌋
.
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Proof: As

Ies(f) =
〈
∂f
∂x
, ∂f
∂y

〉
+ I,

it suffices to show that

Ies(f) 6⊆ 〈h〉 + I,

which is the same as showing that not both ∂f
∂x

and ∂f
∂y

belong to 〈h〉 + I.

Suppose the contrary, that is, there are hx, hy ∈ R such that

∂f
∂x

≡ hx · h (mod I) and ∂f
∂y

≡ hy · h (mod I).

We note that

lead(p,q)

(
∂f
∂x

)
= ∂f0

∂x
and lead(p,q)

(
∂f
∂y

)
= ∂f0

∂y
,

and none of the monomials involved is contained in I. Therefore

lead(p,q)(hx) · lead(p,q)(h) = ∂f0
∂x

and lead(p,q)(hy) · lead(p,q)(h) = ∂f0
∂y
,

which in particular implies that ∂f0
∂x

and ∂f0
∂y

have a common factor. This, how-

ever, is then a multiple factor of the quasihomogeneous polynomial f0, in con-

tradiction to f being semi-quasihomogeneous.

β

α

p

B

q

αp + βq ≥ pq

FIGURE 10. A Basis of R/〈h〉 + I.

For the “in particular” part, we note that by Proposition 2.3

dimCR/〈h〉 + I = dimCR/L<(p,q)

(
〈h〉 + I

)
≤ dimCR/〈yB〉+ I,

and the monomials xαyβ with αp + βq < pq and β < B form a C-basis of the

latter vector space (see also Figure 10). Hence,

dimCR/〈h〉 + I ≤
B−1∑

i=0

⌈
q − qi

p

⌉
= Bq −

B−1∑

i=1

⌊ qi
p

⌋
.
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Lemma 4.5

Let g, h ∈ R such that L(p,q)(g) = xAyB and L(p,q)(h) = yC , and consider the

ideals J =
〈
xAyB, yC, xαyβ

∣∣ αp + βq ≥ pq
〉
and J ′ =

〈
g, h, xαyβ

∣∣ αp + βq ≥ pq
〉
.

Then

dimCR/J ′ ≤ dimCR/J,
and if Ap +Bq ≤ pq and B ≤ C ≤ p, then

dimCR/J = Ap+Bq − AB −
A−1∑

i=1

⌊
pi
q

⌋
−

B−1∑

i=1

⌊
qi
p

⌋
−

p−1∑

i=C

min
{
A,
⌈
q − Cq

p

⌉}
.

Moreover, if B = 0, then dimCR/J ≤ A · C.

Proof: By Proposition 2.3

dimCR/J ′ ≤ dimCR/L<(p,q)
(J ′) ≤ dimCR/J.

Let I =
〈
xαyβ

∣∣ αp + βq ≥ pq
〉
. Then the monomials xαyβ with (α, β) ∈ Λ ={

(α, β) ∈ N×N ∣∣ αp+ βq < pq
}
form a basis of R/I. Moreover, the monomials

xαyβ with (α, β) ∈ Λ1 ∪ Λ2 are a basis of J/I, where

Λ1 =
{
(α, β) ∈ Λ

∣∣ α ≥ A and β ≥ B
}

and

Λ2 =
{
(α, β) ∈ Λ \ Λ1

∣∣ β ≥ C
}
.

(See also Figure 11.) This gives rise to the above values for dimCR/J .
β

α

p

C

B

qA

Λ1

Λ2

αp + βq ≥ pq

FIGURE 11. A Basis of R/J .

Lemma 4.6

Let q > p be such that q
p
< d

d−1
for some integer d ≥ 2, and let 0 ≤ A ≤ d.

(a) If L(p,q)(g) = xA, then L<ds
(g) = xA.
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(b) mp+1 ⊆
〈
xA, yp−1, xαyβ

∣∣ αp+ βq ≥ pq
〉
.

(c) If I is an ideal such that g, h, xαyβ ∈ I for αp + βq ≥ pq and where

L<(p,q)
(g) = xA and L<(p,q)

(h) = yp−1, then d(I) ≤ p + 1.

Moreover, if L<(p,q)
(g) is minimal among the leading monomials of ele-

ments in I w. r. t. <(p,q), then mult(I) = A.

Proof: It suffices to consider the case A = d, since this implies the other cases.

Note that by assumption d ≤ p.

(a) Since xd is less than any monomial of degree at least d with respect

to <ds, we have to show that in g no monomial of degree less than d

can occur with a non-zero coefficient. xd being the leading monomial

of g with respect to <(p,q), it suffices to show that α + β < d implies

αp+ βq < dp, or alternatively, since q
p
< d

d−1
,

α+ β · d

d− 1
≤ d.

For α + β < d the left hand side of this inequality will be maximal for

α = 0 and β = d− 1, and thus the inequality is satisfied.

(b) We only have to show that xγyp+1−γ ∈
〈
xd, yp−1, xαyβ

∣∣ αp + βq ≥ pq
〉
for

γ = 3, . . . , d − 1, since the remaining generators of mp+1 definitely are.

However, by assumption q
p
< d

d−1
≤ γ

γ−1
, and thus γ ·p+(p+1−γ) ·q ≥ pq.

(c) By the assumption on I we deduce form (a) and (b) that d
(
L<ds

(I)
)
≤

p+ 1. However, by Remark 3.3 d(I) = d
(
L<ds

(I)
)
, which proves the first

assertion.

Suppose now that mult(I) < A, i. e. there is an f ∈ I such that

mult(f) ≤ A−1. The considerations for (a) show that then L<(p,q)
(f) < xA

in contradiction to the assumption.



PAPER III

Reducible Families of Curves with Ordinary Multiple

Points on Surfaces in P3C
Abstract: In [Kei03], [Kei05a] and [Kei05b] we gave numerical

conditions which ensure that an equisingular family is irreducible

respectively T-smooth. Combining results from [GLS01] and an idea

from [ChC99] we give in the present paper series of examples of

families of irreducible curves on surfaces in P3C with only ordinary

multiple points which are reducible and where at least one compo-

nent does not have the expected dimension. The examples show

that for families of curves with ordinary multiple points the condi-

tions for T-smoothness in [Kei05b] have the right asymptotics.

This paper is published as [Kei06] Thomas Keilen, Reducible fami-

lies of curves with ordinary multiple points on surfaces in P3, Comm.

in Alg. 34 (2006), no. 5, 1921–1926.

Throughout this article Σ will denote a smooth projective surface in P3C of

degree n ≥ 2, and H will be a hyperplane section of Σ. For a positive integer

m we denote by Mm the topological singularity type of an ordinary m-fold

point, i. e. the singularity has m smooth branches with pairwise different

tangents. And for positive integers d and r we denote by V irr
|dH|(rMm) the family

of irreducible curves in the linear system |dH| with precisely r singular points

all of which are ordinary m-fold points. V irr
|dH|(rMm) is called T-smooth if it is

smooth of the expected dimension

expdim
(
V irr
|dH|(rMm)

)
= dim |dH| − r · m

2 +m− 4

2
.

Theorem 1.1

For m ≥ 18n there is an integer l0 = l0(m,Σ) such that for all l ≥ l0 the family

V irr
|dH|(rMm) with d = 2lm+ l and r = 4l2n has at least one T-smooth component

and one component of higher dimension.

Moreover, the T-smooth component dominates Symr(Σ) under the map

V irr
|dH|(rMm) −→ Symr(Σ) : C 7→ Sing(C)

sending a curve C to its singular locus, and the fundamental group π1(Σ \ C)

of the complement of any curve C ∈ V irr
|dH|(rMm) is abelian.
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Before we prove the theorem let us compare the result with the conditions for

T-smoothness in [Kei05b] and for irreducibility in [Kei05a].

Here we have given examples of non-T-smooth families V|dH|(rMm) where

r ·m2 ≡ n · d2,

if we neglect the terms of lower order inml. If n ≥ 4 and the Picard number of

Σ is one, then according to [Kei05b] Corollary 2.3 respectively Corollary 2.4

– neglecting terms of lower order in m and d –

r ·m2 <
1

2n− 6
· n · d2

would be a sufficient condition for T-smoothness. Similarly, if n = 2, then Σ is

isomorphic to P1C × P1C and we may apply [Kei05b] Theorem 2.5 to find that

r ·m2 <
1

8
· n · d2

implies T-smoothness. Since the families fail to satisfy the conditions only by

a constant factor we see that asymptotically in d, m and r the conditions for

T-smoothness are proper.

For irreducibility the situation is not quite as good. The conditions in

[Kei05a] Corollary 2.4 for irreducibility if n ≥ 4 and the Picard number of

Σ is one is roughly

r ·m2 <
24

n2m2
· n · d2,

and similarly for n = 2 [Kei05a] Theorem 2.6 it is

r ·m2 <
1

6m2
· n · d2.

Here the “constant” by which the families fail to satisfy the condition depends

on the multiplicitym, so that with respect tom the asymptotics are not proper.

However, we should like to point out that it does not depend on the number r

of singular points which are imposed.

The families in Theorem 1.1 thus exhibit the same properties as the families

of plane curves provided in [GLS01], which we use to construct the non-T-

smooth component. The idea is to intersect a family of cones in P3C over the

plane curves provided by [GLS01] with Σ and to calculate the dimension of

the resulting family. Under the conditions on m and l requested this family

turns out to be of higher dimension than the expected one. The same idea

was used by Chiantini and Ciliberto in [ChC99] in order to give examples

of nodal families of curves on surfaces in P3C which are not of the expected

dimension. We then combine an asymptotic h1-vanishing result by Alexander

and Hirschowitz [AlH00] with an existence statement from [KeT02] to show

that there is also a T-smooth component, where actually the curves have their

singularities in very general position.
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Proof of Theorem 1.1: Fix a general plane P in P3C and a general point p.

By [GLS01] there is an integer l1 = l1(m) such that for any l ≥ max{l1, m} the

family of curves in P of degree 2lm+ l with 4l2 ordinary m-fold points as only

singularities has a componentW of dimension

dim(W ) ≥ (m+ 1) · (l + 1) · (l + 2)

2
+ (2l + 1) · (2l + 2) − 4

=
l2m+ 9l2 + 3lm+ 15l + 2m− 4

2
.

LetW be the family of cones with vertex p over curves C inW , then dim(W) =

dim(W ), since a cone is uniquely determined by the curve C and the vertex

p. Moreover, any cone in W has precisely 4l2 lines of multiplicity m, so that

when we intersect it with Σ we get in general an irreducible curve in Σ with

4l2n ordinary m-fold points. In particular, V irr
|(2lm+l)H|

(
4l2nMm

)
must have a

componentW ′ of dimension

dim(W ′) ≥ dim(W ) ≥ l2m+ 9l2 + 3lm+ 15l + 2m− 4

2
.

However, since the dimension of the linear system |dH| is

dim |dH| =

(
d+ 3

3

)
−
(
d+ 3 − n

3

)
− 1,

and since

τ es(Mm) =
m · (m+ 1)

2
− 2

is the expected number of conditions imposed by an ordinarym-fold point, the

expected dimension of V irr
|(2lm+l)H|

(
4l2nMm

)
is

expdim
(
V irr
|(2lm+l)H|

(
4l2nMm

)
)
)

=dim |(2lm+ l)H| − 4l2nτ es(Mm)

=
17l2n+

(
4n− n2

)
· l · (2m+ 1)

2
+
n3 − 6n2 + 11n

6
.

Due to the conditions on m and l this number is strictly smaller than the

dimension of W ′. It remains to show that V irr
|(2lm+l)H|

(
4l2nMm

)
also has a T-

smooth component, after possibly enlarging l1.

For z = (z1, . . . , zr) ∈ Σr we denote by X(m; z) the zero-dimensional scheme

with ideal sheaf JX(m;z) given by the stalks

JX(m;z),z =





mm
Σ,z, if z ∈ {z1, . . . , zr},

OΣ,z, else,

where OΣ,z denotes the local ring of Σ at z and mΣ,z is its maximal ideal.

By [AlH00] Theorem 1.1 there is an integer l2 = l2(m,Σ) such that for l ≥ l2
and z ∈ Σr in very general position the canonical map

H0
(
Σ,OΣ((2lm+ l − 1)H)

)
−→ H0

(
Σ,OX(m;z)((2lm+ l − 1)H)

)
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has maximal rank. In particular, since h1
(
Σ,OΣ((2lm+ l − 1)H)

)
= 0 we have

h1
(
Σ,JX(m;z)(2lm+ l − 1)H)

)
= 0,

once deg
(
X(m; z)

)
≤ h0

(
Σ,OΣ((2lm+ l − 1)H)

)
, which is equivalent to

4l2n ·m · (m+ 1)

2
≤
(

2lm+ l + 2

3

)
−
(

2lm+ l + 2 − n

3

)
,

or alternatively

nl ·
(
l − (n− 2) · (2m+ 1)

)

2
+
n3 − 3n2 + 2n

6
≥ 0.

The latter inequality is fulfilled as soon as l ≥ (n − 2) · (2m + 1). Moreover,

under this hypothesis we have

(2lm+ l) ·H2 − 2g(H) = (2lm+ l) · n− (n− 1) · (n− 2) ≥ 2m,

where g(H) denotes the geometric genus of H, and

(2lm+ l)2 ·H2 > 4l2nm2. (1.1)

Thus [KeT02] Theorem 3.3 (see also [Kei01] Theorem 1.2) implies that the

family V irr
|(2lm+l)H|

(
4l2nMm

)
has a non-empty T-smooth component, more pre-

cisely it contains a curve in a T-smooth component with singularities in

z1, . . . , zr. In particular, since there is only a finite number of components

and z is in very general position, some T-smooth component must dominate

Symr(Σ). Actually, due to [Los98] Proposition 2.1 (e) and since h1(Σ,OΣ) = 0

every T-smooth component dominates Symr(Σ).

Thus the statement follows with

l0(m,Σ) := max
{
l1(m), l2(m,Σ), (deg(Σ) − 2) · (2m+ 1), m

}
.

It just remains to show that the fundamental group of the complement of

a curve C ∈ V irr
|dH|(rMm) is abelian. Note first of all that by the Lefschetz

Hyperplane Section Theorem Σ is simply connected. But then π1(Σ \ C) is

abelian by [Nor83] Proposition 6.5 because of (1.1).



PAPER IV

Some Obstructed Equisingular Families of Curves on

Surfaces in P3C
Abstract: Very few examples of obstructed equsingular families

of curves on surfaces other than P2C are known. Combining results

from [Wes04] and [Hir92] with an idea from [ChC99] we give in

the present paper series of examples of families of irreducible curves

with simple singularities on surfaces in P3C which are not T–smooth,

i.e. do not have the expected dimension, (Section 1) and we compare

this with conditions (showing the same asymptotics) which ensure

the existence of a T–smooth component (Section 2).

This paper has been accepted for publication in the Proceedings of

the Conference on “Singularities”, C.I.R.M., 2005, [Mar05].

Below we are going to construct two series of equisingular families of curves

on surfaces in P3C . In both examples the families are obstructed in the sense

that they do not have the expected dimension. However, while in the first

example at least the existence of such curves was expected, the families in

the second example were expected to be empty. It would be interesting to

see if the equisingular families contain further components which are well–

behaved. However, the families which we construct fail to satisfy the numer-

ical conditions for the existence of such a component given in Section 2 by a

factor of two. We do not know whether the families are reducible or not, or if

they are smooth.

1. Examples of obstructed families

Throughout this section Σ will denote a smooth projective surface in P3C of

degree n ≥ 2, and H will be a hyperplane section of Σ. S = {S1, . . . ,Ss} will

be a finite set of simple singularity types, that is the Si are of type Ak (given

by x2 − yk+1 = 0, k ≥ 1), Dk (given by x2y − yk−1 = 0, k ≥ 4), or Ek (given by

x3−y4 = 0, x3−xy3 = 0, or x3−y5 = 0 for k = 6, 7, 8 respectively). In general, for

positive integers r1, . . . , rs and d we denote by V irr
|dH|(r1S1, . . . , rsSs) the family of

irreducible curves in the linear system |dH| with precisely r = r1 + . . . + rs

singular points, ri of which are of the type Si, i = 1, . . . , s, where Si may be any

analytic type of an isolated singularity. V irr
|dH|(r1S1, . . . , rsSs) is called T–smooth
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or not obstructed if it is smooth of the expected dimension

expdim
(
V irr
|dH|(r1S1, . . . , rsSs)

)
= dim |dH| −

s∑

i=1

ri · τ(Si)

=
nd2 + (4n− n2)d

2
+
n3 − 6n2 + 11n− 6

6
−

s∑

i=1

ri · τ(Si),

where τ(S) = dimCC{x, y}/〈∂f∂x , ∂f∂y , f〉 is the Tjurina number of the singularity

type S given by the local equation f = 0. Note that τ(Ak) = τ(Dk) = τ(Ek) = k.

In this note we give examples of such equisingular families of curves which

are obstructed in the sense that they have dimension larger than the expected

one. We use the idea by which Chiantini and Ciliberto in [ChC99] showed the

existence of obstructed families of nodal curves.

Let us fix a plane P in P3C , a point p outside P , and a curve C of degree d > 1 in

P . If we intersect the cone KC,p over C with vertex p with Σ, this gives a curve

C ′ = KC,p∩Σ in |dH| which is determined by the choice of C and p (see Lemma

3.1). In particular, if C varies in an N-dimensional family in P , then C ′ varies

in an N-dimensional family on Σ, and if C is irreducible, then for a general

choice of p the curve C ′ will be irreducible as well (see Lemma 3.2). Moreover,

if C has a singular point q of (simple) singularity type S and Σ meets the line

joining p and q transversally in n points, then C ′ will have a singularity of the

same type in each of these points.

Example 1.1

Fix the set S = {S1, . . . ,Ss} and let m = max{τ(S) | S ∈ S}. Suppose that

n > 2m+ 4 and d >> n, and let r1, . . . , rs ≥ 0 be such that

d2 + (4 − n)d+ 2

2
≤

s∑

i=1

ri · τ(Si) ≤ d2 + (4 − n)d+ 2

2
+m− 1.

Then
s∑

i=1

ri · τ(Si) ≤
d2 + (4 − n)d+ 2

2
+m− 1 ≤ d2

2
−m · d− 3.

Hence, by [Wes04] Remark 3.3.5 the family V = V irr
d (r1S1, . . . , rsSs) of irre-

ducible plane curves C of degree d with precisely r = r1 + . . . + rs singular

points, ri of which are of type Si, is non-empty, and we may estimate its di-

mension:

dim(V ) ≥ expdim(V ) =
d(d+ 3)

2
−

s∑

i=1

ri · τ(Si)

≥ d(d+ 3)

2
− d2 + (4 − n)d+ 2

2
−m+ 1 =

n− 1

2
· d−m.
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By the above construction we see that hence the family of curves C ′ satisfies

dim
(
V irr
|dH|(nr1S1, . . . , nrsSs)

)
≥ n− 1

2
· d−m.

However, the expected dimension of this family is

expdim
(
V irr
|dH|(nr1S1, . . . , nrsSs)

)

=
nd2 + (4n− n2)d

2
+
n3 − 6n2 + 11n− 6

6
−

s∑

i=1

n · ri · τ(Si)

≤ nd2 + (4n− n2)d

2
+
n3 − 6n2 + 11n− 6

6
− n ·

(
d2 + (4 − n)d+ 2

2

)

=
n3 − 6n2 + 5n− 6

6
.

For d >> n, more precisely for

d >
n3 − 6n2 + 5n− 6 + 6m

3n− 3
,

the expected dimension will be smaller than the actual dimension, which

proves that the family is obstructed.

In particular, if S = {S}, S ∈ {Ak, Dk, Ek}, and

r =

⌈
d2 + (4 − n)d+ 2

2k

⌉
,

then V|dH|(nrS) is obstructed, once d >> n > 3k + 4.

Note that in the previous example

expdim
(
V|dH|(nr1S1, . . . , nrsSs)

)
≥ n3 − 6n2 + 5n− 6

6
− n · (m− 1) > 0,

that is, the existence of curves in |dH| with the given singularities was ex-

pected. This not so in the following example.

Example 1.2

Let k be an even, positive integer, m ≥ 1, d = 2(k + 1)m, and

r =
3 · (k + 1) ·

(
(k + 1)2m − 1

)

(k + 1)2 − 1
.

Hirano proved in [Hir92] the existence of an irreducible plane curve of degree

d with precisely r singular points all of type Ak. Thus the above construction

shows that

V irr
|dH|(nrAk)

is non-empty. However, the expected dimension is

expdim
(
V irr
|dH|(nrAk)

)
=
nd2 + (4n− n2)d

2
+
n3 − 6n2 + 11n− 6

6
− knr

=

(
2 − 3 · (k2 + k)

k2 + 2k

)
· (k + 1)2m + o

(
(k + 1)m

)
,
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which is negative for m sufficiently large, since

3 · (k2 + k)

k2 + 2k
> 2.

This shows that V irr
|dH|(nrAk) is obstructed for sufficiently large k.

2. Some remarks on conditions for T–smoothness

Unless otherwise specified in this section Σ will be an arbitrary smooth pro-

jective surface, H a very ample divisor on Σ, and S1, . . . ,Ss arbitrary (not nec-

essarily different) topological or analytical singularity types. As in Section 1

we denote for d ≥ 0 by V irr
|dH|(S1, . . . ,Ss) the equisingular family of irreducible

curves in |dH| with precisely s singular points of types S1, . . . ,Ss, and again

the expected dimension is

expdim
(
V irr
|dH|(S1, . . . ,Ss)

)
= dim |dH| −

s∑

i=1

τ(Si).

V irr
|dH|(S1, . . . ,Ss) is called T–smooth if it is smooth of the expected dimension.

By [Kei01] Theorem 1.2 and 2.3 (which is a slight improvement of [KeT02]

Theorem 3.3 and Theorem 4.3) there is a curve C ∈ V irr
|dH|(S1, . . . ,Ss) if

• d ·H2 − g(H) ≥ mi +mj , and

• h1
(
Σ,JX(m;z)/Σ((d− 1)H)

)
= 0 for z ∈ Σr very general,

where m = (m1, . . . , ms) with mi = e∗(Si), a certain invariant which only de-

pends on Si. Moreover, V irr
|dH|(S1, . . . ,Ss) is T–smooth at this curve C (see e.g.

[Shu99] Theorem 1). Finally, by [AlH00] Theorem 1.1 there is a number d(m)

depending only on m = max{m1, . . . , ms}, such that for all d ≥ d(m) and for

z ∈ Σr very general the map

H0
(
Σ,OΣ((d− 1)H)

)
−→ H0

(
Σ,OX(m;z)/Σ((d− 1)H)

)

has maximal rank. In particular, if

dim |(d− 1)H| ≥ deg
(
X(m; z)

)
=

s∑

i=1

mi · (mi + 1)

2
,

then h1
(
Σ,JX(m;z)/Σ((d− 1)H)

)
= 0. This proves the following Proposition.

Proposition 2.1

Let S = {S1, . . . ,Ss} be a finite set of pairwise different topological or analytical

singularity types. Then there exists a number d(S) such that for all d ≥ d(S)

and r1, . . . , rs ≥ 0 satisfying

s∑

i=1

ri ·
e∗(Si) ·

(
e∗(Si) + 1

)

2
< dim |(d− 1)H| (2.1)

the equisingular family V irr
|dH|(r1S1, . . . , rsSs) has a non-empty T–smooth compo-

nent.
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In [Shu03] upper bounds for e∗(S) are given. For a non-simple analytical

singularity type we have

e∗(S) = ea(S) ≤ 3
√
µ(S) − 2

where µ(S) is the Milnor number of S, and for any topological singularity type

e∗(S) = es(S) ≤ 9√
6
·
√
δ(S) − 1,

where δ(S) is the delta invariant of S.
For simple singularity types there are the better bounds

S e∗(S) S e∗(S)

A1 2 D4 3

A2 3 D5 4

Ak, k = 3, . . . , 7 4 Dk, k ≤ 6, . . . , 10 5

Ak, k = 8, . . . , 10 5 Dk, k ≤ 11, . . . , 13 6

Ak, k ≥ 1 ≤ 2 ·
⌊√

k + 5
⌋

Dk, k ≥ 1 ≤ 2 ·
⌊√

k + 7
⌋

+ 1

E6 4 E7 4

E8 5

In particular, if S = {S1, . . . ,Ss} is a finite set of simple singularities, then

there is a d(S) such that for all d ≥ d(S) and all r1, . . . , rs ≥ 0 satisfying

2 ·
s∑

i=1

ri ·
(
τ(Si) + o

(√
τ(Si)

))
≤ dim |dH| (2.2)

the family V irr
|dH|(nr1S1, . . . , nrsSs) has a non-empty T–smooth component.

The families in Example 1.1 fail to satisfy this condition roughly by the factor

2. We thus cannot conclude that these families are reducible as we could in a

similar situation in [Kei06].

However, if we compare Condition 2.1 respectively 2.2 to the conditions in

[GLS00] or [Kei05b] which ensure that the equisingular family is T–smooth

at every point, the latter basically invole the square of the Tjurina number

and are therefore much more restrictive. This, of course, was to be expected.

3. Some remarks on cones

In this section we collect some basic properties on cones used for the constru-

cion in Section 1, in particular the dimension counts.

For points p1, . . . , pr ∈ P3C we will denote by p1 . . . pr the linear span in P3C of

p1, . . . , pr, i.e. the smallest linear subspace containing p1, . . . , pr.
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Let P ⊂ P3C be a plane, C ⊂ P a curve, and p ∈ P3C \ P a point. Then we denote

by

KC,p =
⋃

q∈C
qp

the cone over C with vertex p. Note that

KC,p =
⋃

q∈KC,p

qp

and that

KC,p ∩ P = C.

We first show that C and p fix the cone uniquely except when C is a line.

Lemma 3.1

Let P ⊂ P3C be a plane, and C ⊆ P be an irreducible curve which is not a line.

Then for p, p′ ∈ P3C with p 6= p′ we have that KC,p 6= KC,p′.

Proof: Suppose there are points p 6= p′ such that KC,p = KC,p′. Choose a point

x ∈ C \ pp′ and let E = xpp′. Then for any point y ∈ xp ⊂ KC,p = KC,p′ we have

yp′ ⊂ KC,p′,

and thus E =
⋃
y∈xp yp

′ ⊂ KC,p′. This, however, implies that the line

l = E ∩ P ⊆ KC,p′ ∩ P = C

is contained in C, and since C is irreducible we would have C = l in contradic-

tion to our assumption that C is not a line. Hence, KC,p 6= KC,p′ for p 6= p′.

Finally we show that for a general p the cone KC,p intersects Σ in an irre-

ducible curve.

Lemma 3.2

Let Σ ⊂ P3C be a smooth projective surface, P ⊂ P3C be a plane such that P 6= Σ,

and C ⊆ P an irreducible curve which is not a line and not contained in Σ.

Then for p ∈ P3C \ P general KC,p ∩ Σ is irreducible.

Proof: Consider the linear system L in P3C which is given as the closure of

{
KC,p | p ∈ P3C \ P

}
,

and set for q ∈ P3C \ P
Lq = {D ∈ L | q ∈ D}.

First we show that for q′ ∈ C and q 6∈ P
⋂

p∈qq′
KC,p = C ∪ qq′. (3.1)
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Choose pairwise different point p1, . . . , pn ∈ qq′ \ {q, q′}. Suppose that there is

a z ∈ ⋂n
i=1KC,pi

\ (C ∪ qq′). Since z ∈ KC,pi
there is a unique intersection point

xi = zpi ∩ C,
and these points x1, . . . , xn are pairwise different, since z 6∈ qq′ = pipj for i 6= j.

However,

xi ∈ zpi ⊂ zpipj = zqq′

and xi ∈ C ⊂ P , so that

q′, x1, . . . , xn ∈ P ∩ zqq′
and q′, x1, . . . , xn are pairwise different collinear points on C. Since C is irre-

ducible but not a line, this implies deg(C) ≥ n+ 1. In particular, if n ≥ deg(C),

then
n⋂

i=1

KC,pi
= C ∪ qq′,

which implies (3.1).

Note that by (3.1) for q ∈ P3C \ P
⋂

D∈Lq

D ⊆
⋂

KC,p∈Lq

KC,p =
⋂

q′∈C

⋂

p∈qq′
KC,p =

⋂

q′∈C

(
C ∪ qq′

)
= C ∪ {q},

and thus ⋂

D∈L
D ⊆

⋂

q∈P3C \P

⋂

D∈Lq

D = C. (3.2)

Consider now the linear systems

LΣ = {D ∩ Σ | D ∈ L} and Lq,Σ = {D ∩ Σ | D ∈ Lq} = {D ∈ LΣ | q ∈ D}.

Suppose that LΣ does not contain any irreducible curve. By (3.2) and since

C 6⊂ Σ the linear system LΣ has no fixed component. Thus by Bertini’s Theo-

rem LΣ must be composed with a pencil B, and since for a general point q ∈ Σ

the pencil B contains only one element, say C̃, through q, the linear system

Lq,Σ has a fixed component C̃. But then

C̃ ⊆
⋂

D∈Lq

D ∩ Σ = C ∩ Σ.

However, C ∩ Σ is zero-dimensional, while C̃ has dimension one.

This proves that LΣ contains an irreducible element, and thus its general

element is irreducible. In particular, for p ∈ P3C \ P general KC,p ∩ Σ is irre-

ducible.



78 IV. OBSTRUCTED FAMILIES WITH SIMPLE SINGULARITIES



Part B

79



80



PAPER V

A Note on Equimultiple Deformations

Abstract: While the tangent space to an equisingular family of

curves can be discribed by the sections of a twisted ideal sheaf, this

is no longer true if we only prescribe the multiplicity which a sin-

gular point should have. However, it is still possible to compute

the dimension of the tangent space with the aid of the equimulit-

plicity ideal. In this note we consider families Lm = {(C, p) ∈
|L| × S | multp(C) = m} for some linear system |L| on a smooth

projective surface S and a fixed positive integer m, and we compute

the dimension of the tangent space to Lm at a point (C, p) depending

on whether p is a unitangential singular point of C or not. We de-

duce that the expected dimension of Lm at (C, p) in any case is just

dim |L| − m·(m+1)
2 + 2. The result is used in the study of triple-point

defective surfaces in [ChM07a] and [ChM07b].

The paper is based on considerations about the Hilbert scheme of curves in a

projective surface (see e.g. [Mum66], Lecture 22) and about local equimultiple

deformations of plane curves (see [Wah74b]).

Definition 1.1

Let T be a complex space. An embedded family of curves in S with section over

T is a commutative diagram of morphisms

C � � //

ϕ

��

T × S

||xx
xx

xx
xx

x

T

σ

22

where codimT×S(C) = 1, ϕ is flat and proper, and σ is a section, i.e. ϕ ◦ σ = idT .

Thus we have a morphism OT → ϕ∗OC = ϕ∗
(
OT×S/JC

)
such that ϕ∗OC is a flat

OT -module.

The family is said to be equimultiple of multiplicity m along the section σ if

the ideal sheaf JC of C in OT×S satisfies

JC ⊆ Jm
σ(T ) and JC 6⊆ Jm+1

σ(T ) ,

where Jσ(T ) is the ideal sheaf of σ(T ) in OT×S.

Remark 1.2

Note that the above notion commutes with base change, i.e. if we have an

81
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equimultiple embedded family of curves in S over T as above and if α : T ′ → T

is a morphism, then the fibre product diagram

T ′ × S //

��
44

44
44

44
44

44
44

44
T × S

����
��

��
��

��
��

��
��

C′
1 Q

ccGGGGGGGGG

ϕ′

��

// C
- 

<<yyyyyyyyy

ϕ

��

T ′

σ′

kk

α
// T

σ

22

gives rise to an embedded equimultiple family of curves over T ′ of the same

multiplicity, since locally it is defined via the tensor product.

Example 1.3

Let us denote by Tε = Spec(C[ε]) with ε2 = 0. Then a family of curves in S

over Tε is just a Cartier divisor of Tε × S, that is, it is given on a suitable open

covering S =
⋃
λ∈Λ Uλ by equations

fλ + ε · gλ ∈ C[ε] ⊗C Γ(Uλ,OS) = Γ(Uλ,OT×S),

which glue together to give a global section
{
gλ

fλ

}
λ∈Λ

in H0
(
C,OC(C)

)
, where

C is the curve defined locally by the fλ (see e.g. [Mum66], Lecture 22).

A section of the family through p is locally in p given as (x, y) 7→ (xa, yb) =

(x+ ε · a, y + ε · b) for some a, b ∈ C{x, y} = OS,p.

Example 1.4

Let H be a connected component of the Hilbert scheme HilbS of curves in S,

then H comes with a universal family

π : H −→ H : (C, p) 7→ C. (1.1)

Let us now fix a positive integer m and set

Hm = {(C, p) ∈ H × S | C ∈ H,multp(C) = m}.
Then Hm is a locally closed subvariety of H × S, and (1.1) induces via base

change a flat and proper family Fm = {(Cp, q) ∈ Hm × S | Cp = (C, p) ∈ Hm, q ∈
C} which has a distinguished section σ

Fm
� � //

��

Hm × S

yyssssssssss

Hm

σ

88 (1.2)

sending Cp = (C, p) to (Cp, p) ∈ Fm. Moreover, this family is equimultiple

along σ of multiplicity m by construction.

Example 1.5

Similarly, if |L| is a linear system on S, then it induces a universal family

π : L = {(C, p) ∈ |L| × S | p ∈ C} −→ |L| : (C, p) 7→ C. (1.3)
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If we now fix a positive integer m and set

Lm = {(C, p) ∈ |L| × S | C ∈ |L|,multp(C) = m}.

Then Lm is a locally closed subvariety of |L| × S, and (1.3) induces via base

change a flat and proper family Gm = {(Cp, q) ∈ Lm × S | Cp = (C, p) ∈ Lm, q ∈
C} which has a distinguished section σ

Gm � � //

��

Lm × S

yytttttttttt

Lm

σ

77 (1.4)

sending Cp = (C, p) to (Cp, p) ∈ Gm. Moreover, this family is equimultiple along

σ of multiplicity m by construction.

We may interpret Lm as the family of curves in |L| withm-fold points together

with a section which distinguishes the m-fold point. This is important if the

m-fold point is not isolated or if it splits in a neighbourhood into several sim-

pler m-fold points.

Of course, since (1.3) can be viewed as a subfamily of (1.1) we may view (1.4)

in the same way as a subfamily of (1.2).

Definition 1.6

Let t0 ∈ T be a pointed complex space, C ⊂ S a curve, and p ∈ C a point of

multiplicity m. Then an embedded (equimultiple) deformation of C in S over

t0 ∈ T with section σ through p is a commutative diagram of morphisms

S
� � //

��
��

��
��

����
��

��
��

T × S

����
��

��
��

��
��

��
��

p ∈ C
, �

::vvvvvvvvvv

��

� � // C
- 

<<yyyyyyyyy

ϕ

��

t0

σ

BB

� // T

σ

>>

where the right hand part of the diagram is an embedded (equimultiple) fam-

ily of curves in S over T with section σ. Sometimes we will simply write (ϕ, σ)

to denote a deformation as above.

Given two deformations, say (ϕ, σ) and (ϕ′, σ′), of C over t0 ∈ T as above, a

morphism of these deformations is a morphism ψ : C′ → C which makes the
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obvious diagram commute:

T × S

��
))

))
))

))
))

))
))

))
))

))
))

))
))

))
))

)
T × S



��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

C′
1 Q

bbFFFFFFFFF

ϕ′

��

ψ
// C

- 

<<xxxxxxxxx

ϕ

��

C
/ O

__@@@@@@@ /�

??��������

��

t0
�

��?
??

??
??

>

��~~
~~

~~
~

T

σ′

YY

T

σ

EE

This gives rise to the deformation functor

Defsec,emp∈C/S : (pointed complex spaces) → (sets)

of embedded equimultiple deformations of C with section through p from

the category of pointed complex spaces into the category of sets, where for

a pointed complex space t0 ∈ T

Defsec,emp∈C/S(t0 ∈ T ) = {isomorphism classes of embedded equimultiple

deformations (ϕ, σ) of C in S over t0 ∈ T

with section through p}.

Moreover, forgetting the section we have a natural transformation

Defsec,emp∈C/Σ −→ DefC/Σ, (1.5)

where the latter is the deformation functor

DefC/Σ : (pointed complex spaces) → (sets)

of embedded deformations of C in S given by

DefC/S(t0 ∈ T ) = {isomorphism classes of embedded deformations

of C in S over t0 ∈ T }.

Example 1.7

According to Example 1.3 a deformation of C in S over Tε along a section

through p is given by

• local equations f + ε · g such that f is a local equation for C and the g
f

glue to a global section of OC(C),

• together with a section which in local coordinates in p is given as σ :

(x, y) 7→ (xa, yb) = (x+ ε · a, y + ε · b) for some a, b ∈ C{x, y}.
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If we forget the section it is well known (see e.g. [Mum66], Lecture 22) that

two such deformations are isomorphic if and only if they induce the same

global section of OC(C) and this one-to-one correspondence is functorial so

that we have an isomorphism of vector spaces

DefC/S(Tε)
∼=−→ H0

(
C,OC(C)

)
.

Considering the natural transformation from (1.5) we may now ask what the

image of Defsec,emp∈C/S(Tε) in H0
(
C,OC(C)

)
is. These are, of course, the sections

which allow a section σ through p along which the deformation is equimulti-

ple, and according to Lemma 1.8 we thus have an epimorphism

Defsec,emp∈C/S(Tε) ։ H0
(
C,JZ/C(C)

)
,

where JZ/C is the restriction to C of the ideal sheaf JZ on S given by

JZ,q =





OS,q, if q 6= p,
〈
∂f
∂x
, ∂f
∂y

〉
+ 〈x, y〉m, if q = p,

(1.6)

here f is a local equation for C in local coordinates x and y in p.

It remains the question what the dimension of the kernel of this map is, that

is, how many different sections such an isomorphism class of embedded defor-

mations of C in S over Tε through p can admit.

J. Wahl showed in [Wah74b], Proposition 1.9, that locally the equimultiple

deformation admits a unique section if and only if C in p is not unitangential.

If C is unitangential we may assume that locally in p it is given by f = ym +

h.o.t.. If we have an embedded deformation of C in S which along some section

is equimultiple of multiplicity m, then locally it looks like

f + ε ·
(
a · ∂f

∂x
+ b · ∂f

∂y
+ h
)

with h ∈ 〈x, y〉m. However, since ∂f
∂x

∈ 〈x, y〉m the deformation is equimultiple

along the sections (x, y) 7→ (x+ε · (c+a), y+ε ·b) for all c ∈ C. Thus in this case

the kernel turns out to be one-dimensional, i.e. there is a one-dimensional

vector space K such that the following sequence is exact:

0 → K → Defsec,emp∈C/S(Tε) → H0
(
C,JZ/C(C)

)
→ 0. (1.7)

Lemma 1.8

Let f+ε ·g be a first-order infinitesimal deformation of f ∈ C{x, y},m = ord(f),

a, b ∈ C{x, y}, and xa = x+ ε · a, yb = y + ε · b.
Then f + ε · g is equimultiple along the section (x, y) 7→ (xa, yb) if and only if

g − a · ∂f
∂x

− b · ∂f
∂y

∈ 〈x, y〉m.
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In particular, f + ε · g is equimultiple along some section if and only if

g ∈
〈
∂f

∂x
,
∂f

∂y

〉
+ 〈x, y〉m.

Proof: If a, b ∈ C{x, y} and h ∈ 〈x, y〉m then by Taylor expansion and since

ε2 = 0 we have

f + ε ·
(
a · ∂f

∂x
+ b · ∂f

∂y
+ h
)

= f(xa, yb) + ε · h(xa, yb),

where f(xa, yb), h(xa, yb) ∈ 〈xa, yb〉m, i.e. the infinitesimal deformation f + ε ·
(
a ·

∂f
∂x

+ b · ∂f
∂y

+ h
)
is equimultiple along (x, y) 7→ (xa, yb).

Conversely, if f + ε · g is equimultiple along (x, y) 7→ (xa, yb) then

f(x, y) + ε · g(x, y) = F (xa, yb) + ε ·G(xa, yb)

with F (xa, yb), G(xa, yb) ∈ 〈xa, yb〉m. Again, by Taylor expansion and since ε2 = 0

we have

f(x, y) = f(xa, yb) − ε ·
(
a · ∂f

∂x
(xa, yb) + b · ∂f

∂y
(xa, yb)

)

and

ε · g(x, y) = ε · g(xa, yb).
Thus

F (xa, yb) = f(xa, yb)

and

〈xa, yb〉m ∋ G(xa, yb) = g(xa, yb) − a · ∂f
∂x

(xa, yb) − b · ∂f
∂y

(xa, yb).

Example 1.9

If we fix a curve C ⊂ S and a point p ∈ C such that multp(C) = m, i.e. if using

the notation of Example 1.4 we fix a point Cp = (C, p) ∈ Hm, then the diagram

S
∼=

// {Cp} × S � � // Hm × S

����
��

��
��

��
��

��
��

��

C
∼=

//

��

?�

OO

{(Cp, q) | q ∈ C} � � //

��

?�

OO

Fm

, �

::uuuuuuuuuu

��

t0 Cp
� // Hm

σ

??

(1.8)

is an embedded equimultiple deformation of C in S along the section σ

through p. Moreover, any embedded equimultiple deformation of C in S with

section through p as a family is up to isomorphism induced via (1.1) in a

unique way and thus factors obviously uniquely through (1.8). This means

that every equimultiple deformation of C in S through p is induced up to iso-

morphism in a unique way from (1.8).
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We now want to examine the tangent space toHm at a point Cp = (C, p), which

is just

TCp
(Hm) = Homloc−K−Alg

(
OHm,Cp

,C[ε]
)

= Hom
(
Tε, (Hm, Cp)

)
,

where (Hm, Cp) denotes the germ of Hm at Cp. However, a morphism

ψ : Tε −→ (Hm, Cp)

gives rise to a commutative fibre product diagram

Tε ×Hm
Fm

//

ϕ′

��

Fm

��

Tε
ψ

//

σ′

CC

Hm

σ

ii

sending the closed point of Tε to C. Thus (ϕ′, σ′) ∈ Defsec,emp∈C/S(Tε) is an embedded

equimultiple deformation of C in S with section through p. The universality of

(1.8) then implies that up to isomorphism each one is of this form for a unique

ϕ′, and this construction is functorial. We thus have

TCp
(Hm) ∼= Defsec,emp∈C/S(Tε),

and hence (1.7) gives the exact sequence

0 // K // TCp
(Hm) // H0

(
C,JZ/C(C)

)
// 0.

In particular,

dimC (TCp
(Hm)

)
=





dimCH0

(
C,JZ/C(C)

)
− 2, if C is unitangential,

dimCH0
(
C,JZ/C(C)

)
− 1, else.

Example 1.10

If we do the same constructions replacing in (1.8) the family (1.2) by (1.4) we

get for the tangent space to Lm at Cp = (C, p) the diagram of exact sequences

0 // K // TCp
(Hm) // H0

(
C,JZ/C(C)

)
// 0

0 // K // TCp
(Lm) //
?�

OO

H0
(
S,JZ(C)

)
/H0(OS) //

?�

OO

0.

In order to see this consider the exact sequence

0 → OS → OS(C) → OC(C) → 0

induced from the structure sequence of C. This sequence shows that the

tangent space to |L| at C considered as a subspace of the tangent space

H0
(
C,OC(C)

)
of H at C is just H0

(
S,OS(C)

)
/H0(S,OS) – that is, a global

section of OC(C) gives rise to an embedded deformation of C in S which is

actually a deformation in the linear system |L| if and only if it comes from a
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global section of OS(C), and the constant sections induce the trivial deforma-

tions. This construction carries over to the families (1.2) and (1.4).

In particular we get the following proposition.

Proposition 1.11

Using the notation from above let C be a curve in the linear system |L| on S

and suppose that p ∈ C such that multp(C) = m.

Then the tangent space of Lm at Cp = (C, p) satisfies

dimC (TCp
(Lm)

)
=





dimCH0

(
S,JZ(C)

)
− 2, if C is unitangential,

dimCH0
(
S,JZ(C)

)
− 1, else.

Moreover, the expected dimension of TCp
(Lm) and thus of Lm at Cp is just

expdimCp
(Lm) = expdimC (TCp

(Lm)
)

= dim |L| − (m+ 1) ·m
2

+ 2.

For the last statement on the expected dimension just consider the exact se-

quence

0 → H0
(
S,JZ(C)

)
→ H0

(
S,OS(L)

)
→ H0(S,OZ)

and note that the dimension of H0
(
S,JZ(C)

)
, and hence of TCp

(C), attains the

minimal possible value if the last map is surjective. The expected dimension

of H0
(
S,JZ(C)

)
hence is

expdimCH0
(
S,JZ(C)

)
= dim |L| + 1 − deg(Z),

and it suffices to calculate deg(Z). If C is unitangential we may assume that

C locally in p is given by f = ym + h.o.t., so that

OZ,p = C{x, y}/〈ym−1〉 + 〈x, y〉m,

and hence deg(Z) = (m+1)·m
2

−1. If C is not unitangential, then we may assume

that it locally in p is given by an equation f such that fm = jetm(f) = xµ · yν · g,
where x and y do not divide g, but µ and ν are at least one. Suppose now

that the partial derivatives of fm are not linearly independent, then we may

assume ∂fm

∂x
≡ α · ∂fm

∂y
and thus

µyg ≡ ανxg + αxy · ∂g
∂y

− xy · ∂g
∂x
,

which would imply that y divides g in contradiction to our assumption. Thus

the partial derivatives of fm are linearly independent, which shows that

deg(Z) = dimC (C{x, y}/〈∂f∂x , ∂f∂y 〉 + 〈x, y〉m
)

=
(m+ 1) ·m

2
− 2.

Example 1.12

Let us consider the Example 1.5 in the case where S = P2 and L = OP2(d).

We will show that Lm is then smooth of the expected dimension. Note that
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π(Lm) will only be smooth at C if C has an ordinary m-fold point, that is, if all

tangents are different.

Given Cp = (C, p) ∈ Lm we may pass to a suitable affine chart containing p as

origin and assume that H0
(P2,OP2(d)

)
is parametrised by polynomials

Fa = f +

d∑

i+j=0

ai,j · xiyj,

where f is the equation of C in this chart. The closure of π(Lm) in |L| locally
at C is then given by several equations, say F1, . . . , Fk ∈ C[ai,j |i+ j = 0, . . . , d],

in the coefficients ai,j. We get these equations by eliminating the variables x

and y from the ideal defined by
〈
∂i+jFa
∂xiyj

∣∣∣ i+ j = 0, . . . , m− 1

〉
.

And Lm is locally in Cp described by the equations

F1 = 0, . . . , Fk = 0,
∂i+jFa
∂xiyj

= 0, i+ j = 0, . . . , m− 1.

However, the Jacoby matrix of these equations with respect to the variables

x, y, ai,j contains a diagonal submatrix of size m·(m+1)
2

with ones on the diag-

onal, so that its rank is at least m·(m+1)
2

, which – taking into account that

|L| = P(H0
(P2,OP2(d)

))
– implies that the tangent space to Lm at Cp has codi-

mension at least m·(m+1)
2

− 1 in the tangent space of L. By Proposition 1.11 we

thus have

dimCp
(Lm) ≤ dimC TCp

(Lm) ≤ dimC TCp
(L) − m · (m+ 1)

2
+ 1

= dim(L) − m · (m+ 1)

2
+ 1

= dim |L| − m · (m+ 1)

2
+ 2

= expdimCp
(Lm) ≤ dimCp

(Lm),

which shows that Lm is smooth at Cp of the expected dimension.
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PAPER VI

Triple-Point Defective Regular Surfaces

Abstract: In this paper we study the linear series |L − 3p| of hy-
perplane sections with a triple point p of a surface Σ embedded via

a very ample line bundle L for a general point p. If this linear se-

ries does not have the expected dimension we call (Σ, L) triple-point

defective. We show that on a triple-point defective regular surface

through a general point every hyperplane section has either a triple

component or the surface is rationally ruled and the hyperplane sec-

tion contains twice a fibre of the ruling.

This paper is a joint work with Luca Chiantini, Siena, [ChM07a].

1. Introduction

Throughout this note, Σ will be a smooth projective surface, K = KΣ will

denote the canonical class and L will be a divisor class on Σ such that L and

L−K are both very ample.

The classical interpolation problem for the pair (Σ, L) is devoted to the study

of the varieties:

V gen
m1,...,mn

=
{
C ∈ |L|

∣∣ p1, . . . , pn ∈ Σ general, multpi
(C) ≥ mi

}
.

In a more precise formulation, we start from the incidence variety:

Lm1,...,mn
= {(C, (p1, . . . , pn)) ∈ |L| × Σn | multpi

(C) ≥ mi}

together with the canonical projections:

Lm1,...,mn

α
//

β
��

Σn

|L| = PC(H0(L)∗)

(1.1)

As for the map α, the fibre over a fixed point (p1, . . . , pn) ∈ Σn is just the

linear series |L−m1p1−· · ·−mnpn| of effective divisors in |L| having a point of

multiplicity at least mi at pi. These fibres being irreducible, we deduce that if

α is dominant then Lm1,...,mn
has a unique irreducible component, say Lgenm1,...,mn

,

which dominates Σ. The closure of its image

Vm1,...,mn
:= Vm1,...,mn

(Σ, L) := β(Lgenm1,...,mn)

91
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under β is an irreducible closed subvariety of |L|, a Severi variety of (Σ, L).

Imposing a point of multiplicitymi corresponds to killing
(
mi+1

2

)
partial deriva-

tives, so that

dim |L−m1p1 − · · · −mnpn| ≥ max

{
−1, dim |L| −

n∑

i=1

(
mi + 1

2

)}
,

and we expect that the previous inequality is in fact an equality, for the choice

of general points p1, . . . , pn ∈ Σ.

When this is not the case, then the surface is called defective and is endowed

with some special structure.

The case when mi = 2 for all i has been classically considered (and solved) by

Terracini, who classified in [Ter22] double–point defective surfaces. In any

event, the first example of such a defective surface which is smooth is the

Veronese surface, for which n = 2.

It is indeed classical that imposing multiplicity two at a general point to a

very ample line bundle |L| always yields three independent conditions, so that

dim |L−2p| = dim |L|−3 and the corresponding Severi variety has codimension

1 in |L|.

Furthermore, when Σ is double-point defective, then any general curve C ∈
|L− 2p1 − · · · − 2pn| has a double component passing through each point pi.

When the multiplicities grow, the situation becomes completely different.

Even in the case Σ = PC2, the situation is not understood and there are sev-

eral, still unproved conjecture on the structure of defective embeddings (see

[Cil01] for an introductory survey).

When Σ is a more complicated surface, it turns out that even imposing just

one point of multiplicity 3, one may expect to obtain a defective behaviour.

Example 1.1

Let Σ = Fe π−→ PC1 be a Hirzebruch surface, e ≥ 0. We denote by F a fibre

of π and by C0 the section of π of minimal self intersection C2
0 = −e – both

of which are smooth rational curves. The general element C1 in the linear

system |C0+eF |will be a section of π which does not meet C0 (see e.g. [FuP00],

Theorem 2.5).

Consider now the divisor L = 2 · F + C1 = (2 + e) · F + C0. Then for a general

p ∈ Σ there are curves Cp ∈ |C1 − p| and there is a unique curve Fp ∈ |F − p|,
in particular p ∈ Fp ∩ Cp. For each choice of Cp we have

2Fp + Cp ∈ |L− 3p|.
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Since F.L = 1 = F.(L− F ) we see that every curve in |L− 3p| must contain Fp
as a double component, i.e.

|L− 3p| = 2Fp + |C1 − p|.

Moreover, since p ∈ Σ is general we have (see [FuP00], Lemma 2.10)

dim |C1 − p| = dim |C1| − 1 = h0
(PC1,OPC1

)
+ h0

(PC1,OPC1(e)
)
− 2 = e

and, using the notation from above,

dim(V3) ≥ dim |C1 − p| + 2 = e+ 2.

However,

dim |L| = h0
(PC1,OPC1(2)

)
+ h0

(PC1,OPC1(2 + e)
)
− 1 = e+ 5,

and thus

expdim(V3) = dim |L| − 4 = e+ 1 < e+ 2 = dim(V ).

We say, (Fe, L) is triple-point defective, see Definition 1.2.

Note, moreover, that

(L−K)2 = (4F + 3C0)
2 = 24 > 16.

2

It is interesting to observe that, even though, in the previous example, the

general element of |L − 3p| is non reduced, still the map β of Diagram (1.1)

has finite general fibers, since the general element of |L − 3p| has no triple

components.

The aim of this note is to investigate the structure of pairs (Σ, L) for which the

linear system |L−3p| for p ∈ Σ general has dimension bigger that the expected

value dim |L| − 6, or equivalently, the variety Lgen3 , defined as in Diagram (1),

has dimension bigger than dim |L| − 4.

Definition 1.2

We say that the pair (Σ, L) is triple-point defective or, in classical notation,

that (Σ, L) satisfies one Laplace equation if

dim |L− 3p| > max{−1, dim |L| − 6} = expdim |L− 3p|

for p ∈ Σ general.

Remark 1.3

Going back to Diagram (1), one sees that (Σ, L) is triple-point defective if and

only if either:

• dim |L| ≤ 5 and the projection α : L3 → Σ dominates, or

• dim |L| > 5 and the general fibre of the map α has dimension at least

dim |L| − 5.
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In particular, (Σ, L) is triple-point defective if and only if the map α is domi-

nant and

dim(Lgen3 ) > dim |L| − 4.

The particular case in which the general fiber of the map β in Diagram (1) is

positive-dimensional, (i.e. the general member of V3 contains a triple compo-

nent through p) has been investigated in [Cas22], [FrI01], and [BoC05]. We

will recall the classification of such surfaces in Theorem 2.2 below.

Even when β is generically finite, one of the major subjects in algebraic inter-

polation theory, namely Segre’s conjecture on defective linear systems in the

plane, says in our situation that, when (Σ, L) is triple-point defective, then

the general element of |L−3p| must be non-reduced, with a double component

through p (exactly as in the case of Hirzebruch surfaces).

We are able to show, under some assumptions, that this part of Segre’s con-

jecture holds, even in the more general setting of regular surfaces.

Indeed our main result is:

Theorem 1.4

Let Σ be a regular surface, and suppose that with the notation in (1.1) α is

dominant. Let L be a very ample line bundle on Σ, such that L−K is also very

ample. Assume (L−K)2 > 16 and (Σ, L) is triple-point defective.

Then Σ is rationally ruled in the embedding defined by L. Moreover a general

curve C ∈ |L− 3p| contains the fibre of the ruling through p as fixed component

with multiplicity at least two.

Remark 1.5

In a forthcoming paper [ChM07b] we classify all triple-point defective linear

systems L on ruled surfaces satisfying the assumptions of Theorem 1.4, and

it follows from this classification that the linear system |L − 3p| will contain

the fibre of the ruling through p precisely with multiplicity two as a fixed

component. In particular, the map β will automatically be generically finite.

Our method is based on the observation that, when (Σ, L) is triple-point de-

fective, then at a general point p ∈ Σ there exists a non-reduced scheme Zp

supported at the point, such that

h1
(
Σ,JZp

(L)
)
6= 0.

By Serre’s construction, this yields the existence of a rank 2 bundle Ep with

first Chern class L−K, with a global section whose zero-locus is a subscheme

of length at most 4, supported at p. Moreover the assumption (L − K)2 > 16

implies that Ep is Bogomolov unstable, thus it has a destabilizing divisor A.

By exploiting the properties of A and B = L−K −A, we obtain the result.
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In a sort of sense, one of the main points missing for the proof of Segre’s

conjecture is a natural geometric construction for the non–reduced divisor

which must be part of any defective linear system.

For double-point defective surfaces, the non–reduced component comes from

contact loci of hyperplanes (see [ChC02]).

In our setting, the non–reduced component is essentially given by the effective

divisor B above, which comes from a destabilizing divisor of the rank 2 bundle.

The result, applied to the blowing up of PC2, leads to the following partial proof

of Segre’s conjecture on defective linear systems in the plane.

Corollary 1.6

Fix multiplicities m1 ≤ m2 ≤ · · · ≤ mn. Let H denote the class of a line inPC2 and assume that, for p1, . . . , pn general in PC2, the linear system M = rH −
m1p1 − · · · −mnpn is defective, i.e.

dim |M | > max

{
−1,

(
r + 2

2

)
−

n∑

i=1

(
mi + 1

2

)}
.

Let π : Σ −→ PC2 be the blowing up of PC2 at the points p2, . . . , pn and set L :=

rπ∗H − m2E2 − · · · − mnEn, where Ei = π∗(pi) is the i-th exceptional divisor.

Assume that L is very ample on Σ, of the expected dimension
(
r+2
2

)
−∑n

i=2

(
mi+1

2

)
,

and that also L −K is very ample on Σ, with (L −K)2 > 16. Assume, finally,

m1 ≤ 3.

Thenm1 = 3 and the general element ofM is non-reduced. Moreover L embeds

Σ as a ruled surface.

Proof: Just apply the Main Theorem 1.4 to the pair (Σ, L).

The reader can easily check that the previous result is exactly the transla-

tion of Segre’s and Harbourne–Hirschowitz’s conjectures on defective linear

systems in the plane, for the case of a minimally defective system with lower

multiplicity 3. The (−1)–curve predicted by Harbourne–Hirschowitz conjec-

ture, in this situation, is just the pull-back of a line of the ruling.

Although the conditions “L and L − K very ample” is not mild, we believe

that the previous result could strengthen our believe in the general conjec-

ture. Combining results in [Xu95] and [Laz97] Corollary. 2.6 one can give

numerical conditions on r and the mi such that L respectively L−K are very

ample.

The paper is organized as follows.

The case where β is not generically finite is pointed out in Theorem 2.2 in Sec-

tion 2. In Section 3 we reformulate the problem as an h1-vanishing problem.

The Sections 4 to 7 are devoted to the proof of the main result: in Section 4
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we use Serre’s construction and Bogomolov instability in order to show that

triple-point defectiveness leads to the existence of very special divisors A and

B on our surface; in Section 5 we show that |B| has no fixed component; in

Section 6 we then list properties of B and we use these in Section 7 to classify

the regular triple-point defective surfaces.

2. Triple components

In this section, we consider what happens when, in Diagram (1), the general

fiber of β is positive-dimensional, in other words, when the general member

of V3 contains a triple component through p.

This case has been investigated (and essentially solved) in [Cas22], and then

rephrased in modern language in [FrI01] and [BoC05].

Although not strictly necessary for the sequel, as our arguments do not make

any use of the generic finiteness of β, (and so we will not assume this), for the

sake of completeness we recall in this section some example and the classifi-

cation of pairs (Σ, L) which are triple-point defective, and such that a general

curve Lp ∈ |L− 3p| has a triple component through p.

The family L3 of pairs (L, p) ∈ |L| × Σ where L ∈ |L − 3p| has dimension

bounded below by dim |L| − 4, and in Remark 1.3 it has been pointed out that

(Σ, L) is triple-point defective exactly when α is dominant and the bound is

not attained.

Notice however that dim |L| − 4 is not necessarily a bound for the dimension

of the subvariety V3 ⊂ |L|, the image of L3 under β. The following example

(exploited in [LaM02]) shows that one may have dim(V3) < dim |L| − 4 even

when (Σ, L) is not triple-point defective.

Example 2.1 ((see [LaM02]))

Let Σ be the blowing up of PC2 at 8 general points q1, . . . , q8 and L corresponds

to the system of curves of degree nine in PC2, with a triple point at each qi.

dim |L| = 6, but for p ∈ Σ general, the unique divisor in |L− 3p| coincides with

the cubic plane curve through q1, . . . , q8, p, counted three times. As there exists

only a (non-linear) 1-dimensional family of such divisors in |L|, then dim(V3) =

1 < dim |L| − 4. On the other hand, these divisors have a triple component, so

that the general fibre of β has dimension 1, hence dim(L3) = 2 = dim |L| − 4.

The classification of triple-point defective pairs (Σ, L) for which the map β is

not generically finite is the following.

Theorem 2.2

Suppose that (Σ, L) is triple-point defective. Then for p ∈ Σ general, the general

member of |L − 3p| contains a triple component through p if and only if Σ lies
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in a threefoldW which is a scroll in planes and moreoverW is developable, i.e.

the tangent space toW is constant along the planes.

Proof: (HINT) First, since we assume that Σ is triple-point defective and

embedded in PCr via L, then the hyperplanes π that meet Σ in a divisor H =

Σ ∩ π with a triple point at a general p ∈ Σ, intersect in a PC4. Thus we may

project down Σ to PC5 and work with the corresponding surface.

In this setting, through a general p ∈ Σ one has only one hyperplane π with a

triple contact, and π has a triple contact with Σ along the fibre C of β. Thus

V3 is a curve.

If H ′, H ′′ are two consecutive infinitesimally near points to H on V3, then C

also belongs to H ∩ H ′ ∩ H ′′. Thus C is a plane curve and Σ is fibred by a

1-dimensional family of plane curves. This determines the threefold scroll W .

The tangent line to V3 determines in (PC5)∗ a pencil of hyperplanes which are

tangent to Σ at any point of C, since this is the infinitesimal deformation of a

family of hyperplanes with a triple contact along any point of C. Thus there

is a PC4 = HC which is tangent to Σ along C.

Assume that C is not a line. Then C spans a PC2 = πC fibre ofW , moreover the

tangent space toW at a general point of C is spanned by πC and TΣ,P , hence it

is constantly equal toHC . Since C spans πC , then it turns out that the tangent

space toW is constant at any point of πC , i.e. W is developable.

When C is a line, then arguing as above one finds that all the tangent planes

to Σ along C belong to the same PC3. This is enough to conclude that Σ sits in

some developable 3-dimensional scroll.

Conversely, if Σ is contained in the developable scroll W , then at a general

point p, with local coordinates x, y, the tangent space t to W at p contains the

derivatives p, px, py, pxx, pxy (here x is the direction of the tangent line to C).

Thus the PC4 spanned by t, pyy intersects Σ in a triple curve along C.

3. The Equimultiplicity Ideal

If Lp is a curve in |L−3p| we denote by fp ∈ C{xp, yp} an equation of Lp in local

coordinates xp and yp at p. If multp(Lp) = 3, the ideal sheaf JZp
whose stalk at

p is the equimultiplicity ideal

JZp,p =

〈
∂fp
∂xp

,
∂fp
∂yp

〉
+ 〈xp, yp〉3

of fp defines a zero-dimensional scheme Zp = Zp(Lp) concentrated at p, and the

tangent space T(Lp,p)(L3) of L3 at (Lp, p) satisfies (see [Mar06] Example 10)

T(Lp,p)(L3) ∼=
(
H0
(
Σ,JZp

(Lp)
)
/H0(Σ,OΣ)

)
⊕K,
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where K is zero unless Lp is unitangential at p, in which case K is a one-

dimensional vector space.

In particular, L3 is smooth at (Lp, p) of the expected dimension (see [Mar06]

Proposition 11)

expdim(L3) = dim |L| − 4

as soon as

h1
(
Σ,JZp

(L)
)

= 0.

We thus have the following proposition.

Proposition 3.1

Let Σ be regular and suppose that α is surjective, then (Σ, L) is not triple-point

defective if

h1
(
Σ,JZp

(L)
)

= 0

for general p ∈ Σ and Lp ∈ |L| with multp(Lp) = 3.

Moreover, if L is non-special the above h1-vanishing is also necessary for the

non-triple-point-defectiveness of (Σ, L).

4. The Basic Construction

From now on we assume that for p ∈ Σ general ∃ Lp ∈ |L| s.t.
h1
(
Σ,JZp

(L)
)
6= 0.

Then by Serre’s construction for a subscheme Z ′
p ⊆ Zp with ideal sheaf Jp =

JZ′
p
of minimal length such that h1

(
Σ,Jp(L)

)
6= 0 there is a rank two bundle Ep

on Σ and a section s ∈ H0(Σ, Ep) whose 0-locus is Z ′
p, giving the exact sequence

0 → OΣ → Ep → Jp(L−K) → 0. (4.1)

The Chern classes of Ep are

c1(Ep) = L−K and c2(Ep) = length(Z ′
p).

Moreover, Z ′
p is automatically a complete intersection.

We would now like to understand what Jp is depending on jet3(fp), which in

suitable local coordinates will be one of those in Table (4.2). For this we first of

all note that the very ample divisor L separates all subschemes of Zp of length

at most two. Thus Z ′
p has length at least 3, and due to Lemma 4.1 below we

are in one of the following situations:
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jet3(fp) JZp,p length(Zp) Jp c2(Ep)

x3
p − y3

p 〈x2
p, y

2
p〉 4 〈x2

p, y
2
p〉 4

x2
pyp 〈x2

p, xpyp, y
3
p〉 4 〈xp, y3

p〉 3

x3
p 〈x2

p, xpy
2
p, y

3
p〉 5 〈x2

p, y
2
p〉 4

x3
p 〈x2

p, xpy
2
p, y

3
p〉 5 〈xp, y3

p〉 3

(4.2)

Lemma 4.1

If f ∈ R = C{x, y} with jet3(f) ∈ {x3 − y3, x2y, x3}, and if I = 〈g, h〉 � R such

that dimC(R/I) ≥ 3 and
〈
∂f
∂x
, ∂f
∂y

〉
+ 〈x, y〉3 ⊆ I, then we may assume that we are

in one of the following cases:

(a) I = 〈x2, y2〉 and jet3(f) ∈ {x3 − y3, x3}, or
(b) I = 〈x, y3〉 and jet3(f) ∈ {x2y, x3}.

Proof: If > is any local degree ordering on R, then the Hilbert-Samuel

functions of R/I and of R/L>(I) coincide, where L>(I) denotes the leading

ideal of I (see e.g. [GrP02] Proposition 5.5.7). In particular, dimC(R/I) =

dimC(R/L>(I)) and thus

L>(I) ∈
{
〈x2, xy2, y3〉, 〈x2, xy, y2〉, 〈x2, xy, y3〉, 〈x2, y2〉, 〈x, y3〉},

since 〈x2, xy2, y3〉 ⊂ I.

Taking >, for a moment, to be the local degree ordering on R with y > x we

deduce at once that I does not contain any power series with a linear term in

y. For the remaining part of the proof > will be the local degree ordering on R

with x > y.

1st Case: L>(I) = 〈x2, xy2, y3〉 or L>(I) = 〈x2, xy, y2〉. Thus the graph of the

slope H0
R/I of the Hilbert-Samuel function of R/I would be as shown in Figure

1, which contradicts the fact that I is a complete intersection due to [Iar77]

Theorem 4.3.

3

2

2

2

FIGURE 1. The graphs of H0
R/〈x2,xy2,y3〉 respectively of H0

R/〈x2,xy,y2〉.
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2nd Case: L>(I) = 〈x2, xy, y3〉. Then we may assume

g = x2 + α · y2 + h.o.t. and h = xy + β · y2 + h.o.t..

Since x2 ∈ I there are power series a, b ∈ R such that

x2 = a · g + b · h.

Thus the leading monomial of a is one, a is a unit and g ∈ 〈x2, h〉. We may

therefore assume that g = x2. Moreover, since the intersection multiplicity of

g and h is dimC(R/I) = 4, g and h cannot have a common tangent line in the

origin, i. e. β 6= 0. Thus, since g = x2, we may assume that h = xy + y2 · u with

u = β + h.o.t a unit.

In new coordinates x̃ = x · √u and ỹ = y · 1√
u
we have

I = 〈x̃2, x̃ỹ + ỹ2〉.

Note that by the coordinate change jet3(f) only changes by a constant, that
∂f
∂ex ,

∂f
∂ey ∈ I and that 〈x̃, ỹ〉3 ⊂ I, but x̃ỹ, ỹ2 6∈ I. Thus jet3(f) = x3.

Setting now x̄ = x̃ and ȳ = x̃ + 2ỹ, then ȳ2 = x̃2 + 4 · (x̃ỹ + ỹ2) ∈ I and thus,

considering colengths,

I = 〈x̄2, ȳ2〉.
Moreover, the 3-jet of f does not change with respect to the new coordinates,

so that we may assume we worked with these from the beginning.

3rd Case: L>(I) = 〈x2, y2〉. Then we may assume

g = x2 + α · xy + h.o.t. and h = y2 + h.o.t.

As in the second case we deduce that w.l.o.g. g = x2 and thus h = y2 · u, where

u is a unit. But then I = 〈x2, y2〉.
4th Case: L>(I) = 〈x, y3〉. Then we may assume

g = x+ h.o.t. and h = y3 + h.o.t.

since there is no power series in I involving a linear term in y. In new coordi-

nates x̃ = g and ỹ = y we have

I =
〈
x̃, h̃
〉
,

and we may assume that h̃ = ỹ3 · u, where u is a unit only depending on ỹ.

Hence, I = 〈x̃, ỹ3〉. Moreover, the 3-jet of f does not change with respect to

the new coordinates, so that we may assume we worked with these from the

beginning.

From now on we assume that (L−K)2 > 16.
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Thus

c1(Ep)2 − 4 · c2(Ep) > 0,

and hence Ep is Bogomolov unstable. The Bogomolov instability implies the

existence of a unique divisor Ap which destabilizes Ep. (See e. g. [Fri98] Sec-

tion 9, Corollary 2.) In other words, setting Bp = L−K − Ap, i. e.

Ap +Bp = L−K, (4.3)

there is an immersion

0 → OΣ(Ap) → Ep (4.4)

where (Ap −Bp)
2 ≥ c1(Ep)2 − 4 · c2(Ep) > 0 and (Ap −Bp).H > 0 for every ample

H. From this we deduce the following properties:

(a) Ep(−Ap) has a section that vanishes along a subscheme Z̃p of codimen-

sion 2, and

Ap.Bp ≤ length(Z ′
p). (4.5)

The previous immersion gives rise to a short exact sequence:

0 → OΣ(Ap) → Ep → J eZp
(Bp) → 0. (4.6)

(b) The divisor Bp is effective and we may assume that Z ′
p ⊂ Bp.

(c) Ap − Bp is big, and hence dim
(
|k · (Ap − Bp)|

)
= const · k2 + o(k) > 0 for

k >> 0. In particular

(Ap − Bp).M > 0 (4.7)

ifM is big and nef or ifM is an irreducible curve withM2 ≥ 0 or ifM is

effective without fixed part.

(d) Ap is big.

Proof: (a) Sequence (4.6) is a consequence of Serre’s construction. The first

assertion now follows from Sequence (4.6), and Equation (4.5) is a con-

sequence of

(Ap −Bp)
2 ≥ c1(Ep)2 − c2(Ep) = (Ap +Bp)

2 − 4 · length(Z ′
p).

(b) Observe that
(
2Ap − (L − K)

)
.H > 0 for any ample line bundle H, and

thus

−Ap.H < −(L−KΣ).H

2
< 0.

Thus H0
(
OΣ(−Ap)

)
= 0 and twisting the sequence (4.1) with −Ap we are

done.

(c) Since (Ap − Bp)
2 > 0 and (Ap − Bp).H > 0 for some ample H Riemann-

Roch shows that Ap − Bp is big, i. e. dim
(
|k · (Ap − Bp)|

)
grows with k2.

The remaining part follows from Lemma 4.2.
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(d) This follows since Ap − Bp is big and Bp is effective.

Lemma 4.2

Let R be a big divisor. If M is big and nef or if M is an irreducible curve with

M2 ≥ 0 or ifM is an effective divisor without fixed component, then R.M > 0.

Proof: If R is big, then dim |k ·R| grows with k2. Thus for k >> 0 we can write

k ·R = N ′ +N ′′ where N ′ is ample and N ′′ effective (possibly zero). To see this,

note that for k >> 0 we can write |k · R| = |N ′| + N ′′, where N ′′ is the fixed

part of |k · R| and N ′ ∩ C 6= ∅ for every irreducible curve C. Then apply the

Nakai-Moishezon Criterion to N ′ (see also [Tan04]).

Analogously, if M is big and nef, for j >> 0 we can write j · M = M ′ + M ′′

whereM ′ is ample and M ′′ is effective. Therefore,

R.M =
1

kj
·
(
N ′.M ′ +N ′.M ′′ +N ′′.M) > 0,

since N ′.M ′ > 0, N ′.M ′′ ≥ 0 and N ′′.M ≥ 0.

Similarly, if M is irreducible and has non-negative self-intersection, then

R.M =
1

k
· (N ′.M +N ′′.M) > 0.

And if M is effective without fixed component, we can apply the previous

argument to every component ofM .

Now let p move freely in Σ. Accordingly the scheme Z ′
p moves, hence the

effective divisor Bp containing Z
′
p moves in an algebraic family B ⊆ |B|a which

is the closure of {Bp | p ∈ Σ, Lp ∈ |L−3p|, both general} and which covers Σ. A

priori this family B might have a fixed part C, so that for general p ∈ Σ there

is an effective divisor Dp moving in a fixed-part free algebraic family D ⊆ |D|a
such that

Bp = C +Dp.

Whenever we only refer to the algebraic class of Ap respectively Bp respec-

tively Dp we will write A respectively B respectively D for short.

For these considerations we assume, of course, that

length(Z ′
p) is constant for p ∈ Σ general, so either

length(Z ′
p) = 3 or length(Z ′

p) = 4.
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5. C = 0.

Our first aim is to show that actually C = 0 (see Lemma 5.5). But in order to

do so we first have to consider the boundary case that Ap.Bp = length(Z ′
p).

Proposition 5.1

If Ap.Bp = length(Z ′
p), then there exists a non-trivial global section 0 6= s ∈

H0
(
Bp,JZ′

p/Bp
(Ap)

)
whose zero-locus is Z ′

p.

In particular, Ap.Dp = Ap.Bp = length(Z ′
p) and Ap.C = 0.

Proof: By Equation (4.6) we have

Ap.Bp = length(Z ′
p) = c2(Ep) = Ap.Bp + length

(
Z̃p
)
.

Thus Z̃p = ∅.
If we merge the sequences (4.1), (4.6), and the structure sequence of B twisted

by B we obtain the following exact commutative diagram in Figure 2, where

0

��

0

��

0 //

��

OΣ
//

��

OΣ
//

��

0

0 // OΣ(Ap) //

��

Ep //

��

OΣ(Bp) //

��

0

0 // OΣ(Ap) //

��

JZ′
p/Σ(Ap +Bp) //

��

OBp
(Bp) //

��

0

0 0 0

FIGURE 2. The diagram showing OBp
= JZ′

p/Bp
(Ap).

OBp
(Bp) = JZ′

p/Bp
(Ap + Bp), or equivalently OBp

= JZ′
p/Bp

(Ap). Thus from the

rightmost column we get a non-trivial global section, say s, of this bundle

which vanishes precisely at Z ′
p, since Z

′
p is the zero-locus of the monomorphism

of vector bundles OΣ →֒ Ep. However, since p is general we have that p 6∈ C

and thus the restriction 0 6= s|Dp
∈ H0

(
Dp,JZ′

p/Dp
(Ap)

)
and it still vanishes

precisely at Z ′
p. Thus Ap.Dp = length(Z ′

p) = Ap.Bp, and Ap.C = Ap.Bp−Ap.Dp =

0.

Lemma 5.2

Ap.Bp ≥ 1 +B2
p .
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Proof: Let B = P + N be a Zariski decomposition of B, i. e. P and N are

effective Q-divisors such that in particular P is nef, P.N = 0 and N2 < 0

unless N = 0.

If N 6= 0, then

0 < (A+B).N = A.N +N2,

since A + B is very ample and N is effective. Moreover, since P is nef and

A−B big we have (A−B).P ≥ 0 and hence

A.P ≥ B.P = P 2.

Combining these two inequalities we get

A.B = A.P + A.N > P 2 −N2 > P 2 +N2 = B2.

If N = 0, then B is nef and, therefore, B2 ≥ 0. If, actually B2 > 0, then B is

big and nef, so that by (4.7) (A−B).B > 0. While if B2 = 0 then

B2 = 0 < B.(A+B) = A.B

since A+B is very ample and B is effective.

Lemma 5.3

Let p ∈ Σ be general and suppose length(Z ′
p) = 4.

(a) If Dp is irreducible, then dim(D) ≥ 2 and D2
p ≥ 3.

(b) If Dp is reducible but the part containing p is reduced, then either Dp has

a component singular in p and D2
p ≥ 5 or at least two components of Dp

pass through p and D2
p ≥ 2.

(c) If D2
p ≤ 1, then Dp = k · Ep where k ≥ 2, Ep is irreducible and E2

p = 0. In

particular, D2
p = 0.

Proof: (a) If Dp is irreducible, then dim(D) ≥ 2, since Dp, containing Z
′
p, is

singular in p by Table (4.2) and since p ∈ Σ is general. If through p ∈ Σ

general and a general q ∈ Dp there is another D′ ∈ D, then due to the

irreducibility of Dp

D2
p = Dp.D

′ ≥ multp(Dp) + multq(Dp) ≥ 3.

Otherwise, D is a two-dimensional involution whose general element

is irreducible, so that by [ChC02] Theorem 5.10 D must be a linear

system. This, however, contradicts the Theorem of Bertini, since the

general element of D would be singular.

(b) SupposeDp =
∑k

i=1Ei,p is reducible but the part containing p is reduced.

Since Dp has no fixed component and p is general, each Ei,p moves in an

at least one-dimensional family. In particular E2
i,p ≥ 0.
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If some Ei,p, say i = 1, would be singular in p for p ∈ Σ general we

could argue as above that E2
1,p ≥ 3. Moreover, either E2,p is algebraically

equivalent to E1,p and E
2
2,p ≥ 3, or E1,p and E2,p intersect properly, since

both vary in different, at least one-dimensional families. In any case we

have

D2
p ≥ (E1,p + E2,p)

2 ≥ 5.

Otherwise, at least two components, say E1,p and E2,p pass through p,

since Dp is singular in p and no component passes through p with higher

multiplicity. Hence, E1,p.E2,p ≥ 1 and therefore

D2
p ≥ 2 · E1,p.E2,p ≥ 2.

(c) From the above we see that Dp is not reduced in p. Let therefore Dp ≡a

kEp + E ′ where k ≥ 2, Ep passes through p and E ′ does not contain any

component algebraically equivalent to Ep.

Suppose E ′ 6= 0. Since Dp has no fixed component both, Ep and E
′ vary

in an at least one dimensional family covering Σ and must therefore

intersect properly. In particular, Ep.E
′ ≥ 1 and 1 ≥ D2

p ≥ 2k · Ep.E ′ ≥ 4.

Thus, E ′ = 0.

We therefore may assume that Dp = kEp with k ≥ 2. Then 0 ≤ E2
p =

1
k2 · D2

p ≤ 1
4
, which leaves only the possibility E2

p = 0, implying also

D2
p = 0.

Lemma 5.4

Suppose that R ⊂ Σ is an irreducible curve.

(a) If (L−K).R ∈ {1, 2}, then R is smooth, rational and R2 ≤ (L−K).R−3 ≤
−1.

(b) If (L − K).R = 3, then R2 ≤ 0, and either R is a plane cubic or it is a

smooth rational space curve.

Proof: Note that Σ is embedded in some PCn via |L − K| and that deg(R) =

(L−K).R is just the degree of R as a curve in PCn. Moreover, by the adjunction

formula we know that

pa(R) =
R2 +R.K

2
+ 1,

and since L is very ample we thus get

1 ≤ L.R = (L−K).R +R.K = (L−K).R + 2 ·
(
pa(R) − 1

)
− R2. (5.1)

(a) If deg(R) ∈ {1, 2}, then R must be a smooth, rational curve. Thus we

deduce from (5.1)

R2 ≤ (L−K).R − 3.
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(b) If deg(R) = 3, then R is either a plane cubic or a smooth space curve of

genus 0. If pa(R) = 1 then actually L.R ≥ 3 since otherwise |L| would

embed R as a rational curve of degree 1 resp. 2 in some projective space.

In any case we are therefore done with (5.1).

Lemma 5.5

C = 0.

Proof: Suppose C 6= 0 and r is the number of irreducible components of C.

Since D has no fixed component we know by (4.5) that (A−B).D > 0, so that

A.D ≥ B.D + 1 = D.C +D2 + 1 (5.2)

or equivalently

D.C ≤ A.D −D2 − 1. (5.3)

Moreover, since A+B is very ample we have r ≤ (A+B).C = A.C +D.C +C2

and thus

A.C +D.C = (A+B).C − C2 ≥ r − C2. (5.4)

1st Case: C2 ≤ 0. Then (5.4) together with (5.2) gives

A.B = A.C + A.D ≥ A.C +D.C +D2 + 1 ≥ r + (−C2) +D2 + 1 ≥ 2, (5.5)

or the slightly stronger inequality

length(Z ′
p) ≥ A.B ≥ (A+B).C + (−C2) +D2 + 1. (5.6)

2nd Case: C2 > 0. Then by Lemma 5.2 simply

length(Z ′
p) ≥ A.B ≥ B2 + 1 = D2 + 2 · C.D + C2 + 1 ≥ 2. (5.7)

Since all the summands involved in the right hand side of (5.5) and (5.7) are

non-negative and since by Lemma 5.3 the case D2 = 1 cannot occur when

length(Z ′
p) = 4, we are left considering the cases shown in Figure 3, where for

the additional information (the last four columns) we take Proposition 5.1 and

Lemma 5.3 into account.

Let us first and for a while consider the situation length(Z ′
p) = 4 and D2 = 0,

so that by Lemma 5.3 D = kE for some irreducible curve E with k ≥ 2 and

E2 = 0. Applying Lemma 5.4 to E we see that (A+B).E ≥ 3, and thus

6 ≤ 3k ≤ (A+B).D = A.D + C.D. (5.8)

If in addition A.D ≤ 4, then (5.3) leads to

6 ≤ A.D + C.D ≤ 4 + C.D ≤ 7, (5.9)
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length(Z ′
p) D2 C2 C.D r A.B A.D A.C D

1) 4 0 −2 1 4 4 0 kE, k ≥ 2

2) 4 0 −1 2 4 4 0 kE, k ≥ 2

3) 4 0 0 3 4 4 0 kE, k ≥ 2

4) 4 0 −1 1 3, 4 kE, k ≥ 2

5) 4 2 0 1 4 4 0

6) 4 0 0 2 3, 4 kE, k ≥ 2

7) 4 0 0 1 2, 3, 4 kE, k ≥ 2

8) 3 0 −1 1 3 3 0

9) 3 0 0 2 3 3 0

10) 3 1 0 1 3 3 0

11) 3 0 0 1 2, 3

12) 4 0 1 1 4 4 0 kE, k ≥ 2

13) 4 2 1 0 4 4 0

14) 4 0 1 0 2, 3, 4 kE, k ≥ 2

15) 4 0 2 0 3, 4 kE, k ≥ 2

16) 3 1 1 0 3 3 0

17) 3 0 1 0 2, 3

FIGURE 3. The cases to be considered.

which is only possible for k = 2, C.E = 1 and

C.D = k · C.E = 2. (5.10)

This outrules Case 12.

In Cases 1, 2 and 3 we have A.D = 4, and we can apply (5.10), which by (5.4)

then gives the contradiction

2 = A.C + C.D ≥ r − C2 = 3.

If, still under the assumption length(Z ′
p) = 4 and D2 = 0, we moreover assume

2 ≥ C2 ≥ 0 then by Lemma 5.2

3 ≥ B2 = 2 · C.D + C2 ≥ 2 · C.D ≥ 0,
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and thus C.D ≤ 1 and C.D + C2 ≤ 2, which due to (5.8) implies A.D ≥ 5. But

then by Proposition 5.1 we have A.B ≤ 3 and hence A.C = A.B − A.D ≤ −2,

which leads to the contradiction

(A+B).C = A.C +D.C + C2 ≤ 0, (5.11)

since A+B is very ample. This outrules the Cases 6, 7, 14 and 15.

In Case 4 Lemma 5.4 applied to C shows

2 ≤ (A+B).C = A.C +D.C + C2. (5.12)

If in this situation A.B = 4, then Proposition 5.1 shows A.C = 0 and A.D =

A.B = 4, and therefore (5.10) leads a contradiction, since the right hand side

of Equation (5.12) is A.C +D.C + C2 = 0 + 2 − 1 = 1. We, therefore, conclude

that A.B = 3, and as above we get from Lemma 5.2

2 ≥ B2 = 2 · C.D + C2 = 2k · C.E − 1 ≥ 4 · C.E − 1 ≥ −1,

which is only possible for C.E = C.D = 0. But then (5.12) implies A.C ≥
3, and since A is big and D has no fixed component Lemma 4.2 gives the

contradiction

1 ≤ A.D = A.B −A.C ≤ 0.

This finishes the cases where length(Z ′
p) = 4 and D2 = 0.

In Cases 5, 10 and 11 we apply Lemma 5.4 to the irreducible curve C with

C2 = 0 and find

(A+B).C ≥ 3.

In Cases 5 and 10 Equation (5.6) then gives the contradiction

4 ≥ A.B ≥ 3 − C2 +D2 + 1 ≥ 5,

and similarly in Case 11 we get

3 ≥ A.B ≥ 3 − C2 +D2 + 1 = 4.

In very much the same way we get in Case 8

(A+B).C ≥ 2

and the contradiction

3 ≥ A.B ≥ 2 − C2 +D2 + 1 = 4.

Let us next have a look at the Cases 16 and 17. Consider the decomposition of

the general D =
∑s

i=1Ei into irreducible components, none of which is fixed.

In Case 16 we have D2 = 0, and thus Ei.Ej = 0 for all i, j, while in Case 17 we

haveD2 = 1 and we thusmay assume E2
1 = 1 and Ei.Ej = 0 for all (i, j) 6= (1, 1).

Moreover, in both cases C.D = 0 and thus C.Ei = 0 for all i. Applying Lemma

5.4 to Ei we find

A.Ei = (A +B).Ei − E1.Ei ≥ 3,
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and by (5.4) we get

A.C = A.C +D.C ≥ r − C2 ≥ 0. (5.13)

But then

3 ≥ A.B = A.C +
s∑

i=1

A.Ei ≥ 3s,

which implies s = 1 and A.C = 0. From (5.13) we deduce that r = C2 = 1, and

thus C is irreducible with C2 = 1. Similarly in Case 13 we have by (5.4)

0 = A.C +D.C ≥ r − C2 = r − 1 ≥ 0,

and again C is irreducible with C2 = 1. Applying now Lemma 5.4 to C we get

in each of these three cases the contradiction

4 ≤ (A+B).C = A.C +D.C + C2 = 1.

This outrules the Cases 13, 16, and 17.

It remains to consider Case 9. Here we deduce from (5.6) that

2 ≥ (A+B).C ≥ r = 2,

and hence

2 = (A+B).C = A.C +D.C + C2 = D.C.

But then Lemma 5.2 leads to the final contradiction

2 = A.B − 1 ≥ B2 = D2 + 2 ·D.C + C2 = 4.

It follows that Bp = Dp, B = D, and that Bp is nef.

6. The General Case

Let us review the situation and recall some notation. We are considering a

divisor L such L and L − K are very ample with (L − K)2 > 16, and such

that for a general point p ∈ Σ the general element Lp ∈ |L − 3p| has no triple

component through p and that the equimultiplicity ideal of Lp in p in suitable

local coordinates is one of the ideals in Table (4.2) – and for all p the ideals

have the same length. Moreover, we know that there is an algebraic family

B = {Bp | p ∈ Σ} ⊂ |B|a without fixed component such that for a general point

p ∈ Σ

Bp ∈ |JZ′
p/Σ(L−K −Ap)|,

where Z ′
p is the equimultiplicity scheme of Lp and Ap is the unique divisor

linearly equivalent to L −K − Bp such that Bp and Ap destabilize the vector

bundle Ep in (4.1). Keeping these notations in mind we can now consider the

two cases that either length(Z ′
p) = 4 or length(Z ′

p) = 3.
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Proposition 6.1

Let p ∈ Σ be general and suppose that length(Z ′
p) = 4. Then Bp = Ep + Fp,

Ep and Fp are irreducible, smooth, elliptic curves, E2
p = F 2

p = 0, Ep.Fp = 1,

A.Ep = A.Fp = 2, L.Ep = L.Fp = 3, A.B = 4, K.Ep = K.Fp = 0, and ∃ s ∈
H0
(
Bp,OBp

(Ap)
)
such that Z ′

p = {s = 0}.
Moreover, neither |E|a and |F |a is a linear system, but they both induce an

elliptic fibration with section on Σ over an elliptic curve.

Proof: Since A2 > 0 we can apply the Hodge Index Theorem (see e.g.

[BHPV04]), and since (A + B)2 ≥ 17 by assumption and A.B ≤ 4 by Equa-

tion (4.5) we deduce

16 ≥ (A.B)2 ≥ A2 · B2 =
(
(A +B)2 − 2A.B − B2

)
.B2

≥ (9 − B2) ·B2. (6.1)

In Section 5 we have shown that B = D is nef, and thus Lemma 5.2 together

with Equation (6.1) shows

0 ≤ B2 ≤ 2. (6.2)

Then, however, Lemma 5.3 implies that Bp must be reducible.

Let us first consider the case that the part of Bp through p is reduced. Then

by Lemma 5.3, Lemma 5.2, and Equations (4.5) and (6.2) we know that Bp =

Ep + Fp + R, where Ep and Fp are irreducible and smooth in p. In particular,

Ep.Fp ≥ 1, and thus

2 ≥ B2 = E2
p + 2 ·Ep.Fp + F 2

p + 2 · (Ep + Fp).R +R2

≥ 2 + 2 · (Ep + Fp).R.

Since Ep.Fp = 1 and since the components Ep and Fp vary in at least one-

dimensional families and R has no fixed component, (Ep + Fp).R ≥ 1, unless

R = 0. This would however give a contradiction, so R = 0. Therefore nec-

essarily, Bp = Ep + Fp, Ep.Fp = 1, and E2
p = F 2

p = 0. Then by Lemma 5.4

(A+B).Ep ≥ 3 and (A+B).Fp ≥ 3, so that

4 ≥ A.B ≥ (A +B).Ep + (A+B).Fp − B2 ≥ 4

implies Ep.Ap = 2 = Fp.Ap and (A +B).Ep = 3 = (A +B).Fp. Applying Lemma

5.4 once more, we see that

pa(Ep) ≤ 1 and pa(Fp) ≤ 1. (6.3)

We claim that in p the curve Lp can share at most with one of Ep or Fp a

common tangent, and it can do so at most with multiplicity one. For this

consider local coordinates (xp, yp) as in the Table (4.2). Since length(Z ′
p) = 4

we know that JZ′
p,p = 〈x2

p, y
2
p〉 does not contain xpyp, and since Bp = Ep + Fp ∈
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|JZ′
p
(L − K − A)|, where Ep and Fp are smooth in p, we deduce that in local

coordinates their equations are

xp + a · yp + h.o.t. respectively xp − a · yp + h.o.t.,

where a 6= 0. By Table (4.2) the local equation fp of Lp has either jet3(fp) = x3
p

and has thus no common tangent with either Ep or Fp, or jet3(fp) = x3
p−y3

p and

it is divisible at most once by one of xp − ayp or xp + ayp .

In particular, Ep can at most once be a component of Lp, and we deduce

Ep.KΣ = Ep.Lp −Ep.Ap − Ep.Bp = Ep.Lp − 3 ≥





0, if Ep 6⊂ Lp,

−1, if Ep ⊂ Lp.

But then, since the genus is an integer,

pa(Ep) =
E2
p + Ep.KΣ

2
+ 1 =

Ep.KΣ

2
+ 1 ≥ 1,

in which case (6.3) gives pa(Ep) = 1. This shows, in particular, that

K.Ep = 0 and Lp.Ep = 3.

By symmetry the same holds for Fp.

Since E2
p = 0 the family |E|a is a pencil and induces an elliptic fibration on Σ

(see [Kei01] App. B.1). In particular, the generic element Ep in |E|a must be

smooth (see e.g. [BHPV04] p. 110). And with the same argument the generic

element Fp in |F |a is smooth.

Suppose now that |E|a is a linear system. Since E.F = 1 and for q ∈ Fp

general Eq∩Fp = {q} the linear system |OFp
(E)| is a g1

1 on the smooth curve Fp
implying that Fp is rational contradicting pa(Fp) = 1. Thus |E|a is not linear,

and analogously |F |a is not.
It remains to consider the case that Bp is not reduced in p. Using the notation

of the proof of Lemma 5.3 we write Bp ≡ k · Ep + E ′ with k ≥ 2, Ep irre-

ducible passing through p and E ′ not containing any component algebraically

equivalent to Ep. We have seen there (see p. 105) that E ′ 6= 0 implies B2
p ≥ 4

in contradiction to Lemma 5.2. We may therefore assume Bp = k · Ep with

E2
p ≥ 0. If E2

p ≥ 1, then again B2
p ≥ 4. Thus E2

p = 0. Applying Lemma 5.4 to Ep
we get

3 ≤ (A +B).Ep = A.Ep,

and hence the contradiction

4 ≥ A.B = k · A.Ep ≥ 6.

Therefore, Bp must be reduced in p.
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Proposition 6.2

Let p ∈ Σ be general and suppose that length(Z ′
p) = 3. ThenBp is an irreducible,

smooth, rational curve in the pencil |B|a with B2 = 0, A.B = 3 and ∃ s ∈
H0
(
Bp,OBp

(Ap)
)
such that Z ′

p is the zero-locus of s.

In particular, Σ → |B|a is a ruled surface and 2Bp is a fixed component of

|L− 3p|.

Proof: Since A2 > 0 we can apply the Hodge Index Theorem (see e.g.

[BHPV04]), and since (A + B)2 ≥ 17 by assumption and A.B ≤ 3 by Equa-

tion (4.5) we deduce

9 ≥ (A.B)2 ≥ A2 ·B2 =
(
(A+B)2 − 2A.B −B2

)
≥ (11 − B2) · B2.

Since in Section 5 we have shown that B is nef, this inequality together with

Lemma 5.2 implies

B2 = 0. (6.4)

Once we have shown that Bp is irreducible and reduced, we then know that

|B|a is a pencil and induces a fibration on Σ whose fibres are the elements of

|B|a (see [Kei01] App. B.1). In particular, the general element of |B|a, which

is Bp, is smooth (see [BHPV04] p. 110).

Let us therefore first show that Bp is irreducible and reduced. Since B has no

fixed component we know for each irreducible component Bi of Bp =
∑r

i=1Bi

that B2
i ≥ 0, and hence by Lemma 5.4 that (A + B).Bi ≥ 3. Thus by (4.5) and

(6.4)

3 · r ≤ (A+B).B = A.B +B2 = A.B ≤ 3,

which shows that Bp is irreducible and reduced and that A.B = 3. Moreover,

(A+B).B = 3, and Lemma 5.4 implies that

pa(Bp) ≤ 1. (6.5)

Since A.B = 3 = length(Z ′
p) Proposition 5.1 implies that there is a section

sp ∈ H0
(
Bp,OBp

(Ap)
)
such that Z ′

p is the zero-locus of sp, which is just 3p. Note

that for p ∈ Σ general and q ∈ Bp general we have Bp = Bq since |B|a is a

pencil, and thus by the construction of Bp and Bq we also have

Ap ∼l L−K − Bp = L−K − Bq ∼l Aq.

But if Ap and Aq are linearly equivalent, then so are the divisors sp and sq
induced on the curve Bp = Bq. The curve Bp therefore contains a linear series

|OBp
(Ap)| of degree three which contains 3q for a general point q ∈ Bp. If

Bp was an elliptic curve, then |OBp
(Ap)| would necessarily have to be a g2

3

embedding Bp as a plane curve of degree three and the general point q would

be an inflexion point. But that is clearly not possible. Thus

pa(Bp) = 0,
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and by the adjunction formula we get

K.B = 2pa(B) − 2 −B2 = −2. (6.6)

Note also, that Z ′
p ⊂ Bp in view of Table (4.2) implies that Bp and Lp have a

common tangent in p. Suppose that Bp and Lp have no common component, i.

e. Bp 6⊂ Lp, then

3 ≤ multp(Bp) · multp(Lp) < L.B = A.B +B2 +K.B = 3 +K.B = 1,

which contradicts (6.6). Thus, Bp is at least once contained in Lp. Moreover,

if 2Bp 6⊂ Lp then by Table (4.2) L′
p := Lp − Bp has multiplicity two in p, and it

still has a common tangent with Bp in p, so that

3 ≤ L′
p.Bp = L.B − B2 = A.B +K.B = 3 +K.B = 1 (6.7)

again is impossible. We conclude finally, that Bp is at least twice contained in

Lp

Note finally, since dim |B|a = 1 there is a unique curve Bp in |B|a which passes

through p, i. e. it does not depend on the choice of Lp, so that in these cases Bp

respectively 2Bp is actually a fixed component of |L− 3p|.

7. Regular Surfaces

Theorem 7.1 (“If Σ is regular, then Σ is a rationally ruled surface.”)

More precisely, let Σ be a regular surface and L a line bundle on Σ such that L

and L−K are very ample. Suppose that (L−K)2 > 16 and that for a general p ∈
Σ the linear system |L− 3p| contains a curve Lp which has no triple component

through p, but such that h1
(
JZp

(L)
)
6= 0 where Zp is the equimultiplicity scheme

of Lp at p.

Then there is a rational ruling π : Σ → P1C of Σ such that Lp contains the fibre

over π(p) with multiplicity two.

Proof: Let us suppose that Σ is regular, so that each algebraic family is in-

deed a linear system, and let p ∈ Σ be general.

The case length(Z ′
p) = 4 is excluded since by Proposition 6.1 the algebraic

families |E|a and |F |a would have to be linear systems. Thus necessarily

length(Z ′
p) = 3, and we are done by Proposition 6.2.
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PAPER VII

Triple-Point Defective Ruled Surfaces

Abstract: In [ChM07a] we studied triple-point defective very am-

ple linear systems on regular surfaces, and we showed that they can

only exist if the surface is ruled. In the present paper we show that

we can drop the regularity assumption, and we classify the triple-

point defective very ample linear systems on ruled surfaces.

This paper is a joint work with Luca Chiantini, Siena, [ChM07a].

1. Introduction

Let Σ be a smooth projective surface, K = KΣ the canonical class and L a

divisor class on Σ

We study a classical interpolation problem for the pair (Σ, L), namely whether

for a general point p ∈ Σ the linear system |L−3p| has the expected dimension

expdim |L− 3p| = max{−1, dim |L| − 6}.

If this is not the case we call the pair (Σ, L) triple-point defective.

This paper is indeed a continuation of [ChM07a], where some classification

of triple point defective pairs is achieved, under the assumptions:

L,L−K very ample, and (L−K)2 > 16,

conditions that we will take all over the paper.

With these assumptions, the main result of [ChM07a] says that all triple-

point defective regular surfaces are rationally ruled.

We tackled the problem by considering |L − 3p| as fibres of the the map α in

the following diagram,

|L| = PC(H0(L)∗) L3
α

//
β

oo Σ (1.1)

where L3 denotes the incidence variety

L3 = {(C, p) ∈ |L| × Σ | multp(C) ≥ 3}

and α and β are the obvious projections.

115
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Assuming that for a general point p ∈ Σ there is a curve in Lp with a triple-

point in p – and hence α surjective, we considered then the equimultiplicity

scheme Zp of a curve Lp ∈ |L− 3p| defined by

JZp,p =

〈
∂fp
∂xp

,
∂fp
∂yp

〉
+ 〈xp, yp〉3.

One easily sees that (Σ, L) triple-point defective necessarily implies that

h1
(
Σ,JZp

(L)
)
6= 0.

Non–zero elements in H1
(
Σ,JZp

(L)
)
determine by Serre duality a non–trivial

extension Ep of JZp
(L−K) by OΣ, which turns out to be a rank 2 bundle on the

surface. Due to the assumption (L −K)2 > 16, Ep is Bogomolov unstable. We

then exploited the destabilizing divisor Ap of Ep in order to obtain the above

mentioned result.

For non–regular surfaces, the argument of [ChM07a] shows the following

lemma (see [ChM07a], Prop. 17 and Prop. 18):

Proposition 1.1

Suppose that, with the notation in (1.1), α is surjective, and suppose as usual

that L and L−K are very ample with (L−K)2 > 16.

For p general in Σ and for Lp ∈ |L−3p| general, call Z ′
p the minimal subscheme

of the equimultiplicity scheme Zp of Lp such that

h1
(
Σ,JZ′

p
(L)
)
6= 0.

Then either:

1) length(Z ′
p) = 3 and Σ is ruled; or

2) length(Z ′
p) = 4 and, for p ∈ Σ general, there are smooth, elliptic curves

Ep and Fp in Σ through p such that E2
p = F 2

p = 0, Ep.Fp = 1 and L.Ep =

L.Fp = 3. In particular, both |E|a and |F |a induce an elliptic fibration

with section on Σ over an elliptic curve.

This is our starting point. We will in this paper show that the latter case

actually cannot occur, and we will classify the triple-point defective linear

systems L as above on ruled surfaces. It will in particular follow that the

fibre of the ruling is contained exactly twice, and thus that the map β above

is generically finite.

Our main results are:

Theorem 1.2

Suppose that the pair (Σ, L) is triple-point defective where L and L − K are

very ample with (L−K)2 > 16. Then Σ admids a ruling π : Σ → C.
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For the classification, call C0 a section of the ruled surface Σ, e the line bundle

on the base curve given by the determinant of the defining bundle, and call Ei

the exceptional divisors (see pp. 122 and 125 for a more precise setting of the

notation):

Theorem 1.3

Assume that π : Σ → C is a ruled surface and that the pair (Σ, L) is triple-point

defective, where L and L−K are very ample with (L−K)2 > 16.

Then π is minimal, i.e. Σ is geometrically ruled, and for a general point p ∈ Σ

the linear system |L−3p| contains a fibre of the ruling as fixed component with

multiplicity two.

Moreover, in the previous notation, the line bundle L is of type C0+π∗b for some

divisor b on C such that b + e is very ample.

In Section 2 we will first show that a surface Σ admitting two elliptic fibra-

tions as required by Proposition 1.1 would necessarily be a product of two

elliptic curves and the triple-point defective linear system would be of type

(3, 3). We then show that such a system is never triple-point defective, setting

the first part of the main theorem.

In Section 3 we classify the triple-point defective linear systems on ruled sur-

faces, thus completing our main results.

2. Products of Elliptic Curves

In the above setting, consider a triple-point defective tuple (Σ, L) where the

equimultiplicity scheme Zp (see [ChM07a]) of a general element Lp ∈ |L− 3p|
admitted a complete intersection subscheme Z ′

p of length four with

h1
(
Σ,JZ′

p
(L)
)
6= 0.

As explained in the introduction, Prop. 1.1, after [ChM07a] we know that, for

p ∈ Σ general, there are smooth, elliptic curves Ep and Fp in Σ through p such

that E2
p = F 2

p = 0, Ep.Fp = 1 and L.Ep = L.Fp = 3.

In particular, both |E|a and |F |a induce an elliptic fibration with section on Σ

over an elliptic curve.

We will now show that this situation indeed cannot occur. Namely, for general

p and Lp there cannot exist such a scheme Z ′
p.

Lemma 2.1

Suppose that the surface Σ has two elliptic fibrations π : Σ −→ E0 and π′ :

Σ −→ F0 with general fibre E respectively F satisfying E.F = 1.

Then E0 and F0 are elliptic curves, and Σ is the blow-up of a product of two

elliptic curves Σ′ = E × E0
∼= E × F .
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Proof: Since E.F = 1 we have that F is a section of π, and thus F ∼= E0 via π.

In particular, E0 and, similarly, F0 are elliptic curves.

It is well known that there are no non–constant maps from a rational curve

to a curve of positive genus ([Har77], IV.2.5.4). Thus any exceptional curve of

Σ sits in some fiber. Thus we can reach relatively minimal models of π and π′

by successively blowing down exceptional −1-curves which belong to fibres of

both π and π′, i.e. we have the following commutative diagram

Σ

φ
  @

@@
@@

@@
@ π

$$

π′

��

Σ′ eπ
//

eπ′

��

E0

F0

where Σ′ is actually a minimal surface. Since a general fibre of π or π′ is not

touched by the blowing-down φ we may denote the general fibres of π̃ and π̃′

again by E respectively F , and we still have E.F = 1.

We will now try to identify the minimal surface Σ′ in the classification of min-

imal surfaces.

By [Fri98] Ex. 7.9 the canonical divisor KΣ′ is numerically trivial, since Σ′ is

a minimal surface admitting two elliptic fibrations over elliptic curves.

But then we can apply [Fri98] Ex. 7.7, and since the base curve E0 of the

fibration π̃ is elliptic we see that the invariant d = deg(L) = deg
(
(R1π∗OΣ′)−1

)

of the relatively minimal fibration π̃ mentioned in [Fri98] Cor. 7.17 is zero, so

that the same corollary implies that the fibration has at most multiple fibres

with smooth reduction as singular fibres. However, since π̃ has a section F

there are no multiple fibres, and thus all fibres of π̃ are smooth.

Moreover, since the canonical divisor of Σ′ is numerically trivial it is in partic-

ular nef, and by [Fri98] Thm. 10.5 we get that the Kodaira dimension κ(Σ′)

of Σ′ is zero.

Moreover, by [Fri98] Cor. 7.16 the surface Σ′ has second Chern class c2(Σ
′) =

0, since the invariant d = deg
(
(R1π∗OΣ′)−1

)
= 0 as already mentioned above.

Thus by the Enriques-Kodaira Classification (see e.g. [BHPV04] Thm. 10.1.1)

Σ′ must either be a torus or hyperelliptic (where the latter is sometimes also

called bielliptic). A bielliptic surface has precisely two elliptic fibrations, but

one of them is a fibration over a PC1 and only one is over an elliptic curve

(see e.g. [Rei97] Thm. E.7.2). Thus Σ′ is not bielliptic. Moreover, if Σ′ is a

torus then KΣ′ is trivial and thus so is (R1π∗OΣ′)−1, which by [Fri98] Cor. 7.21

implies that Σ′ is a product of the base curve with a fibre.



2. PRODUCTS OF ELLIPTIC CURVES 119

Lemma 2.1 implies that in order to show that the situation of Proposition 1.1

cannot occur, we have to understand products of elliptic curves.

Let us, therefore, consider a surface Σ = C1 × C2 which is the product of two

smooth elliptic curves.

Let us set some notation. We will use some results by [Kei01] Appendices G.b

and G.c in the sequel.

The surface Σ is naturally equipped with two projections πi : Σ −→ Ci. If a is

a divisor on C2 of degree a and b is a divisor on C1 of degree b then the divisor

π∗
2a + π∗

1b ∼a aC1 + bC2, where by abuse of notation we denote by C1 a fixed

fibre of π2 and by C2 a fixed fibre of π1. Moreover, KΣ is trivial, and given two

divisors D ∼a aC1 + bC2 and D
′ ∼a a

′C1 + b′C2 then the intersection product is

D.D′ = (aC1 + bC2).(a
′C1 + b′C2) = a · b′ + a′ · b.

We will consider first the case

L = π∗
2(a) + π∗

1(b)

where both b on C1 and a on C2 are divisors of degree 3. The dimension of

the linear system |L| is dim |L| = 8, and thus for a point p ∈ Σ the expected

dimension is expdim |L− 3p| = dim |L| − 6 = 2.

Notice that a divisor of degree three on an elliptic curve is always very ample

and embeds the curve as a smooth cubic in PC2. Since the smooth plane cubics

are classified by their normal forms xz2 − y · (y − x) · (y − λ · x) with λ 6= 0

the following example reflects the behaviour of any product of elliptic curves

embedded via a linear system of bidegree (3, 3).

Example 2.2

Consider two smooth plane cubics

C1 = V
(
xz2 − y · (y − z) · (y − az)

)

and

C2 = V
(
xz2 − y · (y − z) · (y − bz)

)
.

The surface Σ = C1 × C2 is embedded into PC8 via the Segre embedding

φ : PC2 ×PC2 −→ PC8 : ((x0 : x1 : x2), (y0 : y1 : y2)) 7→ (x0y0 : . . . : x2y2).

We may assume that both curves contain the point p = (1 : 0 : 0) as a general

non-inflexion point, and the point (p, p) is mapped by the Segre embedding to

φ(p, p) = (1 : 0 : . . . : 0). If we denote by zi,j , i, j ∈ {0, 1, 2}, the coordinates on PC8

as usual, then the maximal ideal locally at φ(p, p) is generated by z0,2 and z2,0,

i.e. these are local coordinates of Σ at φ(p, p). A standard basis computation
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shows that locally at φ(p, p) the coordinates zi,j satisfy modulo the ideal of Σ

and up to multiplication by a unit the following congruences (note, z0,0 = 1)

z0,1 ≡
1

b
· z2

0,2, z1,0 ≡
1

a
· z2

2,0, z1,1 ≡
1

ab
· z2

0,2 · z2
2,0,

z1,2 ≡
1

a
· z0,2 · z2

2,0, z2,1 ≡
1

b
· z2

0,2 · z2,0, z2,2 ≡z0,2 · z2,0.

Thus a hyperplane section H = a0,0z0,0 + . . . + a2,2z2,2 of Σ is locally in φ(p, p)

modulo m3 = 〈z0,2, z2,0〉3 given by

H ≡ a0,0 + a0,2z0,2 + a2,0z2,0 +
a0,1

b
· z2

0,2 +
a1,0

a
· z2

2,0 + a2,2z0,2z2,0,

and hence the family of hyperplane sections having multiplicity at least three

in φ(p, p) is given by

a0,0 = a0,1 = a1,0 = a0,2 = a2,0 = a2,2 = 0.

But then the family has parameters a1,1, a1,2, a2,1, and its dimension coincides

with the expected dimension 2. Moreover, the 3-jet of a hyperplane section H

through φ(p, p) with multiplicity at least three is

jet3(H) ≡ z0,2 · z2,0 ·
(a1,2

a
· z2,0 +

a2,1

b
· z0,2

)
,

which shows that for a general choice of a2,1 and a1,2 the point φ(p, p) is an

ordinary triple point.

Remark 2.3

We actually can say very precisely what it means that p is general in the

product, namely that neither π1(p) is a inflexion point of C1, nor π2(p) is a

inflexion point of C2.

Indeed, since a is very ample of degree three, for each point p ∈ Σ there is a

unique point qa ∈ C2 such that qa + 2 · π2(p) ∼l a. When π2(p) is a inflexion

point of C2, then qa = π2(p) and thus the two-dimensional family

3C1,π2(p) + |π∗(b)| ⊂ |L− 3p|

gives a superabundance of the dimension of |L− 3p| by one.

Similarly one can argue when π1(p) is a inflexion point of C1.

Now we are ready for the proof of Theorem 1.2.

Proof of Theorem 1.2: By Proposition 1.1, it is enough to prove that when

Σ has two elliptic fibrations as in the proposition, then Σ is not triple–point

defective.

By Lemma 2.1, Σ is the blow-up π : Σ −→ Σ′ of a product Σ′ = C1 × C2 of two

elliptic curves, and we may assume that the curves Ep and Fp in Proposition

1.1 are the fibres of π1 respectively π2.
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Our first aim will be to show that actually Σ = Σ′. For this note that

Pic(Σ) =
k⊕

i=1

Ei ⊕ π∗ Pic(Σ′),

where the Ei are the total transforms of the exceptional curves arising

throughout the blow-up, i.e. the Ei are (not necessarily irreducible) rational

curves with self-intersection E2
i = −1 and such that Ei.Ej = 0 for i 6= j and

Ei.π
∗(C) = 0 for any curve C on Σ′. In particular, since KΣ′ is trivial we have

thatKΣ =
∑k

i=1Ei, and if L = π∗L′−∑k
i=1 eiEi then L−K = π∗L′−∑k

i=1(ei+1)Ei.

We therefore have

16 < (L−K)2 = (L′)2 −
k∑

i=1

(ei + 1)2,

or equivalently

(L′)2 ≥ 17 +

k∑

i=1

(ei + 1)2 ≥ 17 + 4k, (2.1)

where the latter inequality is due to the fact that ei = L.Ei > 0 since L is very

ample. By the assumption of Proposition 1.1 we know that L′.C1 = L.Ep = 3

and L′.C2 = L.Fp = 3, and therefore by [Har77] Ex. V.1.9

(L′)2 ≤ 2 · (L′.C1) · (L′.C2) = 18. (2.2)

But (2.1) and (2.2) together imply that no exceptional curve exists, i.e. Σ = Σ′.

Since now Σ is a product of two elliptic curves, by [LaB92] we know that

the Picard number ρ = ρ(Σ) satisfies 2 ≤ ρ ≤ 4, and the Néron-Severi group

can be generated by the two general fibres C1 and C2 together with certain

graphs Cj , 3 ≤ j ≤ ρ, of morphisms ϕj : C1 −→ C2. In particular, Cj.C2 = 1

and Cj.C1 = deg(ϕj) ≥ 1 for 3 ≤ j ≤ ρ. Moreover, these graphs have self

intersecting zero. If we now assume that L ∼a

∑ρ
j=1 aiCi then

L2 = 2 ·
∑

i<j

ai · aj · (Ci.Cj)

is divisible by 2, and since L = L − K with (L − K)2 > 16 we deduce with

[Har77] Ex. V.1.9 that

L2 = (L−K)2 = 18 = 2 · (L.C1) · (L.C2),

and thus that

L ∼a 3C1 + 3C2,

or in equivalently, that

L = π∗
2a + π∗

1b

for some divisors a on C2 and b on C1, both of degree 3. That is, we are in

the situation of Example 2.2, and we showed there that (Σ, L) then is not

triple-point defective.
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Remark 2.4

Notice that, in practice, since

h1(Σ, L) = h0(C1, b) · h1(C2, a) + h0(C2, a) · h1(C1, b) = 0,

the non-triple-point defectiveness shows that for general p ∈ Σ and Lp ∈ |L−
3p| no Z ′

p as in the assumptions of Proposition 1.1 can have length 4.

3. Geometrically Ruled Surfaces

Let Σ = PC(E)
π
// C be a geometrically ruled surface with normalized bundle

E (in the sense of [Har77] V.2.8.1). The Néron-Severi group of Σ is

NS(Σ) = C0Z⊕ fZ,
with intersection matrix 

 −e 1

1 0


 ,

where f ∼= PC1 is a fixed fibre of π, C0 a fixed section of π with OΣ(C0) ∼=
OPC(E)(1), and e = − deg(e) ≥ −g where e = Λ2E . If b is a divisor on C we will

write bf for the divisor π∗(b) on Σ, and so for the canonical divisor we have

KΣ ∼l −2C0 + (KC + e) · f ∼a −2C0 + (2g − 2 − e)f,

where g = g(C) is the genus of the base curve C.

Example 3.1

Let b be a divisor on C such that b and b + e are both very ample and such that

b is non-special. If C is rational we should in addition assume that deg(b) +

deg(b + e) ≥ 6. Then the divisor L = C0 + bf is very ample (see e.g. [FuP00]

Prop. 2.15) of dimension

dim |L| = h0(C, b) + h0(C, b + e) − 1

Moreover, for any point p ∈ Σ we then have (see [FuP00] Cor. 2.13)

dim |C0 + (b − 2π(p)) · f | = dim |C0 + bf | − 4 = h0(C, b) + h0(C, b + e) − 5,

and we have for p general

dim |C0 + (b − 2π(p)) · f − p | = h0(C, b) + h0(C, b + e) − 6.

For this note that b and b + e very ample implies that this number is non-

negative – in the rational case we need the above degree bound.

If we denote by fp = π∗(π(p)
)
the fibre of π over π(p), then by Bézout and since

L.fp = (L − fp).fp = 1 we see that 2fp is a fixed component of |L − 3p| and we

have

|L− 3p| = 2fp + |C0 + (b − 2π(p)) · f − p |,
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so that

dim |L− 3p| = h0(C, b) + h0(C, b + e) − 6 = dim |L| − 5

> dim |L| − 6 = expdim |L− 3p|.

This shows that (Σ, L) is triple-point defective and |L− 3p| contains a fibre of

the ruling as double component. Moreover, for a general p the linear series

|L− 3p| cannot contain a fibre of the ruling more than twice due to the above

dimension count for |C0 + (b − 2π(p)) · f − p |.
Next we are showing that a geometrically ruled surface is indeed triple-point

defective with respect to a line bundle Lwhich fulfills our assumptions, and in

Corollary 3.6 we will see that this is not the case for non-geometrically ruled

surfaces.

Proposition 3.2

On every geometrically ruled surface Σ = PC(E)
π−→ C there exists some very

ample line bundle L such that the pair (Σ, L) is triple–point defective, and

moreover also L−K is very ample with (L−K)2 > 16.

Proof: It is enough to take L = C0 + bf , with b = deg(b) = 3a such that

a, a− e, a+ e, a− 2g + 2 + e, a− 2g + 2 − e are all bigger or equal than 2g + 1.

Indeed in this case b and b + e are both very ample. For p ∈ C general, we

also have that both b − p and b + e − p are non-special. It follows that L is

very ample (by [Har77] Ex. V.2.11.b) and (Σ, L) is triple point defective, by

the previous example. Moreover, in this situation we have:

L−K ∼l 3C0 +
(
b −KC − e

)
· f.

Hence

(L−K)2 =
(
3C0 + (deg(b) − 2g + 2 + e) · f

)2 ≥ 18 > 16.

Finally, if we fix a divisor a of degree a on C, then L − K is the sum of the

divisors C0 +
(
a − KC

)
· f , C0 +

(
a − e

)
· f , C0 + af , which are very ample

([Har77] Ex. V.2.11). Thus L−K is very ample.

Next, let us describe which linear systems L on a ruled surface Σ determine a

triple-point defective pair (Σ, L).

We will show that example 3.1 describes, in most cases, the only possibilities.

In order to do so we first have to consider the possible algebraic classes of

irreducible curves with self-intersection zero on a ruled surface.

Lemma 3.3

Let B ∈ |bC0 + b′f |a be an irreducible curve with B2 = 0 and dim |B|a ≥ 0, then

we are in one of the following cases:

(a.1) B ∼a f ,
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(a.2) e = 0, b ≥ 1, B ∼a bC0, and |B|a = |B|l, or
(a.3) e < 0, b ≥ 2, b′ = b

2
e < 0, B ∼a bC0 + b

2
ef and |B|a = |B|l.

Moreover, if b = 1, then Σ ∼= C0 × PC1.

Proof: See [Kei01] App. Lemma G.2.

We can now classify the triple-point defective linear systems on a geometri-

cally ruled surface. In order to do so we should recall the result of [ChM07a]

Prop. 18.

Proposition 3.4

Suppose that, with the notation in (1.1), α is surjective, and suppose that L

and L−K are very ample with (L−K)2 > 16. Moreover, suppose that for p ∈ Σ

general and for Lp ∈ |L − 3p| general the equimultiplicity scheme Zp of Lp has

a subscheme Z ′
p of length 3 such that h1

(
Σ,JZ′

p
(L)
)
6= 0.

Then for p ∈ Σ general there is an irreducible, smooth, rational curve Bp in a

pencil |B|a with B2 = 0, (L−K).B = 3 and L−K − B big.

In particular, Σ → |B|a is a ruled surface and 2Bp is a fixed component of

|L− 3p|.
Theorem 3.5

With the above notation let π : Σ → C be a geometrically ruled surface, and let

L be a line bundle on Σ such that L and L −K are very ample. Suppose that

(L−K)2 > 16 and that for a general p ∈ Σ the linear system |L− 3p| contains
a curve Lp such that h1

(
Σ,JZp

(L)
)
6= 0 where Zp is the equimultiplicity scheme

of Lp at p.

Then L = C0 + b · f for some divisor b on C such that b + e is very ample and

|L−3p| contains a fibre of π as fixed component with multiplicity two. Moreover,

if e ≥ −1 then deg(b) ≥ 2g + 1 and we are in the situation of Example 3.1.

Proof: As in the proof of [ChM07a] Thm. 19, since the case in which the

length of Zp is 4 has been ruled out in Remark 2.4, we only have to consider

the situations in Proposition 3.4 above.

Using the notation there we have a divisor A := L −K − B ∼a aC0 + a′f and

a curve B ∼a bC0 + b′f satisfying certain numerical properties, in particular

pa(B) = 0, B2 = 0, and a > 0 since A is big. Moreover,

3 = A.B = −eab+ ab′ + a′b (3.1)

and

a · (2a′ − ae) = A2 = (L−K)2 − 2 · A.B − B2 ≥ 17 − 2 · A.B −B2 = 11. (3.2)
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By Lemma 3.3 there are three possibilities for B to consider. If e < 0 and

B ∼a bC0 + eb
2
· f with b ≥ 2, then Riemann-Roch leads to the impossible

equation

−2 = 2pa(B) − 2 = B.K = (2g − 2) · b.
If e = 0 and B ∼a bC0, then similarly Riemann-Roch shows

−2 = B.K = (2g − 2) · b,

which now implies that b = 1 and g = 0. In particular, Σ ∼= PC1 × PC1 and

L ∼a A+ B +K ∼a (a− 1) · C0 + f , since 3 = A.B = a′. But this is then one of

the cases of Example 3.1.

Finally, if B ∼a f then (3.1) gives a = 3, and thus

L ∼a A+B +K ∼a C0 + (a′ + π(p) +KC + e) · f,

where A = 3C0 + a′ · f . Moreover, by the assumptions of Case (b) the linear

system |L − 3p| contains the fibre of the ruling over p as double fixed com-

ponent, and since L is very ample it induces on C the very ample divisor

e + (a′ + π(p) +KC + e). Note also, that (3.2) implies that

a′ − 2 − e ≥ e

2
,

and thus for e ≥ −1 we have

deg(a′ + π(p) +KC + e) = 2g + 1 + (a′ − 2 − e) ≥ 2g + 1,

so that then the assumptions of Example 3.1 are fulfilled. This finishes the

proof.

If π : Σ −→ C is a ruled surface, then there is a (not necessarily unique (if

g(C) = 0)) minimal model

Σ

φ ��?
??

??
??

? π

##

Σ′ eπ
// C,

and the Néron-Severi group of Σ is

NS(Σ) = C0 · Z⊕ f · Z⊕
k⊕

i=1

Ei ·Z,
where f is a general fibre of π, C0 is the total transform of section of π̃, and

the Ei are the total transforms of the exceptional divisors of the blow-up φ.

Moreover, for the Picard group of Σ we just have to replace f · Z by π∗ Pic(C).

We may, therefore, represent a divisor class A on Σ as

L = a · C0 + π∗b −
k∑

i=1

ciEi. (3.3)
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Corollary 3.6

Suppose that (Σ, L) is a tuple as in Proposition 1.1 with ruling π : Σ → C, and

suppose that the Néron-Severi gruop of Σ is as described before with general

fibre f = Bp.

Then Σ is minimal, L = C0 + π∗b for some divisor b on C such that b + e is very

ample and |L − 3p| contains a fibre of π as fixed component with multiplicity

two.

Proof: Let L = C0 + π∗b −∑k
i=1 ciEi, as described in (3.3). Then

L−K = (a+ 2) · C0 + π∗(b −KC − e) −
k∑

i=1

(ci + 1) · Ei,

and thus considering Proposition 3.4

3 = (L−K).B = a + 2.

The very ampleness of L implies thus that ci > 0 for all i. But then, if Σ is

not minimal and f ′ is the strict transform of a fiber of the minimal model,

meeting some Ei, then L · f ′ ≤ 0, a contradiction.

By [ChM07a] we get Theorem 1.3 as an immediate corollary.
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PAPER VIII

Standard Bases in K[[t1, . . . , tm]][x1, . . . , xn]
s

Abstract: In this paper we study standard bases for submodules

of K[[t1, . . . , tm]][x1, . . . , xn]
s respectively of their localisation with re-

spect to a t-local monomial ordering. The main step is to prove the

existence of a division with remainder generalising and combining

the division theorems of Grauert-Hironaka and Mora. Everything

else then translates naturally. Setting either m = 0 or n = 0 we

get standard bases for polynomial rings respectively for power se-

ries rings as a special case. We then apply this technique to show

that the t-initial ideal of an ideal over the Puiseux series field can be

read of from a standard basis of its generators. This is an important

step in the constructive proof that each point in the tropical variety

of such an ideal admits a lifting.

[Mar07]

The paper follows the lines of [GrP02] and [DeS07] generalising the results

where necessary. Basically, the only original parts for the standard bases

are the proofs of Theorem 2.1 and Theorem 3.3, but even here they are easy

generalisations of Grauert-Hironaka’s respectively Mora’s Division Theorem

(the latter in the form stated and proved first by Greuel and Pfister, see

[GGM+94], [GrP96]; see also [Mor82], [Grä94]). The paper should therefore

rather be seen as a unified approach for the existence of standard bases in

polynomial and power series rings, and it was written mostly due to the lack

of a suitable reference for the existence of standard bases in K[[t]][x1, . . . , xn]

which are needed when dealing with tropical varieties. Namely, when we

want to show that every point in the tropical variety of an ideal J defined over

the field of Puiseux series exhibits a lifting to the variety of J , then, assuming

that J is generated by elements in K
[[
t

1
N

]]
[x1, . . . , xn], we need to know that

we can compute the so-called t-initial ideal of J by computing a standard basis

of the ideal defined by the generators in K
[[
t

1
N

]]
[x1, . . . , xn] (see Theorem 6.10

and [JMM07]).

An important point is that if the input data is polynomial in both t and x

then we can actually compute the standard basis since a standard basis com-

puted in K[t1, . . . , tm]〈t1,...,tm〉[x1, . . . , xn] will do (see Corollary 4.7). This was

previously known for the case where there are no xi (see [GrP96]).
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In this paper we treat only formal power series, while Grauert (see [Gra72])

and Hironaka (see [Hir64]) considered convergent power series with respect

to certain valuations which includes the formal case. It should be rather

straight forward how to adjust Theorem 2.1 accordingly. Many authors con-

tributed to the further development (see e.g. [Bec90] for a standard basis

criterion in the power series ring) and to generalisations of the theory, e.g. to

algebraic power series (see e.g. [Hir77], [AMR77], [ACH05]) or to differential

operators (see e.g. [GaH05]). This list is by no means complete.

In Section 1 we introduce the basic notions. Section 2 is devoted to the proof

of the existence of a determinate division with remainder for polynomials in

K[[t1, . . . , tm]][x1, . . . , xm]s which are homogeneous with respect to the xi. This

result is then used in Section 3 to show the existence of weak divisions with

remainder for all elements of K[[t1, . . . , tm]][x1, . . . , xm]s. In Section 4 we intro-

duce standard bases and prove the basics for these, and we prove Schreyer’s

Theorem and, thus Buchberger’s Criterion in Section 5. Finally, in Section

6 we apply standard bases to study t-initial ideals of ideals over the Puiseux

series field.

1. Basic Notation

Throughout the paper K will be any field, R = K[[t1, . . . , tm]] will denote the

ring of formal power series over K and

R[x1, . . . , xn] = K[[t1, . . . , tm]][x1, . . . , xn]

denotes the ring of polynomials in the indeterminates x1, . . . , xn with coeffi-

cients in the power series ring R. We will in general use the short hand nota-

tion x = (x1, . . . , xn) and t = (t1, . . . , tm), and the usual multi index notation

tα = tα1
1 · · · tαm

m and xβ = xβ1

1 · · ·xβn

n ,

for α = (α1, . . . , αm) ∈ Nm and β = (β1, . . . , βn) ∈ Nn .

Definition 1.1

A monomial ordering on

Mon(t, x) =
{
tα · xβ

∣∣ α ∈ Nm, β ∈ Nn
}

is a total ordering > on Mon(t, x) which is compatible with the semi group

structure of Mon(t, x), i.e. such that for all α, α′, α′′ ∈ Nm and β, β ′, β ′′ ∈ Nn

tα · xβ > tα
′ · xβ′

=⇒ tα+α′′ · xβ+β′′

> tα
′+α′′ · xβ′+β′′

.

We call a monomial ordering > on Mon(t, x) t-local if its restriction to Mon(t)

is local, i.e. ti < 1 for all i = 1, . . . , m. We call a t-local monomial ordering on
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Mon(t, x) a t-local weighted degree ordering if there is a w = (w1, . . . , wm+n) ∈Rm
≤0 ×Rn such that for all α, α′ ∈ Nm and β, β ′ ∈ Nn

w · (α, β) > w · (α′, β ′) =⇒ tα · xβ > tα
′ · xβ′

,

where w · (α, β) = w1 · α1 + . . . + wm · αm + wm+1 · β1 + . . .+ wn · βn denotes the

standard scalar product. We call w a weight vector of >.

Example 1.2

The t-local lexicographical ordering >lex on Mon(t, x) is defined by

tα · xβ > tα
′ · xβ′

if and only if

∃ j ∈ {1, . . . , n} : β1 = β ′
1, . . . , βj−1 = β ′

j−1, and βj > β ′
j ,

or
(
β = β ′ and ∃ j ∈ {1, . . . , m} : α1 = α′

1, . . . , αj−1 = α′
j−1, αj < α′

j

)
.

Example 1.3

Let > be any t-local ordering and w = (w1, . . . , wm+n) ∈ Rm
≤0×Rn, then tα ·xβ >w

tα
′ · xβ′

if and only if w · (α, β) > w · (α′, β ′) or

(
w · (α, β) = w · (α′, β ′) and tα · xβ > tα

′ · xβ′)

defines a t-local weighted degree ordering >w on Mon(t, x) with weight vector

w.

Even if we are only interested in standard bases of ideals we have to pass to

submodules of free modules in order to have syzygies at hand for the proof of

Buchberger’s Criterion via Schreyer orderings.

Definition 1.4

We define

Mons(t, x) :=
{
tα · xβ · ei | α ∈ Nn, β ∈ Nm, i = 1, . . . , s

}
,

where ei = (δij)j=1,...,s is the vector with all entries zero except the i-th one

which is one. We call the elements of Mons(t, x) module monomials or simply

monomials.

For p, p′ ∈ Mons(t, x) ∪ {0} the notion of divisibility and of the lowest common

multiple lcm(p, p′) are defined in the obvious way.

Given a monomial ordering on Mon(t, x), a t-local monomial ordering on

Mons(t, x) with respect to > is a total ordering >m on Mons(t, x) which is

strongly compatible with the operation of the multiplicative semi group

Mon(t, x) on Mons(t, x) in the sense that

tα · xβ · ei >m tα
′ · xβ′ · ej =⇒ tα+α′′ · xβ+β′′ · ei >m tα

′+α′′ · xβ′+β′′ · ej
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and

tα · xβ > tα
′ · xβ′ ⇐⇒ tα · xβ · ei >m tα

′ · xβ′ · ei
for all β, β ′, β ′′ ∈ Nn, α, α′, α′′ ∈ Nm, i, j ∈ {1, . . . , s}.
Note that due to the second condition the ordering >m on Mons(t, x) deter-

mines the ordering > on Mon(t, x) uniquely, and we will therefore usually not

distinguish between them, i.e. we will use the same notation > also for >m,

and we will not specify the monomial ordering on Mon(t, x) in advance, but

instead refer to it as the induced monomial ordering on Mon(t, x).

We call a monomial ordering on Mons(t, x) t-local if the induced monomial

ordering on Mon(t, x) is so.

We call a t-local monomial ordering on Mons(t, x) a t-local weight ordering if

there is a w = (w1, . . . , wm+n+s) ∈ Rm
≤0 × Rn × Rs such that for all α, α′ ∈ Nm,

β, β ′ ∈ Nn and i, j ∈ {1, . . . , s}

w · (α, β, ei) > w · (α′, β ′, ej) =⇒ tα · xβ · ei > tα
′ · xβ′ · ej ,

and we call w a weight vector of >.

Example 1.5

Let w ∈ Rm
≤0 × Rn+s and let > be any t-local monomial ordering on Mons(t, x)

such that the induced t-local monomial ordering on Mon(t, x) is a t-local

weighted degree ordering with respect to the weight vector (w1, . . . , wm+n).

Then

tα · xβ · ei >w tα
′ · xβ′ · ej

if and only if

w · (α, β, ei) > w · (α′, β ′, ej)

or (
w · (α, β, ei) = w · (α′, β ′, ej) and tα · xβ · ei > tα

′ · xβ′ · ej
)

defines a t-local weight monomial ordering on Mons(t, x) with weight vector w.

In particular, there exists such a monomial ordering.

Remark 1.6

In the following we will mainly be concerned with monomial orderings on

Mons(t, x) and with submodules of free modules over R[x], but all these results

specialise to Mon(t, x) and ideals by just setting s = 1. 2

For a t-local monomial ordering we can introduce the notions of leading mono-

mial and leading term of elements in R[x]s.

Definition 1.7

Let > be a t-local monomial ordering on Mons(t, x). We call

0 6= f =
s∑

i=1

d∑

|β|=0

∞∑

|α|=0

aα,β,i · tα · xβ · ei ∈ R[x]s,
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with aα,β,i ∈ K, |β| = β1 + . . . + βn and |α| = α1 + . . . + αm, the distributive

representation of f , Mf :=
{
tα ·xβ · ei | aα,β,i 6= 0

}
the set ofmonomials of f and

Tf :=
{
aα,β,i · tα · xβ · ei | aα,β,i 6= 0

}
the set of terms of f .

Moreover, lm>(f) := max{tα · xβ · ei | tα · xβ · ei ∈ Mf} is called the leading

monomial of f . Note again, that this maximum exists since the number of

β’s occurring in f and the number of i’s is finite and the ordering is local with

respect to t.

If lm>(f) = tα · xβ · ei then we call lc>(f) := aα,β,i the leading coefficient of f ,

lt>(f) := aα,β,i · tα · xβ · ei its leading term, and tail>(f) := f − lt>(f) its tail.

For the sake of completeness we define lm>(0) := 0, lt>(0) := 0, lc>(0) :=

0, tail>(f) = 0, and 0 < tα · xβ · ei ∀ α ∈ Nm, β ∈ Nn, i ∈ N.
Finally, for a subset G ⊆ R[x]s we call the submodule

L>(G) = 〈lm>(f) | f ∈ G〉 ≤ K[t, x]s

of the free moduleK[t, x]s over the polynomial ring K[t, x] generated by all the

leading monomials of elements in G the leading submodule of G.

We know that in general a standard basis of an ideal respectively submodule

I will not be a generating set of I itself, but only of the ideal respectively

submodule which I generates in the localisation with respect to the monomial

ordering. We therefore introduce this notion here as well.

Definition 1.8

Let > be a t-local monomial ordering on Mon(t, x), then S> = {u ∈
R[x] | lt>(u) = 1} is the multiplicative set associated to >, and R[x]> =

S−1
> R[x] =

{
f
u

∣∣∣ f ∈ R[x], u ∈ S>

}
is the localisation of R[x] with respect to >.

If > is a t-local monomial ordering with xi > 1 for all i = 1, . . . , n (e.g. >lex from

Example 1.2), then S> ⊂ R∗, and therefore R[x]> = R[x].

It is straight forward to extend the notions of leading monomial, leading term

and leading coefficient to R[x]> and free modules over this ring.

Definition 1.9

Let > be a t-local monomial ordering on Mons(t, x), g = f
u
∈ R[x]s> with u ∈ S>,

and G ⊆ R[x]s>. We then define the leading monomial, the leading coefficient

respectively the leading term of g as

lm>(g) := lm>(f), lc>(g) := lc>(f), resp. lt>(g) := lt>(f),

and the leading ideal (if s = 1) respectively leading submodule of G

L>(G) = 〈lm>(h) | h ∈ G〉 ≤ K[t, x]s.
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These definitions are independent of the chosen representative, since if g =
f
u

= f ′

u′
then u′ · f = u · f ′, and hence

lt>(f) = lt>(u′) · lt>(f) = lt>(u′ · f) = lt>(u · f ′) = lt>(u) · lt>(f ′) = lt>(f ′).

Remark 1.10

Note that the leading submodule of a submodule in R[x]s> is a submodule in

a free module over the polynomial ring K[t, x] over the base field, and note

that for J ≤ R[x]s> we obviously have L>(J) = L>(J ∩ R[x]s), and similarly for

I ≤ R[x]s we have L>(I) = L>
(
〈I〉R[x]>

)
, since every element of 〈I〉R[x]> is of the

form f
u
with f ∈ I and u ∈ S>.

In order to be able to work either theoretically or even computationally with

standard bases it is vital to have a division with remainder and possibly an

algorithm to compute it. We will therefore generalise Grauert-Hironaka’s and

Mora’s Division with remainder. For this we first would like to consider the

different qualities a division with remainder may satisfy.

Definition 1.11

Let > be a t-local monomial ordering on Mons(t, x), and let A = R[x] or A =

R[x]>, where we consider the latter as a subring of K[[t, x]] in order to have

the notion of terms of elements at hand.

Suppose we have f, g1, . . . , gk, r ∈ As and q1, . . . , qk ∈ A such that

f = q1 · g1 + . . .+ qk · gk + r. (1.1)

With the notation r =
∑s

j=1 rj ·ej , r1, . . . , rs ∈ A, we say that (1.1) satisfies with

respect to > the condition

(ID1): iff lm>(f) ≥ lm>(qi · gi) for all i = 1, . . . , k,

(ID2): iff lm>(gi) 6 | lm>(r) for i = 1, . . . , k, unless r = 0,

(DD1): iff for j < i no term of qi · lm>(gi) is divisible by lm>(gj),

(DD2): iff no term of r is divisible by lm>(gi) for i = 1, . . . , k.

(SID2): iff lm>(gi) 6 | lm>(rj · ej) unless rj = 0 for all i and j.

Here, “ID” stands for indeterminate division with remainder while “DD”

means determinate division with remainder and the “S” in (SID2) represents

strong. Accordingly, we call a representation of f as in (1.1) a determinate di-

vision with remainder of f with respect to (g1, . . . , gk) if it satisfies (DD1) and

(DD2), while we call it an indeterminate division with remainder of f with

respect to (g1, . . . , gk) if it satisfies (ID1) and (ID2). In any of these cases we

call r a remainder or a normal form of f with respect to (g1, . . . , gk).

If the remainder in a division with remainder of f with respect to (g1, . . . , gk)

is zero we call the representation of f a standard representation.
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Finally, if A = R[x] then for u ∈ S> we call a division with remainder of u · f
with respect to (g1, . . . , gk) also a weak division with remainder of f with re-

spect to (g1, . . . , gk), a remainder of u · f with respect to (g1, . . . , gk) is called a

weak normal form of f with respect to (g1, . . . , gk), and a standard representa-

tion of u ·f with respect to (g1, . . . , gk) is called a weak standard representation

of f with respect to (g1, . . . , gk).

It is rather obvious to see that (DD2) ⇐= (SID2)⇐= (ID2), that (DD1)+(ID2)

⇐= (ID1), and that the coefficients and the remainder of a division satisfying

(DD1) and (DD2) is uniquely determined.

We first want to generalise Grauert-Hironaka’s Division with Remainder to

the case of elements in R[x] which are homogeneous with respect to x. We

therefore introduce this notion in the following definition.

Definition 1.12

Let f =
∑s

i=1

∑d
|β|=0

∑
α∈Nm aα,β,i · tα · xβ · ei ∈ R[x]s.

(a) We call degx(f) := max
{
|β|
∣∣ aα,β,i 6= 0

}
the x-degree of f .

(b) f ∈ R[x]s is called x-homogeneous of x-degree d if all terms of f have

the same x-degree d. We denote by R[x]sd the R-submodule of R[x]s of x-

homogeneous elements. Note that by this definition 0 is x-homogeneous

of degree d for all d ∈ N.

(c) If > is a t-local monomial ordering on Mons(t, x) then we call

ecart>(f) := degx(f) − degx
(
lm>(f)

)
≥ 0

the ecart of f . It in some sense measures the failure of the homogeneity

of f .

2. Determinate Division with Remainder in K[[t]][x]sd

We are now ready to show that for x-homogeneous elements in R[x] there

exists a determinate division with remainder. We follow mainly the proof of

Grauert-Hironaka’s Division Theorem as given in [DeS07].

Theorem 2.1 (HDDwR)

Let f, g1, . . . , gk ∈ R[x]s be x-homogeneous, then there exist uniquely determined

q1, . . . , qk ∈ R[x] and r ∈ R[x]s such that

f = q1 · g1 + . . .+ qk · gk + r

satisfying (DD1), (DD2) and

(DDH): q1, . . . , qk, r are x-homogeneous of x-degrees degx(qi) = degx(f) −
degx

(
lm>(gi)

)
respectively degx(r) = degx(f).
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Proof: The result is obvious if the gi are terms, and we will reduce the general

case to this one. We set f0 = f and for ν > 0 we define recursively

fν = fν−1 −
k∑

i=1

qi,ν · gi − rν =

k∑

i=1

qi,ν · (
(
− tail(gi)

)
,

where the qi,ν ∈ R[x] and rν ∈ R[x]s are such that

fν−1 = q1,ν · lt>(g1) + . . .+ qk,ν · lt>(gk) + rν (2.1)

satisfies (DD1), (DD2) and (DDH). Note that such a representation of fν−1

exists since the lt>(gi) are terms.

We want to show that fν , qi,ν and rν all converge to zero in the 〈t1, . . . , tm〉-adic
topology, that is that for each N ≥ 0 there exists a µN ≥ 0 such that for all

ν ≥ µN

fν , rν ∈ 〈t1, . . . , tm〉N · R[x]s resp. qi,ν ∈ 〈t1, . . . , tm〉N .

By Lemma 2.3 there is t-local weight ordering >w such that

lm>(gi) = lm>w
(gi) for all i = 1, . . . , k.

If we replace in the above construction > by >w, we still get the same se-

quences (fν)
∞
ν=0, (qi,ν)

∞
ν=1 and (rν)

∞
ν=1, since for the construction of qi,ν and rν

only the leading monomials of the gj are used. In particular, (2.1) will sat-

isfy (DD1), (DD2) and (DDH) with respect to >w. Due to (DDH) fν is again

x-homogeneous of x-degree equal to that of fν−1, and since (DD1) and (DD2)

imply (ID1) we have

lm>w
(fν−1) ≥ max{lm>w

(qi,ν) · lm>w
(gi) | i = 1, . . . , k}

> max
{

lm>w
(qi,ν) · lm>w

(
− tail(gi)

) ∣∣ i = 1, . . . , k
}
≥ lm>w

(fν).

It follows from Lemma 2.4 that fν converges to zero in the 〈t1, . . . , tm〉-adic
topology, i.e. for given N there is a µN such that

fν ∈ 〈t1, . . . , tm〉N · R[x]s for all ν ≥ µ.

But then, by construction for ν > µN

rν ∈ 〈t1, . . . , tm〉N · R[x]s

and

qi,ν ∈ 〈t1, . . . , tm〉N−di,

where di = deg
(
lm>(gi)

)
− degx

(
lm>(gi)

)
is independent of ν. Thus both, rν

and qi,ν , converge as well to zero in the 〈t1, . . . , tm〉-adic topology.
But then

qi :=

∞∑

ν=1

qi,ν ∈ R[x] and r :=

∞∑

ν=1

rν ∈ R[x]s
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are x-homogeneous of x-degrees degx(qi) = degx(f) − degx
(
lm>(gi)

)
respec-

tively degx(r) = degx(f) unless they are zero, and

f = q1 · g1 + . . .+ qk · gk + r

satisfies (DD1), (DD2) and (DDH).

The uniqueness of the representation is obvious.

The following lemmata contain technical results used throughout the proof of

the previous theorem.

Lemma 2.2

If > is a monomial ordering on Mons(z) with z = (t, x), and M ⊂ Mons(z) is

finite, then there exists w ∈ Zm+n+s with

wi < 0, if zi < 1, and wi > 0, if zi > 1,

such that for zγ · ei, zγ′ · ej ∈M we have

zγ · ei > zγ
′ · ej ⇐⇒ w · (γ, ei) > w · (γ′, ej).

In particular, if > is t-local then every t-local weight ordering on Mons(t, x)

with weight vector w coincides onM with >.

Proof: The proof goes analogous to [GrP02, Lemma 1.2.11], using [Bay82,

(1.7)] (for this note that in the latter the requirement that > is a well-ordering

is superfluous).

Lemma 2.3

Let > be a t-local ordering on Mons(t, x) and let g1, . . . , gk ∈ R[x]s be x-

homogeneous (not necessarily of the same degree), then there is aw ∈ Zm<0×Zn+s

such that any t-local weight ordering with weight vector w, say >w, induces the

same leading monomials as > on g1, . . . , gk, i.e.

lm>(gi) = lm>w
(gi) for all i = 1, . . . , k.

Proof: Consider the monomial ideals Ii = 〈Mtail(gi)〉 in K[t, x] generated by

all monomials of tail(gi), i = 1, . . . , k. By Dickson’s Lemma (see e.g. [GrP02,

Lemma 1.2.6]) Ii is generated by a finite subset, say Bi ⊂ Mtail(gi), of the

monomials of tail(gi). If we now set

M = B1 ∪ . . . ∪ Bk ∪ {lm>(g1), . . . , lm>(gk)},

then by Lemma 2.2 there is w ∈ Zm<0 × Zn+s such that any t-local weight

ordering, say>w, with weight vector w coincides onM with>. Let now tα·xβ ·eν
be any monomial occurring in tail(gi). Then there is a monomial tα

′ ·xβ′ ·eµ ∈ Bi

such that

tα
′ · xβ′ · eµ

∣∣ tα · xβ · eν ,
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which in particular implies that eν = eµ. Since gi is x-homogeneous it follows

first that |β| = |β ′| and thus that β = β ′. Moreover, since >w is t-local it follows

that tα
′ ≥w t

α and thus that

tα
′ · xβ′ · eµ ≥w t

α · xβ · eν .

But since > and >w coincide on {lm>(gi)} ∪Bi ⊂M we necessarily have that

lm>(gi) >w tα
′ · xβ′ · eµ ≥w t

α · xβ · eν ,

and hence lm>w
(gi) = lm>(gi).

Lemma 2.4

Let > be a t-local weight ordering on Mons(t, x) with weight vector w ∈ Zm<0 ×Zn+s, and let (fν)ν∈N be a sequence of x-homogeneous elements of fixed x-degree

d in R[x]s such that

lm>(fν) > lm>(fν+1) for all ν ∈ N.
Then fν converges to zero in the 〈t1, . . . , tm〉-adic topology, i.e.

∀ N ≥ 0 ∃ µN ≥ 0 : ∀ ν ≥ µN we have fν ∈ 〈t1, . . . , tm〉N · R[x]s.

In particular, the element
∑∞

ν=0 fν ∈ R[x]sd exists.

Proof: Since w1, . . . , wm < 0 the set of monomials

Mk =
{
tα · xβ

∣∣ w · (α, β, ei) > −k, |β| = d
}
.

is finite for a any fixed k ∈ N.

Let N ≥ 0 be fixed, set τ = max{|w1|, . . . , |wm+n+s|} and k := (N + nd + 1) · τ ,
then for any monomial tα · xβ · ej of x-degree d

tα · xβ · ej 6∈Mk =⇒ tα · xβ · ej ∈ 〈t1, . . . , tm〉N · R[x]s, (2.2)

since
m∑

i=1

αi · wi ≤ −k −
n∑

i=1

βi · wm+i − wm+n+j ≤ −k + (nd+ 1) · τ

and thus

|α| =

m∑

i=1

αi ≥
m∑

i=1

αi ·
−wi
τ

≥ k

τ
− nd − 1 = N.

Moreover, since Mk is finite and the lm>(fν) are pairwise different there are

only finitely many ν such that lm>(fν) ∈ Mk. Let µ be maximal among those

ν, then by (2.2)

lm>(fν) ∈ 〈t1, . . . , tm〉N · R[x]s for all ν > µ.

But since > is a t-local weight ordering we have that lm>(fν) 6∈ Mk implies

that no monomial of fν is inMk, and thus fν ∈ 〈t1, . . . , tm〉N · R[x]s for all ν > µ

by (2.2). This shows that fν converges to zero in the 〈t1, . . . , tm〉-adic topology.
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Since fν converges to zero in the 〈t1, . . . , tm〉-adic topology, for every monomial

tα · xβ · ej there is only a finite number of ν’s such that tα · xβ · ej is a monomial

occurring in fν . Thus the sum
∑∞

ν=0 fν exists and is obviously x-homogeneous

of degree d.

From the proof of Theorem 2.1 we can deduce an algorithm for computing

the determinate division with remainder up to arbitrary order, or if we don’t

require termination then it will “compute” the determinate division with re-

mainder completely. Since for our purposes termination is not important, we

will simply formulate the non-terminating algorithm.

Algorithm 2.5 (HDDwR)

INPUT: (f,G) with G = {g1, . . . , gk} and f, g1, . . . , gk ∈ R[x]s x-

homogeneous, > a t-local monomial ordering

OUTPUT: (q1, . . . , qk, r) ∈ R[x]k ×R[x]s such that

f = q1 · g1 + . . .+ qk · gk + r

is a homogeneous determinate division with remainder

of f satisfying (DD1), (DD2) and (DDH).

INSTRUCTIONS:

• f0 := f

• r := 0

• FOR i = 1, . . . , k DO qi := 0

• ν := 0

• WHILE fν 6= 0 DO

– q0,ν := 0

– FOR i = 1, . . . , k DO

∗ hi,ν :=
∑

p∈Tfν : lm>(gi) | p p

∗ qi,ν :=
hi,ν

lt>(gi)

∗ qi := qi + qi,ν

– rν := fν − q1,ν · lt>(g1) − . . .− qk,ν · lt>(gk)

– r := r + rν

– fν+1 := fν − q1,ν · g1 − . . .− qk,ν · gk − rν
– ν := ν + 1

Remark 2.6

If m = 0, i.e. if the input data f, g1, . . . , gk ∈ K[x]s, then Algorithm 2.5 termi-

nates since for a given degree there are only finitely many monomials of this

degree and therefore there cannot exist an infinite sequence of homogeneous

polynomials (fν)ν∈N of the same degree with

lm>(f1) > lm>(f2) > lm>(f3) > . . . .
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3. Division with Remainder in K[[t]][x]s

We will use the existence of homogeneous determinate divisions with remain-

der to show that in R[x]s weak normal forms exist. In order to be able to

apply this existence result we have to homogenise, and we need to extend our

monomial ordering to the homogenised monomials.

Definition 3.1

Let xh = (x0, x) = (x0, . . . , xn).

(a) For 0 6= f ∈ R[x]s. We define the homogenisation fh of f to be

fh := x
degx(f)

0 · f
(
t,
x1

x0
, . . . ,

xn
x0

)
∈ R[xh]

s
degx(f)

and 0h := 0. If T ⊂ R[x]s then we set T h :=
{
fh
∣∣ f ∈ T

}
.

(b) We call the R[x]-linear map d : R[xh]
s −→ R[x]s : g 7→ gd := g|x0=1 the

dehomogenisation with respect to x0.

(c) Given a t-local monomial ordering > on Mons(t, x) we define a t-local

monomial ordering >h on Mons(t, xh) by

tα · xβ · xa0 · ei >h tα
′ · xβ′ · xa′0 · ej

if and only if

|β| + a > |β ′| + a′

or
(
|β| + a = |β ′| + a′ and tα · xβ · ei > tα

′ · xβ′ · ej
)
,

and we call it the homogenisation of >.

In the following remark we want to gather some straight forward properties

of homogenisation and dehomogenisation.

Remark 3.2

Let f, g ∈ R[x]s and F ∈ R[xh]
s
k. Then:

(a) f = (fh)d.

(b) F = (F d)h · xdegxh
(F )−degx(F d)

0 .

(c) lm>h
(fh) = x

ecart(f)
0 · lm>(f).

(d) lm>h
(gh)| lm>h

(fh) ⇐⇒ lm>(g)| lm>(f) ∧ ecart(g) ≤ ecart(f).

(e) lm>h
(F ) = x

ecart(F d)+degxh
(F )−degx(f)

0 · lm>(F d).

Theorem 3.3 (Division with Remainder)

Let > be a t-local monomial ordering on Mons(t, x) and g1, . . . , gk ∈ R[x]s. Then

any f ∈ R[x]s has a weak division with remainder with respect to g1, . . . , gk.
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Proof: The proof follows from the correctness and termination of Algorithm

3.4, which assumes the existence of the homogeneous determinate division

with remainder from Theorem 2.1 respectively Algorithm 2.5.

The following algorithm relies on the HDDwR-Algorithm, and it only termi-

nates under the assumption that we are able to produce homogeneous deter-

minate divisions with remainder, which implies that it is not an algorithm

that can be applied in practise.

Algorithm 3.4 (DwR - Mora’s Division with Remainder)

INPUT: (f,G) with G = {g1, . . . , gk} and f, g1, . . . , gk ∈ R[x]s, > a

t-local monomial ordering

OUTPUT: (u, q1, . . . , qk, r) ∈ S> ×R[x]k ×R[x]s such that

u · f = q1 · g1 + . . .+ qk · gk + r

is a weak division with remainder of f .

INSTRUCTIONS:

• T := (g1, . . . , gk)

• D := {gi ∈ T | lm>(gi) divides lm>(f)}
• IF f 6= 0 AND D 6= ∅ DO

– IF e := min{ecart>(gi) | gi ∈ D} − ecart>(f) > 0 THEN

∗ (Q′
1, . . . , Q

′
k, R

′) := HDDwR
(
xe0 · fh, (lt>h

(gh1 ), . . . , lt>h
(ghk)

)

∗ f ′ :=
(
xe0 · fh −

∑k
i=1Q

′
i · ghi

)d

∗ (u′′, q′′1 , . . . , q
′′
k+1, r) := DwR

(
f ′, (g1, . . . , gk, f)

)

∗ qi := q′′i + u′′ ·Q′
i
d, i = 1, . . . , k

∗ u := u′′ − q′′k+1

– ELSE

∗ (Q′
1, . . . , Q

′
k, R

′) := HDDwR
(
fh, (gh1 , . . . , g

h
k)
)

∗ (u, q′′1 , . . . , q
′′
k+1, r) := DwR

(
(R′)d, T

)

∗ qi := q′′i + u ·Q′
i
d, i = 1, . . . , k

• ELSE (u, q1, . . . , qk, r) = (1, 0, . . . , 0, f)

Proof: Let us first prove the termination. For this we denote the numbers,

ring elements and sets, which occur in the ν-th recursion step by a subscript

ν, e.g. eν , fν or Tν . Since

T h1 ⊆ T h2 ⊆ T h3 ⊆ . . .

also their leading submodules in K[t, xh]
s form an ascending chain

L>h
(T h1 ) ⊆ L>h

(T h2 ) ⊆ L>h
(T h3 ) ⊆ . . . ,

and since the polynomial ring is noetherian there must be an N such that

L>h
(T hν ) = L>h

(T hN) ∀ ν ≥ N.
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If gi,N ∈ TN such that lm>(gi,N) | lm>(fN) with ecart>(gi,N) ≤ ecart>(fN), then

lm>h
(ghi,N)

∣∣ lm>h
(fhN).

We thus have either lm>h
(ghi,N) | lm>h

(fhN) for some gi ∈ DN ⊆ TN+1 or fN ∈
TN+1, and hence

lm>h
(fhN ) ∈ L>h

(T hN+1) = L>h
(T hN ).

This ensures the existence of a gi,N ∈ TN such that

lm>h
(ghi,N) | lm>h

(fhN)

which in turn implies that

lm>(gi,N) | lm>(fN),

eN ≤ ecart>(gi,N) − ecart>(fN) ≤ 0 and TN = TN+1. By induction we conclude

Tν = TN ∀ ν ≥ N,

and

eν ≤ 0 ∀ ν ≥ N. (3.1)

Since in the N-th recursion step we are in the first “ELSE” case we have

(R′
N)d = fN+1, and by the properties of HDDwR we know that for all g ∈ TN

x
ecart>(g)
0 · lm>(g) = lm>h

(gh) 6
∣∣ lm>h

(R′
N )

and that

lm>h
(R′

N ) = xa0 · lm>h
(fhN+1) = x

a+ecart>(fN+1)
0 · lm>(fN+1)

for some a ≥ 0. It follows that, whenever lm>(g) | lm>(fN+1), then necessarily

ecart>(g) > a+ ecart>(fN+1) ≥ ecart>(fN+1). (3.2)

Suppose now that fN+1 6= 0 and DN+1 6= ∅. Then we may choose gi,N+1 ∈
DN+1 ⊆ TN+1 = TN such that

lm>(gi,N+1)
∣∣ lm>(fN+1)

and

eN+1 = ecart>(gi,N+1) − ecart>(fN+1).

According to (3.1) eN+1 is non-positive, while according to (3.2) it must be

strictly positive. Thus we have derived a contradiction which shows that ei-

ther fN+1 = 0 or DN+1 = ∅, and in any case the algorithm stops.

Next we have to prove the correctness. We do this by induction on the number

of recursions, say N , of the algorithm.

If N = 1 then either f = 0 or D = ∅, and in both cases

1 · f = 0 · g1 + . . .+ 0 · gk + f
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is a weak division with remainder of f satisfying (ID1) and (ID2). We may

thus assume that N > 1 and e = min{ecart>(g) | g ∈ D} − ecart>(f).

If e ≤ 0 then by Theorem 2.1

fh = Q′
1 · gh1 + . . .+Q′

k · ghk +R′

satisfies (DD1), (DD2) and (DDH). (DD1) implies that for each i = 1, . . . , k we

have

x
ecart>(f)
0 · lm>(f) = lm>h

(fh) ≥
lm>h

(Q′
i) · lm>h

(ghi ) = x
ai+ecart>(gi)
0 · lm>

(
Q′
i
d) · lm>(gi)

for some ai ≥ 0, and since fh and Q′
i · ghi are xh-homogeneous of the same

xh-degree by (DDH) the definition of the homogenised ordering implies that

necessarily

lm>(f) ≥ lm>

(
Q′
i
d) · lm>(gi) ∀ i = 1, . . . , k.

Note that

(R′)d =

(
fh −

k∑

i=1

Q′
i · ghi

)d

= f −
k∑

i=1

Q′
i
d · gi,

and thus

lm>

(
(R′)d

)
= lm>

(
f −

k∑

i=1

Q′
i
d · gi

)
≤ lm>(f).

Moreover, by induction

u · (R′)d = q′′1 · g1 + . . . q′′k · gk + r

satisfies (ID1) and (ID2). But (ID1) implies that

lm>(f) ≥ lm>

(
(R′)d

)
≥ lm>(q′′i · gi),

so that

u · f =
k∑

i=1

(
q′′i + u ·Q′

i
d) · gi + r

satisfies (ID1) and (ID2).

It remains to consider the case e > 0. Then by Theorem 2.1

xe0 · fh = Q′
1 · lt>h

(gh1 ) + . . .+Q′
k · lt>h

(ghk) +R′ (3.3)

satisfies (DD1), (DD2) and (DDH). (DD1) and (DD2) imply (ID1) for this rep-

resentation, which means that for some ai ≥ 0

x
e+ecart>(f)
0 · lm>(f) = lm>h

(xe0 · fh) ≥
lm>h

(Q′
i) · lm>h

(
lt>h

(ghi )
)

= x
ai+ecart>(gi)
0 · lm>(Q′

i
d
) · lm>(gi),
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and since both sides are xh-homogeneous of the same xh-degree with by (DDH)

we again necessarily have

lm>(f) ≥ lm>

(
Q′
i
d) · lm>(gi).

Moreover, by induction

u′′ ·
(
f −

k∑

i=1

Q′
i
d · gi

)
=

k∑

i=1

q′′i · gi + q′′k+1 · f + r (3.4)

satisfies (ID1) and (ID2).

Since lt>(u′′) = 1 we have

lm>(f) ≥ lm>

(
q′′i + u′′ ·Q′

i
d) · lm>(gi),

for i = 1, . . . , k and therefore

(u′′ − q′′k+1) · f =
k∑

i=1

(
q′′i + u′′ ·Q′

i
d) · gi + r

satisfies (ID1) and (ID2) as well. It remains to show that u = u′′ − q′′k+1 ∈ S>,

or equivalently that

lt>(u′′ − q′′k+1) = 1.

By assumption there is a gi ∈ D such that lm>(gi) | lm>(f) and ecart>(gi) −
ecart>(f) = e. Therefore, lm>h

(ghi ) | xe0 · lm>h
(fh) and thus in the representation

(3.3) the leading term of xe0 · fh has been cancelled by some Q′
j · lt>h

(ghj ), which

implies that

lm>h
(fh) > lm>h

(
fh −

k∑

i=1

Q′
i · ghi

)
,

and since both sides are xh-homogeneous of the same xh-degree, unless the

right hand side is zero, we must have

lm>(f) > lm>

(
f −

k∑

i=1

Q′
i
d · gi

)
≥ lm>(q′′k+1 · f),

where the latter inequality follows from (ID1) for (3.4). Thus however

lm>(q′′k+1) < 1, and since lm>(u′′) = 1 we conclude that

lt>(u′′ − q′′k+1) = lt>(u′′) = 1.

This finishes the proof.

Remark 3.5

As we have pointed out our algorithms are not useful for computational pur-

poses since Algorithm 2.5 does not in general terminate after a finite number

of steps. If, however, the input data are in fact polynomials in t and x, then we

can replace the ti by xn+i and apply Algorithm 3.4 to K[x1, . . . , xn+m]s, so that

it terminates due to Remark 2.6 the computed weak division with remainder

u · f = q1 · g1 + . . .+ qk · gk + r
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is then polynomial in the sense that u, q1, . . . , qk ∈ K[t, x] and r ∈ K[t, x]s. In

fact, Algorithm 3.4 is then only a variant of the usual Mora algorithm.

In the proof of Schreyer’s Theorem we will need the existence of weak di-

visions with remainder satisfying (SID2), the proof is the same as [GrP02,

Remark 2.3.4].

Corollary 3.6

Let > be a t-local monomial ordering on Mons(t, x) and g1, . . . , gk ∈ R[x]s>. Then

any f ∈ R[x]s> has a division with remainder with respect to g1, . . . , gk satisfying

(SID2).

4. Standard Bases in K[[t]][x]s

Definition 4.1

Let > be t-local monomial ordering on Mons(t, x), I ≤ R[x]s and J ≤ R[x]s>
be submodules. A standard basis of I is a finite subset G ⊂ I such that

L>(I) = L>(G). A standard basis of J is a finite subset G ⊂ J such that

L>(J) = L>(G). A finite subset G ⊆ R[x]s> is called a standard basis with

respect to > if G is a standard basis of 〈G〉 ≤ R[x]s>.

The existence of standard bases is immediate from Hilbert’s Basis Theorem.

Proposition 4.2

If > is a t-local monomial ordering then every submodule of R[x]s and of R[x]s>
has a standard basis.

Standard bases are so useful since they are generating sets for submodules

of R[x]s> and since submodule membership can be tested by division with re-

mainder.

Proposition 4.3

Let > be t-local monomial ordering on Mons(t, x), I, J ≤ R[x]s> submodules,

G = (g1, . . . , gk) ⊂ J a standard basis of J and f ∈ R[x]s> with division with

remainder f = q1 · g1 + . . .+ qk · gk + r. Then:

(a) f ∈ J if and only if r = 0.

(b) J = 〈G〉.
(c) If I ⊆ J and L>(I) = L>(J), then I = J .

Proof: Word by word as in [GrP02, Lemma 1.6.7].

In order to work, even theoretically, with standard bases it is vital to have a

good criterion to decide whether a generating set is standard basis or not. In

order to formulate Buchberger’s Criterion it is helpful to have the notion of an

s-polynomial.
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Definition 4.4

Let > be a t-local monomial ordering on R[x]s and f, g ∈ R[x]s. We define the

s-polynomial of f and g as

spoly(f, g) :=
lcm

(
lm>(f), lm>(g)

)

lt>(f)
· f − lcm

(
lm>(f), lm>(g)

)

lt>(g)
· g.

Theorem 4.5 (Buchberger Criterion)

Let > be a t-local monomial ordering on Mons(t, x), J ≤ R[x]s> a submodule

and g1, . . . , gk ∈ J . The following statements are equivalent:

(a) G = (g1, . . . , gk) is a standard basis of J .

(b) Every normal form with respect to G of any element in J is zero.

(c) Every element in J has a standard representation with respect to G.

(d) J = 〈G〉 and spoly(gi, gj) has a standard representation for all i < j.

Proof: In Proposition 4.3 we have shown that (a) implies (b), and the impli-

cation (b) to (c) is trivially true. And, finally, if f ∈ J has a standard represen-

tation with respect to G, then lm>(f) ∈ L>(G), so that (c) implies (a). Since

spoly(gi, gj) ∈ J condition (d) follows from (c), and the hard part is to show that

(d) implies actually (c). This is postponed to Theorem 5.3.

Since for G ⊂ R[x]s we have L>
(
〈G〉R[x]

)
= L>

(
〈G〉R[x]>

)
we get the following

corollary.

Corollary 4.6 (Buchberger Criterion)

Let > be a t-local monomial ordering on Mons(t, x) and g1, . . . , gk ∈ I ≤ R[x]s.

Then the following statements are equivalent:

(a) G = (g1, . . . , gk) is a standard basis of I.

(b) Every weak normal form with respect to G of any element in I is zero.

(c) Every element in I has a weak standard representation with respect to

G.

(d) 〈I〉R[x]> = 〈G〉R[x]> and spoly(gi, gj) has a weak standard representation

for all i < j.

When working with polynomials in x as well as in t we can actually compute

divisions with remainder and standard bases (see Remark 3.5), and they are

also standard bases of the corresponding submodules considered over R[x] by

the following corollary.

Corollary 4.7

Let > be a t-local monomial ordering on Mons(t, x) and letG ⊂ K[t, x]s be finite.

Then G is a standard basis of 〈G〉K[t,x] if and only if G is a standard basis of

〈G〉R[x].



5. SCHREYER’S THEOREM FOR K[[t1, . . . , tm]][x1, . . . , xn]s 147

Proof: Let G = (g1, . . . , gk). By Theorem 3.3 and Remark 3.5 each spoly(gi, gj)

has a weak division with remainder with respect to G such that the coeffi-

cients and remainders involved are polynomials in x as well as in t. But by

Corollary 4.6 G is a standard basis of either of 〈G〉K[t,x] and 〈G〉R[x] if and only

if all these remainders are actually zero.

And thus it makes sense to formulate the classical standard basis algorithm

also for the case R[x].

Algorithm 4.8 (STD – Standard Basis Algorithm)

INPUT: (f1, . . . , fk) ∈
(
R[x]s

)k
and > a t-local monomial ordering.

OUTPUT: (f1, . . . , fl) ∈
(
R[x]s

)l
a standard basis of 〈f1, . . . , fk〉R[x].

INSTRUCTIONS:

• G = (f1, . . . , fk)

• P =
(
(fi, fj)

∣∣ 1 ≤ i < j ≤ k
)

• WHILE P 6= ∅ DO

– Choose some pair (f, g) ∈ P

– P = P \ {(f, g)}
– (u, q, r) = DwR

(
spoly(f, g), G)

– IF r 6= 0 THEN

∗ P = P ∪ {(f, r) | f ∈ G}
∗ G = G ∪ {r}

Remark 4.9

If the input of STD are polynomials inK[t, x] then the algorithm works in prac-

tise due to Remark 3.5, and it computes a standard basis G of 〈f1, . . . , fk〉K[t,x]

which due to Corollary 4.7 is also a standard basis of 〈f1, . . . , fk〉R[x], since G

still contains the generators f1, . . . , fk.

Having division with remainder, standard bases and Buchberger’s Criterion

at hand one can, from a theoretical point of view, basically derive all the stan-

dard algorithms from computer algebra also for free modules over R[x] re-

spectively R[x]>. Moreover, if the input is polynomial in t and x, then the

corresponding operations computed over K[t, x]> will also lead to generating

sets for the corresponding operations over R[x]>.

5. Schreyer’s Theorem for K[[t1, . . . , tm]][x1, . . . , xn]
s

In this section we want to prove Schreyer’s Theorem for R[x]s which proves

Buchberger’s Criterion and shows at the same time that a standard basis of

a submodule gives rise to a standard basis of the syzygy module defined by it

with respect to a special ordering.
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Definition 5.1 (Schreyer Ordering)

Let > be a t-local monomial ordering on Mons(t, x) and g1, . . . , gk ∈ R[x]s>.

We define a Schreyer ordering with respect to > and (g1, . . . , gk), say >S, on

Monk(t, x) by

tα · xβ · εi >S tα
′ · xβ′ · εj

if and only if

tα · xβ · lm>(gi) > tα
′ · xβ′ · lm>(gj)

or

tα · xβ · lm>(gi) = tα
′ · xβ′ · lm>(gj) and i < j,

where εi = (δij)j=1,...,k is the canonical basis with i-th entry one and the rest

zero.

Moreover, we define the syzygy module of (g1, . . . , gk) to be

syz(g1, . . . , gk) := {(q1, . . . , qk) ∈ R[x]k> | q1 · g1 + . . .+ qk · gk = 0},

and we call the elements of syz(g1, . . . , gk) syzygies of g1, . . . , gk.

Remark 5.2

Let > be a t-local monomial ordering on Mons(t, x) and g1, . . . , gk ∈ R[x]s>. Let

us fix for each i < j a division with remainder of spoly(gi, gj), say

spoly(gi, gj) =
k∑

ν=1

qi,j,ν · gν + rij , (5.1)

and define

mji :=
lcm

(
lm>(gi), lm>(gj)

)

lm>(gi)
,

so that

spoly(gi, gj) =
mji

lc>(gi)
· gi −

mij

lc>(gj)
· gj.

Then

sij :=
mji

lc>(gi)
· εi −

mij

lc>(gj)
· εj −

k∑

ν=1

qi,j,ν · εν ∈ R[x]k>

has the property

sij ∈ syz(g1, . . . , gk) ⇐⇒ rij = 0.

Theorem 5.3 (Schreyer)

Let > be a t-local monomial ordering on Mons(t, x), g1, . . . , gk ∈ R[x]s> and

suppose that spoly(gi, gj) has a weak standard representation with respect to

G = (g1, . . . , gk) for each i < j.

Then G is a standard basis, and with the notation in Remark 5.2 {sij | i < j}
is a standard basis of syz(g1, . . . , gk) with respect to >S.

Proof: The same as in [GrP02, Theorem 2.5.9].
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6. Application to t-Initial Ideals

In this section we want to show that for an ideal J over the field of Puiseux

series which is generated by elements in K[[t
1
N ]][x] respectively in K[t

1
N , x]

the t-initial ideal (a notion we will introduce further down) with respect to

w ∈ Q<0 ×Qn can be computed from a standard basis of the generators.

Definition 6.1

We consider for 0 6= N ∈ N the discrete valuation ring

RN

[[
t

1
N

]]
=

{ ∞∑

α=0

aα · t
α
N

∣∣ aα ∈ K

}

of power series in the unknown t
1
N with discrete valuation

val

( ∞∑

α=0

aα · t
α
N

)
= ordt

( ∞∑

α=0

aα · t
α
N

)
= min

{ α
N

∣∣∣ aα 6= 0
}
∈ 1

N
· Z,

and we denote by LN = Quot(RN) its quotient field. If N | M then in an

obvious way we can think of RN as a subring of RM , and thus of LN as a

subfield of LM . We call the direct limit of the corresponding direct system

L = K{{t}} = lim
−→

LN =
⋃

N≥0

LN

the field of (formal) Puiseux series over K.

Remark 6.2

If 0 6= N ∈ N then SN = {1, t 1
N , t

2
N , t

2
N , . . .} is a multiplicative subset of RN ,

and obviously LN = S−1
N RN = {t−α

N · f | f ∈ RN , α ∈ N}, since R∗
N = {∑∞

α=0 aα ·
t

α
N | a0 6= 0}. The valuations of RN extend to LN , and thus L, by val

(
f
g

)
=

val(f) − val(g) for f, g ∈ RN with g 6= 0.

Definition 6.3

For 0 6= N ∈ N if we consider t
1
N as a variable, we get the set of monomials

Mon
(
t

1
N , x

)
=
{
t

α
N · xβ

∣∣ α ∈ N, β ∈ Nn
}
in t

1
N and x. If N | M then obviously

Mon
(
t

1
N , x

)
⊂ Mon

(
t

1
M , x

)
.

Remark and Definition 6.4

Let 0 6= N ∈ N, w = (w0, . . . , wn) ∈ R<0 ×Rn, and q ∈ R.
We may consider the direct product

Vq,w,N =
∏

(α, β) ∈ Nn+1

w · ( α
N
, β) = q

K · t α
N · xβ
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of K-vector spaces and its subspace

Wq,w,N =
⊕

(α, β) ∈ Nn+1

w · ( α
N
, β) = q

K · t α
N · xβ.

As a K-vector space the formal power series ring K
[[
t

1
N , x

]]
is just

K
[[
t

1
N , x

]]
=
∏

q∈RVq,w,N ,
and we can thus write any power series f ∈ K

[[
t

1
N , x

]]
in a unique way as

f =
∑

q∈R fq,w with fq,w ∈ Vq,w,N .

Note that this representation is independent of N in the sense that if f ∈
K
[[
t

1
N′ , x

]]
for some other 0 6= N ′ ∈ N then we get the same non-vanishing

fq,w if we decompose f with respect to N ′.

Moreover, if 0 6= f ∈ RN [x] ⊂ K
[[
t

1
N , x

]]
, then there is a maximal q̂ ∈ R such

that fq̂,w 6= 0 and fq,w ∈ Wq,w,N for all q ∈ R, since the x-degree of the monomi-

als involved in f is bounded. We call the elements fq,w w-quasihomogeneous

of w-degree degw(fq,w) = q ∈ R,
inw(f) = fq̂,w ∈ K

[
t

1
N , x

]

the w-initial form of f or the initial form of f w.r.t. w, and

ordw(f) = q̂ = max{degw(fq,w) | fq,w 6= 0}

the w-order of f . For I ⊆ RN [x] we call

inw(I) =
〈
inw(f)

∣∣ f ∈ I
〉

�K
[
t

1
N , x

]

the w-initial ideal of I. Note that its definition depends on N !

Moreover, we call

t-inw(f) = inw(f)(1, x) = inw(f)|t=1 ∈ K[x]

the t-initial form of f w.r.t. w, and if f = t
−α
N · g ∈ L[x] with g ∈ RN [x] we set

t-inw(f) := t-inw(g). This definition does not depend on the particular repre-

sentation of f . If I ⊆ L[x] is an ideal, then

t-inw(I) = 〈t-inw(f) | f ∈ I〉 �K[x]

is the t-initial ideal of I, which does not depend on any N .

Note also that the product of two w-quasihomogeneous elements fq,w · fq′,w ∈
Vq+q′,w,N , and in particular, inw(f · g) = inw(f) · inw(g) for f, g ∈ RN [x], and for

f, g ∈ L[x] t-inw(f · g) = t-inw(f) · t-inw(g). An immediate consequence of this is

the following lemma.
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Lemma 6.5

If 0 6= f =
∑k

i=1 gi · hi with f, gi, hi ∈ RN [x] and ordw(f) ≥ ordw(gi · hi) for all

i = 1, . . . , k, then

inw(f) ∈
〈
inw(g1), . . . , inw(gk)

〉
�K

[
t

1
N , x

]
.

Proof: Due to the direct product decomposition we have that

inw(f) = fq̂,w =
k∑

i=1

(gi · hi)q̂,w

where q̂ = ordw(f). By assumption ordw(gi)+ordw(hi) = ordw(gi ·hi) ≤ ordw(f) =

q̂ with equality if and only if (gi ·hi)q̂,w 6= 0. In that case necessarily (gi ·hi)q̂,w =

inw(gi) · inw(hi), which finishes the proof.

In order to be able to apply standard bases techniques we need to fix a t-local

monomial ordering which refines a given weight vector w.

Definition 6.6

Fix any globalmonomial ordering, say >, on Mon(x) and let w = (w0, . . . , wn) ∈R<0 ×Rn.

We define a t-local monomial ordering, say >w, on Mon
(
t

1
N , x

)
by

t
α
N · xβ >w t

α′

N · xβ′

if and only if

w ·
( α
N
, β
)
> w ·

(
α′

N
, β ′
)

or

w ·
( α
N
, β
)

= w ·
(
α′

N
, β ′
)

and xβ > xβ
′

.

Note that this ordering is indeed t-local since w0 < 0, and that it depends on

w and on >, but assuming that > is fixed we will refrain from writing >w,>

instead of >w.

Remark 6.7

If N | M then Mon
(
t

1
N , x

)
⊂ Mon

(
t

1
M , x

)
, as already mentioned. For w ∈R<0 × Rn we may thus consider the ordering >w on both Mon

(
t

1
N , x

)
and on

Mon
(
t

1
M , x

)
, and let us call them for a moment >w,N respectively >w,M . It is

important to note, that the restriction of >w,M to Mon
(
t

1
N , x

)
coincides with

>w,N . We therefore omit the additional subscript in our notation.

We now fix some global monomial ordering > on Mon(x), and

given a vector w ∈ R<0 × Rn we will throughout this section

always denote by >w the monomial ordering from Definition

6.6.
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Proposition 6.8

If w ∈ R<0 ×Rn and f ∈ RN [x] with lt>w
(f) = 1, then inw(f) = 1.

Proof: Suppose this is not the case then there exists a monomial of f , say

1 6= tα · xβ ∈ Mf , such that w · (α, β) ≥ w · (0, . . . , 0) = 0, and since lm>w
(f) = 1

we must necessarily have equality. But since > is global xβ > 1, which implies

that also tα · xβ >w 1, in contradiction to lm>w
(f) = 1.

Proposition 6.9

Let w ∈ R<0 ×Rn, I �RN [x] be an ideal, and let G = {g1, . . . , gk} be a standard

basis of I with respect to >w then

inw(I) =
〈
inw(g1), . . . , inw(gk)

〉
�K

[
t

1
N , x

]
,

and in particular,

t-inw(I) =
〈
t-inw(g1), . . . , t-inw(gk)

〉
�K[x].

Proof: If G is standard basis of I then by Corollary 4.6 every element f ∈ I

has a weak standard representation of the form u ·f = q1 ·g1+. . .+qk ·gk, where

lt>w
(u) = 1 and lm>w

(u · f) ≥ lm>w
(qi · gi). The latter in particular implies that

ordw(u · f) = degw
(
lm>w

(u · f)
)
≥ degw

(
lm>w

(qi · gi)
)

= ordw(qi · gi).
We conclude therefore by Lemma 6.5 and Proposition 6.8 that

inw(f) = inw(u · f) ∈
〈
inw(g1), . . . , inw(gk)

〉
.

For the part on the t-initial ideals just note that if f ∈ I then by the above

inw(f) =
∑k

i=1 hi · inw(gi) for some hi ∈ K
[
t

1
N , x

]
, and thus

t-inw(f) =
k∑

i=1

hi(1, x) · t-inw(gi) ∈ 〈t-inw(g1), . . . , t-inw(gk)〉K[x].

Theorem 6.10

Let J � L[x] and I � RN [x] be ideals with J = 〈I〉L[x], let w ∈ R<0 × Rn, and let

G be a standard basis of I with respect to >w. Then

t-inw(J) = t-inw(I) =
〈
t-inw(G)

〉
�K[x].

Proof: Since RN [x] is noetherian, we may add a finite number of elements of

I to G so as to assume that G = (g1, . . . , gk) generates I. Since by Proposition

6.9 we already know that the t-initial forms of any standard basis of I with

respect to >w generate t-inw(I) this does not change the right hand side. But

then by assumption J = 〈G〉L[x], and given an element f ∈ J we can write it as

f =

k∑

i=1

t
−α

N·M · ai · gi
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for someM >> 0, ai ∈ RN ·M and α ∈ N. It follows that

t
α

N·M · f =

k∑

i=1

ai · gi ∈ 〈G〉RN·M [x].

Since G is a standard basis over RN [x] with respect to >w on Mon
(
t

1
N , x

)
by

Buchberger’s Criterion 4.6 spoly(gi, gj), i < j, has a weak standard represen-

tation uij · spoly(gi, gj) =
∑k

ν=1 qijν · gν with uij, qijν ∈ RN [x] ⊆ RN ·M [x] and

lt>w
(uij) = 1. Taking Remark 6.7 into account these are also weak stan-

dard representations with respect to the corresponding monomial ordering

>w on Mon(t
1

N·M , x), and again by Buchberger’s Criterion 4.6 there exists a

weak standard representation u · t α
N·M ·f =

∑k
i=1 qi · gi. By Propositions 6.5 and

6.8 this implies that

t
α

N·M · inw(f) = inw
(
u · t α

N·M · f
)
∈
〈
inw(G)

〉
.

Setting t = 1 we get t-inw(f) =
(
t

k
N·M · inw(f)

)
|t=1

∈
〈
t-inw(G)

〉
.

Corollary 6.11

Let J = 〈I ′〉L[x] with I ′ �K
[
t

1
N , x

]
, w ∈ R<0 ×Rn and G is a standard basis of I ′

with respect to >w on Mon
(
t

1
N , x

)
, then

t-inw(J) = t-inw(I ′) =
〈
t-inw(G)

〉
�K[x].

Proof: Enlarge G to a finite generating set G′ of I ′, then G′ is still a standard

basis of I ′. By Corollary 4.7 G′ is then also a standard basis of

I := 〈G′〉RN [x] = 〈f1, . . . , fk〉RN [x],

and Theorem 6.10 applied to I thus shows that

t-in(J) =
〈
t-inw(G′)

〉
.

However, if f ∈ G′ ⊂ I ′ is one of the additional elements then it has a weak

standard representation

u · f =
∑

g∈G
qg · g

with respect to G and >w, since G is a standard basis of I ′. Applying Propo-

sitions 6.5 and 6.8 then shows that inw(f) ∈ 〈inw(G)〉, which finishes the

proof.

Remark 6.12

Note that if I �RN [x] and J = 〈I〉L[x], then

J ∩RN [x] = I :
〈
t

1
N

〉∞
,

but the saturation is in general necessary.
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Since LN ⊂ L is a field extension Corollary 6.13 implies J ∩ LN [x] = 〈I〉LN [x],

and it suffices to see that

〈I〉LN [x] ∩ RN [x] = I :
〈
t

1
N

〉∞
.

If I ∩ SN 6= ∅ then both sides of the equation coincide with RN [x], so that we

may assume that I∩SN is empty. Recall that LN = S−1
N RN , so that if f ∈ RN [x]

with t
α
N · f ∈ I for some α, then

f =
t

α
N · f
t

α
N

∈ 〈I〉LN [x] ∩ RN [x].

Conversely, if f = g

t
k
N

∈ 〈I〉LN [x] ∩RN [x] with g ∈ I, then g = t
α
N · f ∈ I and thus

f is in the right hand side.

Corollary 6.13

Let F ⊂ F ′ be a field extension and I � F [x]. Then I = 〈I〉F ′[x] ∩ F [x].

Proof: The result is obvious if I is generated by monomials. For the general

case fix any global monomial ordering > on Mon(x) and set Ie = 〈I〉F ′[x]. Since

I ⊆ Ie ∩ F [x] ⊆ Ie we also have

L>(I) ⊆ L>
(
Ie ∩ F [x]

)
⊆ L>(Ie) ∩ F [x]. (6.1)

If we choose a standard basis G = (g1, . . . , gk) of I, then by Buchberger’s Crite-

rion G is also a Gröbner basis of Ie and thus

L>(I) = 〈lm>(gi) | i = 1, . . . , k〉F [x]

and

L>(Ie) = 〈lm>(gi) | i = 1, . . . , k〉F ′[x] =
〈
L>(I)

〉
F ′[x]

.

Since the latter is a monomial ideal, we have

L>(Ie) ∩ F [x] = L>(I).

In view of (6.1) this shows that

L>(I) = L>
(
Ie ∩ F [x]

)
,

and since I ⊆ Ie ∩ F [x] this finishes the proof by Proposition 4.3.

We can actually show more, namely, that for each I � RN [x] and each M > 0

(see Corollary 6.15)

〈I〉RM·N [x] ∩ RN [x] = I,

and if I is saturated with respect to t
1
N then (see Corollary 6.18)

inw
(
〈I〉RM·N [x]

)
=
〈
inw(G)

〉
,

if G is a standard basis of I with respect to >w.

For this we need the following simple observation.
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Lemma 6.14

RN ·M [x] is a free RN [x]-module with basis
{
1, t

1
N·M , . . . , t

M−1
N·M

}
.

Corollary 6.15

If I � RN [x] then 〈I〉RN·M [x] ∩RN [x] = I.

Proof: If f = g · h ∈ 〈I〉RN·M [x] ∩ RN [x] with g ∈ I and h ∈ RN ·M [x] then by

Lemma 6.14 there are uniquely determined hi ∈ RN such that h =
∑M−1

i=0 hi ·
t

i
N·M , and hence f =

∑M−1
i=0 (g · hi) · t

i
N·M with g · hi ∈ RN [x]. By assumption

f ∈ RN [x] = RN ·M [x] ∩ 〈1〉RN [x] and by Lemma 6.14 we thus have g · hi =

0 for all i = 1, . . . ,M − 1. But then f = g · h0 ∈ I.

Lemma 6.16

Let I � RN [x] be an ideal such that I = I :
〈
t

1
N

〉∞
, then for anyM ≥ 1

〈I〉RN·M [x] = 〈I〉RN·M [x] :
〈
t

1
N·M

〉∞
.

Proof: Let f, h ∈ RN ·M [x], α ∈ N, g ∈ I such that

t
α

N·M · f = g · h. (6.2)

We have to show that f ∈ 〈I〉RN·M [x]. For this purpose do division with remain-

der in order to get α = a ·M + b with 0 ≤ b < M. By Lemma 6.14 there are

hi, fi ∈ RN [x] such that f =
∑M−1

i=0 fi · t
i

N·M and h =
∑M−1

i=0 hi · t
i

N·M . (6.2) then

translates into

M−1−b∑

i=0

t
b+i

N·M · t a
N · fi +

M−1∑

i=M−b
t

b+i−M
N·M · ta+1

N · fi =

M−1∑

i=0

g · hi · t
i

N·M ,

and since
{
1, t

1
N·M , . . . , t

M−1
N·M

}
is RN [x]-linearly independent we can compare

coefficients to find t
a
N · fi = g · hb+i ∈ I for i = 0, . . . ,M − b − 1, and t

a+1
N · fi =

g · hb+i−M ∈ I for i = M − b, . . . ,M − 1. In any case, since I is saturated with

respect to t
1
N by assumption we conclude that fi ∈ I for all i = 0, . . . ,M − 1,

and therefore f ∈ 〈I〉RN·M [x].

Corollary 6.17

Let J � L[x] be an ideal such that J = 〈J ∩RN [x]〉L[x], let w ∈ R<0 ×Rn, and let

G be a standard basis of J ∩RN [x] with respect to >w.

Then for allM ≥ 1

inw
(
J ∩ RN ·M [x]

)
=
〈
inw(G)

〉
�K

[
t

1
N·M , x

]

and

t-inw
(
J ∩ RN ·M [x]

)
=
〈
t-inw(G)

〉
= t-inw

(
J ∩ RN [x]

)
�K[x].

Proof: Enlarge G to a generating set G′ of I = J ∩RN [x] over RN [x] by adding

a finite number of elements of I. Then
〈
L>w

(G′)
〉
⊆
〈
L>w

(I)
〉

=
〈
L>w

(G)
〉
⊆
〈
L>w

(G′)
〉
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shows that G′ is still a standard basis of I with respect to >w. So we can

assume that G = G′.

By Proposition 6.9 it suffices to show that G is also a standard basis of J ∩
RN ·M [x]. Since by assumption J = 〈I〉L[x] = 〈G〉L[x], Corollary 6.13 implies that

J ∩ LN ·M [x] = 〈G〉LN·M [x] = S−1
N ·M〈G〉RN·M [x].

Moreover, by Remark 6.12 the ideal I = 〈G〉RN [x] is saturated with respect to

t
1
N and by Lemma 6.16 therefore also 〈G〉RN·M [x] is saturated with respect to

t
1

N·M , which implies that

J ∩RN ·M [x] = S−1
N ·M〈G〉RN·M [x] ∩ RN ·M [x] = 〈G〉RN·M [x].

Since G = (g1, . . . , gk) is a standard basis of I every spoly(gi, gj), i < j, has a

weak standard representation with respect to G and >w over RN [x] by Buch-

berger’s Criterion 4.6, and these are of course also weak standard represen-

tations over RN ·M [x], so that again by Buchberger’s Criterion G is a standard

basis of 〈G〉RN·M [x] = J ∩ RN ·M [x].

Corollary 6.18

Let I � RN [x] be an ideal such that I = I :
〈
t

1
N

〉∞
, let w ∈ R<0 × Rn, and let G

be a standard basis of I with respect to >w.

Then for allM ≥ 1

inw
(
〈I〉RN·M [x]

)
=
〈
inw(G)

〉
�K

[
t

1
N·M , x

]

and

t-inw
(
〈I〉RN·M [x]

)
=
〈
t-inw(G)

〉
= t-inw(I) �K[x]

Proof: If we consider J = 〈I〉L[x] then by Remark 6.12 J ∩ RN [x] = I, and

moreover, by Lemma 6.16 also 〈I〉RN·M [x] is saturated with respect to t
1

N·M , so

that applying Remark 6.12 once again we also find J ∩ RN ·M [x] = 〈I〉RN·M [x].

The result therefore follows from Corollary 6.17.

Corollary 6.19

Let J � L[x] be an ideal such that J = 〈J ∩ RN [x]〉L[x], let w = (−1, 0, . . . , 0) and

letM ≥ 1. Then

1 ∈ inω
(
J ∩ RN [x]

)
⇐⇒ 1 ∈ inω

(
J ∩ RN ·M [x]

)
.

Proof: Suppose that f ∈ J ∩ RN ·M [x] with inω(f) = 1, and let G = (g1, . . . , gk)

be standard basis of J ∩ RN [x] with respect to >w. By Corollary 6.17

1 = inω(f) ∈
〈
inω(g1), . . . , inω(gk)

〉
�K

[
t

1
N·M , x

]
,



6. APPLICATION TO t-INITIAL IDEALS 157

and since this ideal and 1 are w-quasihomogeneous, there exist w-

quasihomogeneous elements h1, . . . , hk ∈ K
[
t

1
N·M , x

]
such that

1 =

k∑

i=1

hi · inω(gi),

where each summand on the right hand side (possibly zero) is w-

quasihomogeneous of w-degree zero. Since w = (−1, 0, . . . , 0) this forces

hi ∈ K[x] for all i = 1, . . . , k and thus 1 ∈ inω(J ∩ RN [x]). The converse is

clear anyhow.

We want to conclude the section by a remark on the saturation.

Proposition 6.20

If f1, . . . , fk ∈ K[t, x] and I = 〈f1, . . . , fk〉 �K[t]〈t〉[x] then

〈I〉R1[x] : 〈t〉∞ =
〈
I : 〈t〉∞

〉
R1[x]

.

Proof: Let >1 be any global monomial ordering on Mon(x) and define a t-local

monomial ordering on Mon
(
t, x) by

tα · xβ > tα
′ · xβ′

if and only if

xα >1 xα
′

or
(
xα = xα

′

and α < α′).
Then

{f ∈ R1[x] | lt>(f) = 1} = {1 + t · p | p ∈ K[t]},
and thus

R1[x]> = R1[x] and K[t, x]> = K[t]〈t〉[x].

Using Remark 4.9 we can compute at the same time a standard basis of

〈I〉R1[x] : 〈t〉∞ and of 〈I〉K[t]〈t〉[x] : 〈t〉∞ with respect to >. Since a standard

basis is a generating set in the localised ring the result follows.
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PAPER IX

An Algorithm for Lifting Points in a Tropical Variety

Abstract: The aim of this paper is to give a constructive proof of

one of the basic theorems of tropical geometry: given a point on a

tropical variety (defined using initial ideals), there exists a Puiseux-

valued “lift” of this point in the algebraic variety. This theorem is so

fundamental because it justifies why a tropical variety (defined com-

binatorially using initial ideals) carries information about algebraic

varieties: it is the image of an algebraic variety over the Puiseux

series under the valuation map. We have implemented the “lifting

algorithm” using SINGULAR and Gfan if the base field is Q. As a

byproduct we get an algorithm to compute the Puiseux expansion of

a space curve singularity in (Kn+1, 0).

This paper is a joint work with Anders Nedergaard Jensen, Berlin,

and Hannah Markwig, Minneapolis, [JMM07].

1. Introduction

In tropical geometry, algebraic varieties are replaced by certain piecewise lin-

ear objects called tropical varieties. Many algebraic geometry theorems have

been “translated” to the tropical world (see for example [Mik05], [Vig04],

[SpS04a], [GaM07a] and many more). Because new methods can be used in

the tropical world — for example, combinatorial methods — and because the

objects seem easier to deal with due to their piecewise linearity, tropical ge-

ometry is a promising tool for deriving new results in algebraic geometry. (For

example, the Welschinger invariant can be computed tropically, see [Mik05]).

There are two ways to define the tropical variety Trop(J) for an ideal J in the

polynomial ring K{{t}}[x1, . . . , xn] over the field of Puiseux series (see Defi-

nition 2.1). One way is to define the tropical variety combinatorially using

t-initial ideals (see Definition 2.4 and Definition 2.10) — this definition is

more helpful when computing and it is the definition we use in this paper.

The other way to define tropical varieties is as (the closure of) the image of

the algebraic variety V (J) of J in K{{t}}n under the negative of the valuation

map (see Remark 2.2) — this gives more insight why tropical varieties carry

information about algebraic varieties.

159
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It is our main aim in this paper to give a constructive proof that these two con-

cepts coincide (see Theorem 2.13), and to derive that way an algorithm which

allows to lift a given point ω ∈ Trop(J) to a point in V (J) up to given order

(see Algorithms 3.8 and 4.8). The algorithm has been implemented using the

commutative algebra system SINGULAR (see [GPS05]) and the programme

Gfan (see [Jen07]), which computes Gröbner fans and tropical varieties.

Theorem 2.13 has been proved in the case of a principal ideal by [EKL04],

Theorem 2.1.1. There is also a constructive proof for a principal ideal in

[Tab05], Theorem 2.4. For the general case, there is a proof in [SpS04b], The-

orem 2.1, which has a gap however. Furthermore, there is a proof in [Dra06],

Theorem 4.2, using affinoid algebras, and in [Kat06], Lemma 5.2.2, using flat

schemes. A more general statement is proved in [Pay07], Theorem 4.2. (Note

that what we call a tropical variety is called a Speyer-Sturmfels set in Payne’s

paper.) Our proof has the advantage that it is constructive and works for an

arbitrary ideal J .

We describe our algorithm first in the case where the ideal is 0-dimensional.

This algorithm can be viewed as a variant of an algorithm presented by

Joseph Maurer in [Mau80], a paper from 1980. In fact, he uses the term

“critical tropism” for a point in the tropical variety, even though tropical va-

rieties were not defined by that time. Apparently, the notion goes back to

Monique Lejeune-Jalabert and Bernard Teissier1 (see [LJT73]).

This paper is organised as follows: In Section 2 we recall basic definitions

and state the main result. In Section 3 we give a constructive proof of the

main result in the 0-dimensional case and deduce an algorithm. In Section 4

we reduce the arbitrary case algorithmically to the 0-dimensional case, and

in Section 5 we gather some simple results from commutative algebra for the

lack of a better reference. The proofs of both cases heavily rely on a good un-

derstanding of the relation of the dimension of an ideal J over the Puiseux

1Asked about this coincidence in the two notions Bernard Teissier sent us the following

kind and interesting explanation: As far as I know the term did not exist before. We tried to

convey the idea that giving different weights to some variables made the space ”anisotropic”,

and we were intrigued by the structure, for example, of anisotropic projective spaces (which are

nowadays called weighted projective spaces). From there to ”tropismes critiques” was a quite

natural linguistic movement. Of course there was no ”tropical” idea around, but as you say, it

is an amusing coincidence. The Greek ”Tropos” usually designates change, so that ”tropisme

critique” is well adapted to denote the values where the change of weights becomes critical.

The term ”Isotropic”, apparently due to Cauchy, refers to the property of presenting the same

(physical) characters in all directions. Anisotropic is, of course, its negation. The name of

Tropical geometry originates, as you probably know, from tropical algebra which honours a

Brazilian computer scientist living close to the tropics, where the course of the sun changes

back to the equator. In a way the tropics of Capricorn and Cancer represent, for the sun,

critical tropisms.
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series with its t-initial ideal respectively with its restriction to the rings RN [x]

introduced below (see Definition 2.1). This will be studied in Section 6. Some

of the theoretical as well as the computational results use Theorem 2.8 which

was proved in [Mar07] using standard bases in the mixed power series poly-

nomial ring K[[t]][x]. We give an alternative proof in Section 7.

We would like to thank Bernd Sturmfels for suggesting the project and for

many helpful discussions, and Michael Brickenstein, Gerhard Pfister and

Hans Schönemann for answering many questions concerning SINGULAR.

Also we would like to thank Sam Payne for helpful remarks and for point-

ing out a mistake in an earlier version of this paper.

Our programme can be downloaded from the web page

www.mathematik.uni-kl.de/˜keilen/en/tropical.html.

2. Basic Notations and the Main Theorem

In this section we will introduce the basic notations used throughout the pa-

per.

Definition 2.1

Let K be an arbitrary field. We consider for N ∈ N>0 the discrete valuation

ring

RN = K
[[
t

1
N

]]
=

{ ∞∑

α=0

aα · t
α
N

∣∣∣ aα ∈ K

}

of formal power series in the unknown t
1
N with discrete valuation

val

( ∞∑

α=0

aα · t
α
N

)
= ordt

( ∞∑

α=0

aα · t
α
N

)
= min

{ α
N

∣∣∣ aα 6= 0
}
∈ 1

N
· Z ∪ {∞},

and we denote by LN = Quot(RN) its quotient field. If N | M then in an

obvious way we can think of RN as a subring of RM , and thus of LN as a

subfield of LM . We call the direct limit of the corresponding direct system

L = K{{t}} = lim
−→

LN =
⋃

N>0

LN

the field of (formal) Puiseux series over K.

Remark 2.2

If 0 6= N ∈ N then SN =
{
1, t

1
N , t

2
N , t

3
N , . . .

}
is a multiplicatively closed subset

of RN , and obviously

LN = S−1
N RN =

{
t
−α
N · f

∣∣∣∣ f ∈ RN , α ∈ N} .
The valuation of RN extends to LN , and thus L, by val

(
f
g

)
= val(f)− val(g) for

f, g ∈ RN with g 6= 0. In particular, val(0) = ∞.
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Notation 2.3

Since an ideal J � L[x] is generated by finitely many elements, the set

N (J) =
{
N ∈ N>0

∣∣ 〈J ∩RN [x]〉L[x] = J
}

is non-empty, and if N ∈ N (J) then N · Z ⊆ N (J). We also introduce the

notation JRN
= J ∩ RN [x].

Remark and Definition 2.4

Let N ∈ N>0, w = (w0, . . . , wn) ∈ R<0 ×Rn, and q ∈ R.
We may consider the direct product

Vq,w,N =
∏

(α, β) ∈ Nn+1

w · ( α
N
, β) = q

K · t α
N · xβ

of K-vector spaces and its subspace

Wq,w,N =
⊕

(α, β) ∈ Nn+1

w · ( α
N
, β) = q

K · t α
N · xβ.

As a K-vector space the formal power series ring K
[[
t

1
N , x

]]
is just

K
[[
t

1
N , x

]]
=
∏

q∈RVq,w,N ,
and we can thus write any power series f ∈ K

[[
t

1
N , x

]]
in a unique way as

f =
∑

q∈R fq,w with fq,w ∈ Vq,w,N .

Note that this representation is independent of N in the sense that if f ∈
K
[[
t

1
N′ , x

]]
for some other N ′ ∈ N>0 then we get the same non-vanishing fq,w

if we decompose f with respect to N ′.

Moreover, if 0 6= f ∈ RN [x] ⊂ K
[[
t

1
N , x

]]
, then there is a maximal q̂ ∈ R such

that fq̂,w 6= 0 and fq,w ∈ Wq,w,N for all q ∈ R, since the x-degree of the monomi-

als involved in f is bounded. We call the elements fq,w w-quasihomogeneous

of w-degree degw(fq,w) = q ∈ R,
inw(f) := fq̂,w ∈ K

[
t

1
N , x

]

the w-initial form of f , and

ordw(f) := q̂ = max{degw(fq,w) | fq,w 6= 0}
the w-order of f . Set ∈ω (0) = 0. If tβxα 6= tβ

′
xα

′
are both monomials of inw(f),

then α 6= α′.

For I ⊆ RN [x] we call

inw(I) =
〈
inw(f)

∣∣ f ∈ I
〉

�K
[
t

1
N , x

]
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the w-initial ideal of I. Note that its definition depends on N .

Moreover, we call for f ∈ RN [x]

t-inw(f) = inw(f)(1, x) = inw(f)|t=1 ∈ K[x]

the t-initial form of f w.r.t. w, and if f = t
−α
N · g ∈ L[x] with g ∈ RN [x] we set

t-inw(f) := t-inw(g).

This definition does not depend on the particular representation of f .

If J ⊆ L[x] is a subset of L[x], then

t-inw(J) = 〈t-inw(f) | f ∈ J〉 �K[x]

is the t-initial ideal of J , which does not depend on any N .

For two w-quasihomogeneous elements fq,w ∈ Wq,w,N and fq′,w ∈ Wq′,w,N we

have fq,w · fq′,w ∈ Wq+q′,w,N . In particular, inw(f · g) = inw(f) · inw(g) for f, g ∈
RN [x], and t-inw(f · g) = t-inw(f) · t-inw(g) for f, g ∈ L[x].

Example 2.5

Let w = (−1,−2,−1) and

f =
(
2t+ t

3
2 + t2

)
· x2 + (−3t3 + 2t4) · y2 + t5xy2 +

(
t+ 3t2

)
· x7y2.

Then ordw(f) = −5, inw(f) = 2tx2 − 3t3y2, and t-inw(f) = 2x2 − 3y2.

Notation 2.6

Throughout this paper we will mostly use the weight −1 for the variable t,

and in order to simplify the notation we will then usually write for ω ∈ Rn

inω instead of in(−1,ω)

and

t-inω instead of t-in(−1,ω) .

The case that ω = (0, . . . , 0) is of particular interest, and we will simply write

in0 respectively t-in0 .

This should not lead to any ambiguity.

In general, the t-initial ideal of an ideal J is not generated by the t-initial

forms of the given generators of J .

Example 2.7

Let J = 〈tx+ y, x+ t〉 � L[x, y] and ω = (1,−1). Then y − t2 ∈ J , but

y = t-inω(y − t2) 6∈ 〈t-inω(tx+ y), t-inω(x+ t)〉 = 〈x〉.

We can compute the t-initial ideal using standard bases by [Mar07], Corollary

6.11.
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Theorem 2.8

Let J = 〈I〉L[x] with I � K
[
t

1
N , x

]
, ω ∈ Qn and G be a standard basis of I with

respect to >ω (see Remark 3.7 for the definition of >ω).

Then t-inω(J) = t-inω(I) =
〈
t-inω(G)

〉
�K[x].

The proof of this theorem uses standard basis techniques in the ring K[[t]][x].

We give an alternative proof in Section 7.

Example 2.9

In Example 2.7, G = (tx+ y, x+ t, y− t2) is a suitable standard basis and thus

t-inω(J) = 〈x, y〉.
Definition 2.10

Let J � L[x] be an ideal then the tropical variety of J is defined as

Trop(J) = {ω ∈ Rn | t-inω(J) is monomial free}.

Example 2.11

Let J = 〈x + y + 1〉 ⊂ L[x, y]. As J is generated by one polynomial f which

then automatically is a standard basis, the t-initial ideal t-inω(J) will be gen-

erated by t-inω(f) for any ω. Hence t-inω(J) contains no monomial if and only

if t-inω(f) is not a monomial. This is the case for all ω such that ω1 = ω2 ≥ 0,

or ω1 = 0 ≥ ω2, or ω2 = 0 ≥ ω1. Hence the tropical variety Trop(J) looks as

follows:

We need the following basic results about tropical varieties, which are easy to

prove.

Lemma 2.12

Let J, J1, . . . , Jk � L[x] be ideals. Then:

(a) J1 ⊆ J2 =⇒ Trop(J1) ⊇ Trop(J2),

(b) Trop(J1 ∩ . . . ∩ Jk) = Trop(J1) ∪ . . . ∪ Trop(Jk),

(c) Trop(J) = Trop
(√

J
)

=
⋃
P∈minAss(J) Trop(P ), and

(d) Trop(J1 + J2) ⊆ Trop(J1) ∩ Trop(J2).

We are now able to state our main theorem.

Theorem 2.13

If K is algebraically closed of characteristic zero and J �K{{t}}[x] is an ideal
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then

ω ∈ Trop(J) ∩Qn ⇐⇒ ∃ p ∈ V (J) : − val(p) = ω ∈ Qn,
where val is the coordinate-wise valuation.

The proof of one direction is straight forward and it does not require that K

is algebraically closed.

Proposition 2.14

If J � L[x] is an ideal and p ∈ V (J) ∩ (L∗)n, then − val(p) ∈ Trop(J).

Proof: Let p = (p1, . . . , pn), and let ω = − val(p) ∈ Qn. If f ∈ J , we have to show

that t-inω(f) is not a monomial, but since this property is preserved when

multiplying with some t
α
N we may as well assume that f ∈ JRN

. As p ∈ V (J),

we know that f(p) = 0. In particular the terms of lowest t-order in f(p) have

to cancel. But the terms of lowest order in f(p) are inω(f)(a1 · tω1 , . . . , an · tωn),

where pi = ai · tωi + h.o.t.. Hence inω(f)(a1t
ω1 , . . . , ant

ωn) = 0, which is only

possible if inω(f), and thus t-inω(f), is not a monomial.

Remark 2.15

If the base fieldK in Theorem 2.13 is not algebraically closed or not of charac-

teristic zero, then the Puiseux series field is not algebraically closed (see e.g.

[Ked01]). We therefore cannot expect to be able to lift each point in the tropi-

cal variety of an ideal J �K{{t}}[x] to a point in V (J) ⊆ K{{t}}n. However, if

we replace V (J) by the vanishing set, sayW , of J over the algebraic closure L

of K{{t}} then it is still true that each point ω in the tropical variety of J can

be lifted to a point p ∈ W such that val(p) = −ω. For this we note first that if

dim(J) = 0 then the non-constructive proof of Theorem 3.1 works by passing

from J to 〈J〉L[x], taking into account that the non-archemdian valuation of a

field in a natural way extends to its algebraic closure. And if dim(J) > 0 then

we can add generators to J by Proposition 4.6 and Remark 4.5 so as to reduce

to the zero dimensional case before passing to the algebraic closure ofK{{t}}.
Note, it is even possible to apply Algorithm 3.8 in the case of positive char-

acteristic. However, due to the weird nature of the algebraic closure of the

Puiseux series field in that case we cannot guarantee that the result will co-

incide with a solution of J up to the order up to which it is computed. It may

very well be the case that some intermediate terms are missing (see [Ked01]

Section 5).

3. Zero-Dimensional Lifting Lemma

In this section we want to give a constructive proof of the Lifting Lemma 3.1.

Theorem 3.1 (Lifting Lemma)

Let K is an algebraically closed field of characteristic zero and L = K{{t}}. If
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J � L[x] is a zero dimensional ideal and ω ∈ Trop(J) ∩Qn then there is a point

p ∈ V (J) such that − val(p) = ω.

Non-Constructive Proof: If ω ∈ Trop(J) then by Lemma 2.12 there is an

associated prime P ∈ minAss(J) such that ω ∈ Trop(P ). But since dim(J) = 0

the ideal P is necessarily a maximal ideal, and since L is algebraically closed

it is of the form

P = 〈x1 − p1, . . . , xn − pn〉
with p1, . . . , pn ∈ L. Since ω ∈ Trop(P ) the ideal t-inω(P ) does not contain any

monomial, and therefore necessarily ordt(pi) = −ωi for all i = 1, . . . , n. This

shows that p = (p1, . . . , pn) ∈ V (P ) ⊆ V (J) and val(p) = −ω.

The drawback of this proof is that in order to find p one would have to be able

to find the associated primes of J which would amount to something close to

primary decomposition over L. This is of course not feasible. We will instead

adapt the constructive proof that L is algebraically closed, i.e. the Newton-

Puiseux Algorithm for plane curves, which has already been generalised to

space curves (see [Mau80], [AMNR92]) to our situation in order to compute

the point p up to any given order.

The idea behind this is very simple and the first recursion step was basically

already explained in the proof of Proposition 2.14. Suppose we have a polyno-

mial f ∈ RN [x] and a point

p =
(
u1 · tα1 + v1 · tβ1 + . . . , . . . , un · tαn + vn · tβn + . . .

)
∈ L[x].

Then, a priori, the term of lowest t-order in f(p) will be in−α(f)(u1 · tα1 , . . . , un ·
tαn). Thus, in order for f(p) to be zero it is necessary that t-inω(f)(u1, . . . , un) =

0. Let p′ denote the tail of p, that is pi = ui · tαi + tαi · p′i. Then p′ is a zero of

f ′ = f
(
tα1 · (u1 + x1), . . . , t

αn · (un + xn)
)
.

The same arguments then show that t-inα−β(f
′)(v1, . . . , vn) = 0, and assuming

now that none of the vi is zero we find t-inα−β(f
′) must be monomial free, that

is α − β is a point in the tropical variety and all its components are strictly

negative.

The basic idea for the algorithm which computes a suitable p is thus straight

forward. Given ω = −α in the tropical variety of an ideal J , compute a point

u ∈ t-inω(J) apply the above transformation to J and compute a negative-

valued point in the tropical variety of the transformed ideal. Then go on

recursively.

It may happen that the solution that we are about to construct this way has

some component with only finitely many terms. Then after a finite number

of steps there might be no suitable ω in the tropical variety. However, in that
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situation we can simply eliminate the corresponding variable for the further

computations.

Example 3.2

Consider the ideal J = 〈f1, . . . , f4〉 � L[x, y] with

f1 = y2 + 4t2y + (−t3 + 2t4 − t5),

f2 = (1 + t) · x− y + (−t− 3t2),

f3 = xy + (−t+ t2) · x+ (t2 − t4),

f4 = x2 − 2tx+ (t2 − t3).

The t-initial ideal of J with respect to ω =
(
− 1,−3

2

)
is

t-inω(J) = 〈y2 − 1, x− 1〉,

so that ω ∈ Trop(J) and u = (1, 1) is a suitable choice. Applying the trans-

formation γω,u : (x, y) 7→
(
t · (1 + x), t

3
2 · (1 + y)

)
to J we get J ′ = 〈f ′

1, . . . , f
′
4〉

with

f ′
1 = t3y2 +

(
2t3 + 4t

7
2

)
· y +

(
4t

7
2 + 2t4 − t5

)
,

f ′
2 = (t+ t2) · x− t

3
2 · y +

(
− t

3
2 − 2t2

)
,

f ′
3 = t

5
2 · xy +

(
− t2 + t3 + t

5
2

)
· x+ t

5
2 · y +

(
t

5
2 + t3 − t4

)
,

f ′
4 = t2x2 − t3.

This shows that the x-coordinate of a solution of J ′ necessarily is x = ±t 1
2 ,

and we could substitute this for x in the other equations in order to reduce

by one variable. We will instead see what happens when we go on with our

algorithm.

The t-initial ideal of J ′ with respect to ω′ =
(
− 1

2
,−1

2

)
is

t-inω′(J ′) = 〈y + 2, x− 1〉,

so that ω′ ∈ Trop(J ′) and u′ = (1,−2) is our only choice. Applying the trans-

formation γω′,u′ : (x, y) 7→
(
t

1
2 · (1 + x), t

1
2 · (−2 + y)

)
to J ′ we get the ideal

J ′′ = 〈f ′′
1 , . . . , f

′′
4 〉 with

f ′′
1 = t4y2 + 2t

7
2 y +

(
− 2t4 − t5

)
,

f ′′
2 =

(
t

3
2 + t

5
2

)
· x− t2 · y + t

5
2 ,

f ′′
3 = t

7
2 · xy +

(
− t

5
2 + t3 − t

7
2

)
· x+

(
t3 + t

7
2

)
· y +

(
− t

7
2 − t4

)
,

f ′′
4 = t3x2 + 2t3x.

If we are to find an ω′′ ∈ Trop(J ′′) then f ′′
4 implies that necessarily ω′′

1 = 0. But

we are looking for an ω′′ all of whose entries are strictly negative. The reason
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why this does not exist is that there is a solution of J ′′ with x = 0. We thus

have to eliminate the variable x, and replace J ′′ by the ideal J ′′′ = 〈f ′′′〉 with

f ′′′ = y − t
1
2 .

Then ω′′′ = −1
2
∈ Trop(J ′′′) and t-inω′′′(f ′′′) = y − 1. Thus u′′′ = 1 is our only

choice, and since f ′′′(u′′′ · t−ω′′′
) = f ′′′(t

1
2 ) = 0 we are done.

Backwards substitution gives

p =
(
tω1 ·

(
u1 + tω

′
1 · (u′1 + 0)

)
, tω2 ·

(
u2 + tω

′
2 ·
(
u′2 + tω

′′′
2 · u′′′

)))

=
(
t ·
(
1 + t

1
2

)
, t

3
2 ·
(
1 + t

1
2 ·
(
−2 + t

1
2

)))

=
(
t+ t

3
2 , t

3
2 − 2t2 + t

5
2

)

as a point in V (J) with val(p) =
(
1, 3

2

)
= −ω. Note that in general the proce-

dure will not terminate.

For the proof that this algorithm works we need two types of transformations

which we are now going to introduce and study.

Definition and Remark 3.3

For ω′ ∈ Qn let us consider the L-algebra isomorphism

Φω′ : L[x] −→ L[x] : xi 7→ t−ω
′
i · xi,

and the isomorphism which it induces on Ln

φω′ : Ln → Ln : (p′1, . . . , p
′
n) 7→

(
t−ω

′
1 · p′1, . . . , t−ω

′
n · p′n

)
.

Suppose we have found a p′ ∈ V
(
Φω′(J)

)
, then p = φω′(p′) ∈ V (J) and val(p) =

val(p′) − ω′.

Thus choosing ω′ appropriately we may in Theorem 3.1 assume that ω ∈ Qn<0,

which due to Corollary 6.15 implies that the dimension of J behaves well when

contracting to the power series ring RN [x] for a suitable N .

Note also the following properties of Φω′ , which we will refer to quite fre-

quently. If J � L[x] is an ideal, then

dim(J) = dim
(
Φω′(J)

)
and t-inω′(J) = t-in0

(
Φω′(J)

)
,

where the latter is due to the fact that

degw
(
tα · xβ

)
= −α + ω′ · β = degv

(
tα−ω

′·β · xβ
)

= degv
(
Φω′(tα · xβ)

)

with w = (−1, ω′) and v = (−1, 0, . . . , 0).

Definition and Remark 3.4

For u = (u1, . . . , un) ∈ Kn, ω ∈ Qn and w = (−1, ω) we consider the L-algebra

isomorphism

γω,u : L[x] −→ L[x] : xi 7→ t−ωi · (ui + xi),
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and its effect on a w-quasihomogeneous element

fq,w =
∑

(α, β) ∈ Nn+1

− α
N

+ ω · β = q

aα,β · t
α
N · xβ.

If we set

pβ :=
n∏

i=1

(ui + xi)
βi − uβ ∈ 〈x1, . . . , xn〉 �K[x]

then

γω,u(fq,w) =
∑

− α
N

+ω·β=q

aα,β · t
α
N ·

n∏
i=1

t−ωi·βi · (ui + xi)
βi

= t−q · ∑
− α

N
+ω·β=q

aα,β ·
(
uβ + pβ)

= t−q ·
(
fq,w(1, u) +

∑
− α

N
+ω·β=q

aα,β · pβ
)

= t−q · fq,w(1, u) + t−q · pfq,w,u,

(3.1)

with

pfq,w,u :=
∑

− α
N

+w·β=q

aα,β · pβ ∈ 〈x1, . . . , xn〉 �K[x].

In particular, if ω ∈ 1
N
· Zn and f =

∑
q≤q̂ fq,w ∈ RN [x] with q̂ = ordω(f) then

γω,u(f) = t−q̂ · g
where

g =
∑

q≤q̂

(
tq̂−q · fq,w(1, u) + tq̂−q · pfq,w,u

)
∈ RN [x].

2

The following lemma shows that if we consider the transformed ideal γω,u(J)∩
RN [x] in the power series ring K

[[
t

1
N , x

]]
then it defines the germ of a space

curve through the origin. This allows us then in Corollary 3.6 to apply nor-

malisation to find a negative-valued point in the tropical variety of γω,u(J).

Lemma 3.5

Let J � L[x], let ω ∈ Trop(J) ∩ 1
N
· Zn, and u ∈ V

(
t-inω(J)

)
⊂ Kn. Then

γω,u(J) ∩ RN [x] ⊆
〈
t

1
N , x1, . . . , xn

〉
� RN [x].

Proof: Let w = (−1, ω) and 0 6= f = γω,u(h) ∈ γω,u(J) ∩RN [x] with h ∈ J . Since

f is a polynomial in x we have

h = γ−1
ω,u(f) = f(tω1 · x1 − u1, . . . , t

ωn · xn − un) ∈ tm ·RN [x]

for some m ∈ 1
N

· Z. We can thus decompose g := t−m · h ∈ JRN
into its w-

quasihomogeneous parts, say

t−m · h = g =
∑

q≤q̂
gq,w,
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where q̂ = ordω(g) and thus gq̂,w = inω(g) is the w-initial form of g. As we have

seen in Remark 3.4 there are polynomials pgq,w,u ∈ 〈x1, . . . , xn〉�K[x] such that

γω,u(gq,w) = t−q · gq,w(1, u) + t−q · pgq,w,u.

But then

f = γω,u(h) = γω,u(t
m · g) = tm · γω,u(g) = tm · γω,u

(
∑

q≤q̂
gq,ω

)

= tm ·
∑

q≤q̂

(
t−q · gq,w(1, u) + t−q · pgq,w,u

)

= tm−q̂ · gq̂,w(1, u) + tm−q̂ · pgq̂,w,u +
∑

q<q̂

tm−q ·
(
gq,w(1, u) + pgq,w,u

)
.

However, since g ∈ J and u ∈ V
(
t-inω(J)

)
we have

gq̂,w(1, u) = t-inω(g)(u) = 0

and thus using (3.1) we get

pgq̂,w,u = tq̂ ·
(
γω,u(gq̂,w) − t−q̂ · gq̂,w(1, u)

)
= tq̂ · γω,u(gq̂,w) 6= 0,

since gq̂,w = inω(g) 6= 0 and γω,u is an isomorphism. We see in particular, that

m− q̂ ≥ 0 since f ∈ RN [x] and pgq̂,w,u ∈ 〈x1, . . . , xn〉 �K[x], and hence

f = tm−q̂ · pgq̂,w,u +
∑

q<q̂

tm−q ·
(
gq,w(1, u) + pgq,w,u

)
∈
〈
t

1
N , x1, . . . , xn

〉
.

The following corollary assures the existence of a negative-valued point in the

tropical variety of the transformed ideal – after possibly eliminating those

variables for which the components of the solution will be zero.

Corollary 3.6

Suppose that K is an algebraically closed field of characteristic zero. Let J �

L[x] be a zero-dimensional ideal, let ω ∈ Trop(J) ∩ Qn, and u ∈ V
(
t-inω(J)

)
⊂

Kn. Then

∃ p = (p1, . . . , pn) ∈ V
(
γω,u(J)

)
: ∀i : val(pi) ∈ Q>0 ∪ {∞}.

In particular, if np = #{pi | pi 6= 0} > 0 and xp = (xi | pi 6= 0), then

Trop
(
γω,u(J) ∩ L[xp]

)
∩Qnp

<0 6= ∅.

Proof: We may choose an N ∈ N (γω,u(J)) and such that ω ∈ 1
N

· Zn≤0. Let

I = γω,u(J) ∩ RN [x].

Since γω,u is an isomorphism we know that

0 = dim(J) = dim
(
γω,u(J)

)
,
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and by Proposition 5.3 we know that

Ass(I) =
{
PRN

∣∣ P ∈ Ass
(
γω,u(J)

)}
.

Since the maximal ideal

m =
〈
t

1
N , x1, . . . , xn

〉
RN [x]

� RN [x]

contains the element t
1
N , which is a unit in L[x], it cannot be the contraction

of a prime ideal in L[x]. In particular, m 6∈ Ass(I). Thus there must be a

P ∈ Ass(I) such that P $ m, since by Lemma 3.5 I ⊂ m and since otherwise m

would be minimal over I and hence associated to I.

The strict inclusion implies that dim(P ) ≥ 1, while Theorem 6.10 shows that

dim(P ) ≤ dim(I) ≤ dim
(
γω,u(J)

)
+ 1 = 1.

Hence the ideal P is a 1-dimensional prime ideal in RN [x] ⊂ K
[[
t

1
N , x

]]
, where

the latter is the completion of the former with respect to m. Since P ⊂ m, the

completion P̂ of P with respect to m is also 1-dimensional and the normalisa-

tion

ψ : K
[[
t

1
N , x

]]
/P̂ →֒ R̃

gives a parametrisation where we may assume that ψ
(
t

1
N

)
= sM since K is

algebraically closed and of characteristic zero (see e.g. [DeP00] Cor. 4.4.10 for

K = C). Let now si = ψ(xi) ∈ K[[s]] then necessarily ai = ords(si) > 0, since

ψ is a local K-algebra homomorphism, and f(sM , s1, . . . , sn) = ψ(f) = 0 for all

f ∈ P̂ . Taking I ⊆ P ⊂ P̂ and γω,u(J) = 〈I〉 into account and replacing s by

t
1

N·M we get

f
(
t

1
N , p) = 0 for all f ∈ γω,u(J)

where

p =
(
s1

(
t

1
N·M

)
, . . . , sn

(
t

1
N·M

))
∈ Rn

N ·M ⊆ Ln.

Moreover,

val(pi) =
ai

N ·M ∈ Q>0 ∪ {∞},
and every f ∈ πxp

◦ γω,u(J) vanishes at the point p′ = (pi | pi 6= 0). By Proposi-

tion 2.14

− val(p′) ∈ Trop
(
γω,u(J) ∩ L[xp]

)
∩Qn<0.

Constructive Proof of Theorem 3.1: Recall that by Remark 3.3 we may

assume that ω ∈ Qn<0. It is our first aim to construct recursively sequences

of the following objects for ν ∈ N:

• natural numbers 1 ≤ nν ≤ n,

• natural numbers 1 ≤ iν,1 < . . . < iν,nν
≤ n,

• subsets of variables xν = (xiν,1 , . . . , xiν,nν
),

• ideals J ′
ν � L[xν−1],
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• ideals Jν � L[xν ],

• vectors ων = (ων,iν,1, . . . , ων,iν,nν
) ∈ Trop(Jν) ∩ (Q<0)

nν , and

• vectors uν = (uν,iν,1, . . . , uν,iν,nν
) ∈ V

(
t-inων

(Jν)
)
∩ (K∗)nν .

We set n0 = n, x−1 = x0 = x, J0 = J ′
0 = J , and ω0 = ω, and since t-inω(J) is

monomial free by assumption and K is algebraically closed we may choose a

u0 ∈ V
(
t-inω0(J0)

)
∩ (K∗)n0. We then define recursively for ν ≥ 1

J ′
ν = γων−1,uν−1(Jν−1).

By Corollary 3.6 we may choose a point q ∈ V (J ′
ν) ⊂ Lnν−1 such that val(qi) =

ordt(qi) > 0 for all i = 1, . . . , nν−1. As in Corollary 3.6 we set

nν = #{qi | qi 6= 0} ∈ {0, . . . , nν−1},

and we denote by

1 ≤ iν,1 < . . . < iν,nν
≤ n

the indexes i such that qi 6= 0.

If nν = 0 we simply stop the process, while if nν 6= 0 we set

xν = (xiν,1 , . . . , xiν,nν
) ⊆ xν−1.

We then set

Jν =
(
J ′
ν + 〈xν−1 \ xν〉

)
∩ L[xν ],

and by Corollary 3.6 we can choose

ων = (ων,iν,1, . . . , ων,iν,nν
) ∈ Trop(Jν) ∩Qnν

<0.

Then t-inων
(Jν) is monomial free, so that we can choose a

uν = (uν,iν,1, . . . , uν,iν,nν
) ∈ V

(
t-inων

(Jν)
)
∩ (K∗)nν .

Next we define

εi = sup
{
ν
∣∣ i ∈ {iν,1, . . . , iν,nν

}
}
∈ N ∪ {∞} and

pµ,i =

min{εi,µ}∑

ν=0

uν,i · t−
Pν

j=0 ωj,i

for i = 1, . . . , n. All ων,i are strictly negative, which is necessary to see that the

pµ,i converge to a Puiseux series. Note that in the case n = 1 the described

procedure is just the classical Puiseux expansion (see e.g. [DeP00] Thm. 5.1.1

for the case K = C). To see that the pµ,i converge to a Puiseux series (i.e. that

there exists a common denominator N for the exponents as µ goes to infinity),

the general case can easily be reduced to the case n = 1 by projecting the

variety to all coordinate lines, analogously to the proof in section 3 of [Mau80].

The ideal of the projection to one coordinate line is principal. Transformation

and intersection commute.
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It is also easy to see that at p = (p1, . . . , pn) ∈ Ln all polynomials in J vanish,

where

pi = lim
µ→∞

pµ,i =
∞∑

ν=0

uν,i · t−
Pν

j=0 ωj,i ∈ RN ⊂ L.

Remark 3.7

The proof is basically an algorithm which allows to compute a point p ∈ V (J)

such that val(p) = −ω. However, if we want to use a computer algebra system

like SINGULAR for the computations, then we have to restrict to generators of

J which are polynomials in t
1
N as well as in x. Moreover, we should pass from

t
1
N to t, which can be easily done by the K-algebra isomorphism

ΨN : L[x] −→ L[x] : t 7→ tN , xi 7→ xi.

Whenever we do a transformation which involves rational exponents we will

clear the denominators using this map with an appropriate N .

We will in the course of the algorithm have to compute the t-initial ideal of J

with respect to some ω ∈ Qn, and we will do so by a standard basis computa-

tion using the monomial ordering >ω, given by

tα · xβ >ω tα
′ · xβ′ ⇐⇒

− α+ ω · β > −α′ + ω · β ′ or (−α + ω · β = −α′ + ω · β ′ and xβ > xβ
′

),

where > is some fixed global monomial ordering on the monomials in x.

Algorithm 3.8 (ZDL – Zero Dimensional Lifting Algorithm)

INPUT: (m, f1, . . . , fk, ω) ∈ N>×K[t, x]k×Qn such that dim(J) = 0

and ω ∈ Trop(J) for J = 〈f1, . . . , fk〉L[x].

OUTPUT: (N, p) ∈ N ×K[t, t−1]n such that p
(
t

1
N

)
coincides with the

first m terms of a solution of V (J) and such that val(p) =

−ω.
INSTRUCTIONS:

• Choose N ≥ 1 such that N · ω ∈ Zn.
• FOR i = 1, . . . , k DO fi := ΨN (fi).

• ω := N · ω
• IF some ωi > 0 THEN

– FOR i = 1, . . . , k DO fi := Φω(fi) · t− ordt

(
Φω(fi)

)
.

– ω̃ := ω.

– ω := (0, . . . , 0).

• Compute a standard basis (g1, . . . , gl) of 〈f1, . . . , fk〉K[t,x] with respect to

the ordering >ω.

• Compute a zero u ∈ (K∗)n of 〈t-inω(g1), . . . , t-inω(gl)〉K[x].

• IF m = 1 THEN (N, p) :=
(
N, u1 · t−ω1 , . . . , un · t−ωn

)
.
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• ELSE

– Set G =
(
γω,u(fi)

∣∣ i = 1, . . . , k
)
.

– FOR i = 1, . . . , n DO

∗ Compute a generating set G′ of 〈G, xi〉K[t,x] : 〈t〉∞.

∗ IF G′ ⊆ 〈t, x〉 THEN

· x := x \ {xi}
· Replace G by a generating set of 〈G′〉 ∩K[t, x].

– IF x = ∅ THEN (N, p) :=
(
N, u1 · t−ω1 , . . . , un · t−ωn

)
.

– ELSE

∗ Compute a point ω′ in the negative orthant of the tropical

variety of 〈G〉L[x].

∗ (N ′, p′) = ZDL(m− 1, G, ω′).

∗ N := N ·N ′.

∗ FOR j = 1, . . . , n DO

· IF xi ∈ x THEN pi := t−ωi·N ′ · (ui + p′i).

· ELSE pi := t−ωi·N ′ · ui.
• IF some ω̃i > 0 THEN p :=

(
t−ω̃1 · p1, . . . , t

−ω̃n · pn
)
.

Proof: The algorithm which we describe here is basically one recursion step

in the constructive proof of Theorem 3.1 given above, and thus the correctness

follows once we have justified why our computations do what is required by

the recursion step.

If we compute a standard basis (g1, . . . , gl) of 〈f1, . . . , fk〉K[t,x] with respect to>ω,

then by Theorem 2.8 the t-initial forms of the gi generate the t-initial ideal of

J = 〈f1, . . . , fk〉L[x]. We thus compute a zero u of the t-initial ideal as required.

Next the recursion in the proof of Theorem 3.1 requires to find an ω ∈
(Q>0 ∪

{∞}
)n
, which is − val(q) for some q ∈ V (J), and we have to eliminate those

components which are zero. Note that the solutions with first component zero

are the solutions of J + 〈x1〉. Checking if there is a solution with strictly

positive valuation amounts by the proof of Corollary 3.6 to checking if
(
J +

〈x1〉
)
∩K[[t]][x] ⊆ 〈t, x〉, and the latter is equivalent to G′ ⊆ 〈t, x〉 by Lemma 3.9.

If so, we eliminate the variable x1 from 〈G′〉K[t,x], which amounts to projecting

all solutions with first component zero to Ln−1. We then continue with the

remaining variables. That way we find a set of variables {xi1 , . . . , xis} such

that there is a solution of V (J) with strictly positive valuation where precisely

the other components are zero.

The rest follows from the constructive proof of Theorem 3.1.

Lemma 3.9

Let f1, . . . , fk ∈ K[t, x], J = 〈f1, . . . , fk〉L[x], I = 〈f1, . . . , fk〉K[t,x] : 〈t〉∞, and let G
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be a generating set of I. Then:

J ∩K[[t]][x] ⊆ 〈t, x〉 ⇐⇒ I ⊆ 〈t, x〉 ⇐⇒ G ⊆ 〈t, x〉.

Proof: The last equivalence is clear since I is generated by G, and for the

first equivalence it suffices to show that J ∩K[[t]][x] = 〈I〉K[[t]][x].

For this let us consider the following two ideals I ′ = 〈f1, . . . , fk〉K[[t]][x] : 〈t〉∞
and I ′′ = 〈f1, . . . , fk〉K[t]〈t〉[x] : 〈t〉∞. By Lemma 6.6 we know that J ∩K[[t]][x] = I ′

and by [Mar07] Prop. 6.20 we know that I ′ = 〈I ′′〉K[[t]][x]. It thus suffice to show

that I ′′ = 〈I〉K[t]〈t〉[x]. Obviously I ⊆ I ′′, which proves one inclusion. Conversely,

if f ∈ I ′′ then f satisfies a relation of the form

tm · f · u =

k∑

i=1

gi · fi,

with m ≥ 0, u ∈ K[t], u(0) = 1 and g1, . . . , gk ∈ K[t, x]. Thus f · u ∈ I and

f = f ·u
u

∈ 〈I〉K[t]〈t〉[x].

Remark 3.10

In order to compute the point ω′ we may want to compute the tropical variety

of 〈G〉L[x]. The tropical variety can be computed as a subcomplex of a Gröbner

fan or more efficiently by applying Algorithm 5 in [BJS+07] for computing

tropical bases of tropical curves.

Remark 3.11

We have implemented the above algorithm in the computer algebra system

SINGULAR (see [GPS05]) since nearly all of the necessary computations are

reduced to standard basis computations over K[t, x] with respect to certain

monomial orderings. In SINGULAR however we do not have an algebraically

closed field K over which we can compute the zero u of an ideal. We get

around this by first computing the absolute minimal associated primes of

〈t-inω(g1), . . . , t-inω(gk)〉K[t,x] all of which are maximal by Corollary 6.15, us-

ing the absolute primary decomposition in SINGULAR. Choosing one of these

maximal ideals we only have to adjoin one new variable, say a, to realise the

field extension over which the zero lives, and the minimal polynomial, say m,

for this field extension is provided by the absolute primary decomposition. In

subsequent steps we might have to enlarge the minimal polynomial, but we

can always get away with only one new variable.

The field extension should be the coefficient field of our polynomial ring in

subsequent computations. Unfortunately, the program gfan which we use in

order to compute tropical varieties does not handle field extensions. (It would

not be a problem to actually implement field extensions — we would not have

to come up with new algorithms.) But we will see in Lemma 3.12 that we

can get away with computing tropical varieties of ideals in the polynomial
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ring over the extension field of K by computing just over K. More precisely,

we want to compute a negative-valued point ω′ in the tropical variety of a

transformed ideal γω,u(J). Instead, we compute a point (ω′, 0) in the tropical

variety of the ideal γω,u(J)+〈m〉. So to justify this it is enough to show that ω is

in the tropical variety of an ideal J E K[a]/〈m〉{{t}}[x] if and only if (ω, 0) is in

the tropical variety of the ideal J+ 〈m〉 E K{{t}}[x, a]. Recall that ω ∈ Trop(J)

if and only if t-inω(J) contains no monomial, and by Theorem 2.8, t-inω(J) is

equal to t-inω(JRN
), where N ∈ N (J).

Lemma 3.12

Let m ∈ K[a] be an irreducible polynomial, let ϕ : k[t
1
N , x, a] → (k[a]/〈m〉)[t 1

N , x]

take elements to their classes, and let I E (k[a]/〈m〉)[t 1
N , x]. Then inω(I) contains

no monomial if and only if in(ω,0)(ϕ
−1(I)) contains no monomial. In particular,

the same holds for t-inω(I) and t-in(ω,0)(ϕ
−1(I)).

Proof: Suppose in(ω,0) ϕ
−1(I) contains a monomial. Then there exists an

f ∈ ϕ−1(I) such that in(ω,0)(f) is a monomial. The polynomial ϕ(f) is in I.

When applying ϕ the monomial in(ω,0)(f) maps to a monomial whose coeffi-

cient in k[a]/〈m〉 has a representative h ∈ k[a] with just one term. The rep-

resentative h cannot be 0 modulo 〈m〉 since 〈m〉 does not contain a monomial.

Thus ϕ
(
in(ω,0)(f)

)
= inω(ϕ(f)) is a monomial.

For the other direction, suppose inω(I) contains a monomial. We must show

that in(ω,0)(ϕ
−1(I)) contains a monomial. This is equivalent to showing that

(in(ω,0)(ϕ
−1(I)) : ((t

1
N · x1 · · ·xn)∞) contains a monomial. By assumption there

exists an f ∈ I such that inω(f) is a monomial. Let g be in ϕ−1(I) such that

g maps to f under the surjection ϕ and with the further condition that the

support of g projected to the (t
1
N , x)-coordinates equals the support of f . The

initial form in(ω,0) (g) is a polynomial with all exponent vectors having the

same (t
1
N , x) parts as inω(f) does. Let g′ be in(ω,0)(g) with the common (t

1
N , x)-

part removed from the monomials, that is g′ ∈ k[a]. Notice that ϕ(g′) 6= 0. We

now have g′ 6∈ 〈m〉 and hence 〈g′, m〉 = k[a] since 〈m〉 is maximal. Nowm and g′

are contained in (in(ω,0)(ϕ
−1(I)) : (t

1
N ·x1 · · ·xn)∞), implying that (in(ω,0)(ϕ

−1(I)) :

(t
1
N ·x1 · · ·xn)∞) ⊇ k[a]. This shows that in(ω,0)(ϕ

−1(I)) contains a monomial.

Remark 3.13

In Algorithm 3.8 we choose zeros of the t-initial ideal and we choose points

in the negative quadrant of the tropical variety. If we instead do the same

computations for all zeros and points of the negative quadrant of the tropical

variety, then we get Puiseux expansions of all branches of the space curve

germ defined by the ideal 〈f1, . . . , fk〉K[[t,x]] in (Kn+1, 0).



4. REDUCTION TO THE ZERO DIMENSIONAL CASE 177

4. Reduction to the Zero Dimensional Case

In this section, we want to give a proof of the lifting Theorem 3.1 for any ideal

J of dimension dim J = d > 0, using our algorithm for the zero-dimensional

case.

Given ω ∈ Trop(J) we would like to intersect Trop(J) with another tropi-

cal variety Trop(J ′) containing ω, such that dim(J + J ′) = 0 and apply the

zero-dimensional algorithm to J + J ′. However, we cannot conclude that

ω ∈ Trop(J + J ′) — we have Trop(J + J ′) ⊆ Trop(J) ∩ Trop(J ′) but equality

does not need to hold. For example, two plane tropical lines (given by two

linear forms) which are not equal can intersect in a ray, even though the ideal

generated by the two linear forms defines just a point.

So we have to find an ideal J ′ such that J + J ′ is zero-dimensional and still

ω ∈ Trop(J + J ′) (see Proposition 4.6). We will use some ideas of [Kat06]

Lemma 4.4.3 — the ideal J ′ will be generated by dim(J) sufficiently general

linear forms. The proof of the proposition needs some technical preparations.

Notation 4.1

We denote by

Vω = {a0 + a1 · tω1 · x1 + . . .+ an · tωn · xn | ai ∈ K}
the n + 1-dimensional K-vector space of linear polynomials over K, which in

a sense are scaled by ω ∈ Qn. Of most interest will be the case where ω = 0.

The following lemma geometrically says that an affine variety of dimension

at least one will intersect a generic hyperplane.

Lemma 4.2

Let K be an infinite field and J � L[x] an equidimensional ideal of dimension

dim(J) ≥ 1. Then there is a Zariski open dense subset U of V0 such that 〈f〉+Q 6=
L[x] for all f ∈ U and Q ∈ minAss(J).

If V is an affine variety which meets (K∗)n in dimension at least 1, then a

generic hyperplane section of V meets (K∗)n as well. The algebraic formula-

tion of this geometric fact is the following lemma:

Lemma 4.3

Let K be an infinite field and I � K[x] be an equidimensional ideal with

dim(I) ≥ 1 and such that x1 · · ·xn 6∈
√
I, then there is a Zariski open subset

U of V0 such that x1 · · ·xn 6∈
√
I + 〈f〉 for f ∈ U .

The following lemma is an algebraic formulation of the geometric fact that

given any affine variety none of its components will be contained in a generic

hyperplane.

Lemma 4.4

Let K be an infinite field, let R be a ring containing K, and let J � R[x] be
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an ideal. Then there is a Zariski open dense subset U of V0 such that f ∈ U

satisfies f 6∈ P for P ∈ minAss(J).

Remark 4.5

If #K < ∞ we can still find a suitable f ∈ K[x] which satisfies the conditions

in Lemma 4.2, Lemma 4.3 and Lemma 4.4 due to Prime Avoidance. However,

it may not be possible to choose a linear one.

With these preparations we can show that we can reduce to the zero dimen-

sional case by cutting with generic hyperplanes.

Proposition 4.6

Suppose thatK is an infinite field, and let J�L[x] be an equidimensional ideal

of dimension d and ω ∈ Trop(J).

Then there exist Zariski open dense subsets U1, . . . , Ud of Vω such that

(f1, . . . , fd) ∈ U1 × . . .× Ud and J
′ = 〈f1, . . . , fd〉L[x] satisfy:

• dim(J + J ′) = dim
(
t-inω(J) + t-inω(J

′)
)

= 0,

• dim
(
t-inω(J

′)
)

= dim(J ′) = n− d,

• x1 · · ·xn 6∈
√

t-inω(J) + t-inω(J ′), and

•
√

t-inω(J) + t-inω(J ′) =
√

t-inω(J + J ′).

In particular, ω ∈ Trop(J + J ′).

Proof: Applying Φω to J first and then applying Φ−ω to J ′ later we may as-

sume that ω = 0. Moreover, we may choose an N such that N ∈ N (J) and

N ∈ N (P ) for all P ∈ minAss(J). By Lemma 6.7 then also t-in0(J) = t-in0(JRN
)

and t-in0(P ) = t-in0(PRN
) for P ∈ minAss(J).

By Lemma 6.16

minAss(JRN
) = {PRN

| P ∈ minAss(J)}. (4.1)

In particular, all minimal associated primes PRN
of JRN

have codimension n−d
by Corollary 6.9.

Since 0 ∈ Trop(J) there exists a P ∈ minAss(J) with 0 ∈ Trop(P ) by Lemma

2.12. Hence 1 6∈ t-in0(P ) and we conclude by Corollary 6.17 that

dim(J) = dim
(
t-in0(J)

)
= dim(Q) (4.2)

for all Q ∈ minAss
(
t-in0(J)

)
. In particular, all minimal associated prime

ideals of t-in0(J) have codimension n− d.

Moreover, since 0 ∈ Trop(J) we know that t-in0(J) is monomial free, and in

particular

x1 · · ·xn 6∈
√

t-in0(J). (4.3)

If d = 0 then J ′ = 〈∅〉 = {0} works due to (4.2) and (4.3). We may thus assume

that d > 0.
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Since K is infinite we can apply Lemma 4.2 to J , Lemma 4.4 to J � L[x], to

JRN
�RN [x] and to t-in0(J) �K[x] and Lemma 4.3 to t-in0(J) �K[x] (take (4.3)

into account), and thus there exist Zariski open dense subsets U , U ′, U ′′, U ′′′

and U ′′′′ in V0 such that no f1 ∈ U1 = U ∩U ′ ∩U ′′ ∩U ′′′ ∩U ′′′′ is contained in any

minimal associated prime of either J , JRN
or t-in0(J), such that 1 6∈ J + 〈f1〉L[x]

and such that x1 · · ·xn 6∈
√

t-in0(J) + 〈f1〉. Since the intersection of four Zariski

open and dense subsets is non-empty, there is such an f1 and by Lemma 5.6

the minimal associated primes of the ideals J + 〈f1〉L[x], JRN
+ 〈f1〉RN [x], and

t-in0(J) + 〈f1〉K[x] all have the same codimension n− d+ 1.

We claim that t
1
N 6∈ Q for any Q ∈ minAss(JRN

+ 〈f1〉RN [x]). Suppose the con-

trary, then by Lemma 6.8 (b), (f) and (g)

dim(Q) = n+ 1 − codim(Q) = d.

Consider now the residue class map

π : RN [x] −→ RN [x]/
〈
t

1
N

〉
= K[x].

Then t-in0(J) = π
(
JRN

+
〈
t

1
N

〉)
, and we have

t-in0(J) + 〈f1〉K[x] ⊆ π
(
JRN

+ 〈t 1
N , f1〉RN [x]

)
⊆ π(Q).

Since t
1
N ∈ Q the latter is again a prime ideal of dimension d. However, due

to the choice of f1 we know that every minimal associated prime of t-in0(J) +

〈f1〉K[x] has codimension n − d + 1 and hence the ideal itself has dimension

d− 1. But then it cannot be contained in an ideal of dimension d.

Applying the same arguments another d− 1 times we find Zariski open dense

subsets U2, . . . , Ud of V0 such that for all (f1, . . . , fd) ∈ U1 × · · ·×Ud the minimal

associated primes of the ideals

J + 〈f1, . . . , fk〉L[x]

respectively

JRN
+ 〈f1, . . . , fk〉RN [x]

respectively

t-in0(J) + 〈f1, . . . , fk〉K[x]

all have codimension n − d + k for each k = 1, . . . , d, such that 1 6∈ J +

〈f1, . . . , fk〉L[x], and such that

x1 · · ·xn 6∈
√

t-in0(J) + 〈f1, . . . , fk〉K[x].

Moreover, none of the minimal associated primes of JRN
+ 〈f1, . . . , fk〉RN [x] con-

tains t
1
N .

In particular, since fi ∈ K[x] we have (see Theorem 2.8)

t-in0(J
′) = t-in0

(
〈f1, . . . , fd〉K[t,x]

)
= 〈f1, . . . , fd〉K[x],

and J ′ obviously satisfies the first three requirements of the proposition.
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For the fourth requirement it suffices to show

minAss
(
t-in0(J) + t-in0(J

′)
)

= minAss
(
t-in0(J + J ′)

)
.

For this consider the ring extension

RN [x] ⊆ S−1
N RN [x] = LN [x]

given by localisation and denote by Ic = I ∩RN [x] the contraction of an ideal I

in LN [x] and by Ie = 〈I〉LN [x] the extension of an ideal I in RN [x]. Moreover, we

set J0 = J∩LN [x] and J ′
0 = J ′∩LN [x], so that Jc0 = JRN

and J ′
0
c = 〈f1, . . . , fd〉RN [x].

Note then first that

(Jc0 + J ′
0
c
)e = Jce0 + J ′

0
ce

= J0 + J ′
0,

and therefore by the correspondence of primary decomposition under locali-

sation (see [AtM69] Prop. 4.9)

minAss
(
(J0 + J ′

0)
c
)

=
{
Q ∈ minAss(Jc0 + J ′

0
c
)
∣∣ t 1

N 6∈ Q
}

= minAss
(
Jc0 + J ′

0
c)
.

This then shows that √
Jc0 + J ′

0
c =

√
(J0 + J ′

0)
c,

and since π(Jc0) = t-in0(JRN
) = t-in0(J), π(J ′

0
c) = t-in0(J

′) and π
(
(J0 + J ′

0)
c
)

=

t-in0(J + J ′) we get

√
t-in0(J) + t-in0(J ′) =

√
π(Jc0) + π(J ′

0
c) = π

(√
Jc0 + J ′

0
c
)

= π
(√

(J0 + J ′
0)
c
)

=
√
π
(
(J0 + J ′

0)
c
)

=
√

t-in0(J + J ′).

It remains to show the “in particular” part. However, since

x1 · · ·xn 6∈
√

t-inω(J) + t-inω(J ′) =
√

t-inω(J + J ′),

the ideal t-inω(J + J ′) is monomial free, or equivalently ω ∈ Trop(J + J ′).

Remark 4.7

Proposition 4.6 shows that the ideal J ′ can be found by choosing d linear forms

fj =
∑n

i=1 aji · tωi · xi + aj0 with random aji ∈ K, and we only need that K is

infinite.

We are now in the position to finish the proof of Theorem 2.13.

Proof of Theorem 2.13: If ω ∈ Trop(J) ∩ Qn then there is a minimal associ-

ated prime ideal P ∈ minAss(J) such that ω ∈ Trop(P ) by Lemma 2.12. By

assumption the field K is algebraically closed and therefore infinite, so that

Proposition 4.6 applied to P shows that we can choose an ideal P ′ such that

ω ∈ Trop(P + P ′) and dim(P + P ′) = 0. By Theorem 3.1 there exists a point

p ∈ V (P + P ′) ⊆ V (J) such that val(p) = −ω. This finishes the proof in view of

Proposition 2.14.
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Algorithm 4.8 (RDZ - Reduction to Dimension Zero)

INPUT: a prime ideal P ∈ K(t)[x] and ω ∈ Trop(P ).

OUTPUT: an ideal J such that dim(J) = 0, P ⊂ J and ω ∈ Trop(J).

INSTRUCTIONS:

• d := dim(P )

• J := P

• WHILE dim(J) 6= 0 OR t-inω(J) not monomial-free DO

– FOR j = 0 TO d pick random values a0,j , . . . , an,j ∈ K, and define

fj := a0,j +
∑
ai,j · tωixi.

– J := P + 〈f1, . . . , fd〉

Proof: We only have to show that the random choices will lead to a suitable

ideal J with probability 1. To see this, we want to apply Proposition 4.6. For

this we only have to see that P e = 〈P 〉L[x] is equidimensional of dimension

d = dim(P ). By [Mar07] Corollary 6.13 the intersection of P e with K(t)[x],

P ec, is equal to P . Using Proposition 5.3 we see that

{P} = minAss(P ec) ⊆ {Qc | Q ∈ minAss(P e)} ⊆ Ass(P ec) = {P}.

By Lemma 5.4 we have dimQ = dim(P ) = d for every Q ∈ minAss(P e), hence

P e is equidimensional of dimension d.

Remark 4.9

Note that we cannot perform primary decomposition over L[x] computation-

ally. Given a d-dimensional ideal J and ω ∈ Trop(J) in our implementation

of the lifting algorithm, we perform primary decomposition over K(t)[x]. By

Lemma 2.12, there must be a minimal associated prime P of J such that

ω ∈ Trop(P ). Its restriction to K(t)[x] is one of the minimal associated primes

that we computed, and this prime is our input for algorithm 4.8.

Example 4.10

Assume P = 〈x+y+t〉�L[x, y], and ω = (−1,−2). Choose coefficients randomly

and add for example the linear form f = −2xt−1 +2t−2y− 1. Then J = 〈x+ y+

t, f〉 has dimension 0 and ω is contained in Trop(J). Note that the intersection

of Trop(P ) with Trop(f) is not transversal, as the vertex of the tropical line

Trop(f) is at ω.

5. Some Commutative Algebra

In this section we gather some simple results from commutative algebra for

the lack of a better reference. They are primarily concerned with the dimen-

sion of an ideal under contraction respectively extension for certain ring ex-

tensions. The results in this section are independent of the previous sections
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Notation 5.1

In this section we denote by Ie = 〈I〉R′ the extension of I�R and by Jc = ϕ−1(J)

the contraction of J�R′, where ϕ : R → R′ is a ring extension. If no ambiguity

can arise we will not explicitly state the ring extension.

We first want to understand how primary decomposition behaves under re-

striction. The following lemma is an easy consequence of the definitions.

Lemma 5.2

If ϕ : R → R′ is any ring extension and Q � R′ a P -primary ideal, then Qc is

P c-primary.

Proposition 5.3

Let ϕ : R → R′ be any ring extension, let J �R′ be an ideal such that (Jc)e = J ,

and let J = Q1 ∩ . . . ∩Qk be a minimal primary decomposition. Then

Ass(Jc) =
{
P c
∣∣ P ∈ Ass(J)

}
=
{√

Qi

c
∣∣∣ i = 1, . . . , k

}
,

and Jc =
⋂
P∈Ass(Jc)QP is a minimal primary decomposition, where

QP =
⋂

√
Qi

c
=P

Qc
i .

Moreover, we have minAss(Jc) ⊆
{
P c
∣∣ P ∈ minAss(J)

}
.

Note that the
√
Qi

c
are not necessarily pairwise different, and thus the cardi-

nality of Ass(Jc) may be strictly smaller than k.

Proof: Let P =
{√

Qi
c ∣∣ i = 1, . . . , k

}
and let QP be defined as above for P ∈ P.

Since contraction commutes with intersection we have

Jc =
⋂

P∈P
QP . (5.1)

By Lemma 5.2 the Qc
i with P =

√
Qi

c
are P -primary, and thus so is their inter-

section, so that (5.1) is a primary decomposition. Moreover, by construction

the radicals of the QP are pairwise different. It thus remains to show that

none of the QP is superfluous. Suppose that there is a P =
√
Qi

c ∈ P such

that

Jc =
⋂

P ′∈P\{P}
QP ′ ⊆

⋂

j 6=i
Qc
j ,

then

J = (Jc)e ⊆
⋂

j 6=i
(Qc

j)
e ⊆

⋂

j 6=i
Qj

in contradiction to the minimality of the given primary decomposition of J .

This shows that (5.1) is a minimal primary decomposition and that Ass(Jc) =

P.

Finally, if P ∈ Ass(J) such that P c is minimal over Jc then necessarily there

is a P̃ ∈ minAss(J) such that P c = P̃ c.
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We will use this result to show that dimension behaves well under extension

for polynomial rings over a field extension.

Lemma 5.4

If F ⊆ F ′ is a field extension, I � F [x] is an ideal and Ie = 〈I〉F ′[x] then

dim(Ie) = dim(I).

Moreover, if I is prime then dim(P ) = dim(I) for all P ∈ minAss(Ie).

Proof: Choose any global degree ordering > on the monomials in x and com-

pute a standard basis G′ of I with respect to >. Then G′ is also a standard

basis of Ie by Buchberger’s Criterion. If M is the set of leading monomials of

elements of G′ with respect to >, then the dimension of the ideal generated

byM does not depend on the base field but only onM (see e.g. [GrP02] Prop.

3.5.8). Thus we have (see e.g. [GrP02] Cor. 5.3.14)

dim(I) = dim
(
〈M〉F [x]

)
= dim

(
〈M〉F ′[x]

)
= dim(Ie). (5.2)

Let now I be prime. It remains to show that Ie is equidimensional.

If we choose a maximal independent set x′ ⊆ x of L>(Ie) = 〈M〉F ′[x] then

by definition (see [GrP02] Def. 3.5.3) 〈M〉 ∩ F ′[x′] = {0}, so that necessarily

〈M〉F [x] ∩ F [x′] = {0}. This shows that x′ is an independent set of L>(I) =

〈M〉F [x], and it is maximal since its size is dim(Ie) = dim(I) by (5.2). Moreover,

by [GrP02] Ex. 3.5.1 x′ is a maximal independent set of both I and Ie. Choose

now a global monomial ordering >′ on the monomials in x′′ = x \ x′.
We claim that if G = {g1, . . . , gk} ⊂ F [x] is a standard basis of 〈I〉F (x′)[x′′] with

respect to >′ and if 0 6= h = lcm
(
lc>′(g1), . . . , lc>′(gk)

)
∈ F [x′], then Ie : 〈h〉∞ =

Ie. For this we consider a minimal primary decomposition Ie = Q1 ∩ . . .∩Ql of

Ie. Since Iece = Ie we may apply Proposition 5.3 to get

{√
Qi

c ∣∣ i = 1, . . . , l
}

= Ass(Iec) = {I}, (5.3)

where the latter equality is due to Iec = I (see e.g. [Mar07] Cor. 6.13) and to

I being prime. Since x′ is an independent set of I we know that h 6∈ I and

thus (5.3) shows that hm 6∈ √
Qi for any i = 1, . . . , l and any m ∈ N. Let now

f ∈ Ie : 〈h〉∞, then there is an m ∈ N such that hm · f ∈ Ie ⊆ Qi and since Qi

is primary and hm 6∈ √
Qi this forces f ∈ Qi. But then f ∈ Q1 ∩ . . . ∩ Ql = Ie,

which proves the claim.

With the same argument as at the beginning of the proof we see that G is a

standard basis of 〈Ie〉F ′(x′)[x′′], and we may thus apply [GrP02] Prop. 4.3.1 to

the ideal Ie which shows that Ie : 〈h〉∞ is equidimensional. We are thus done

by the claim.
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If the field extension is algebraic then dimension also behaves well under

restriction.

Lemma 5.5

Let F ⊆ F ′ be an algebraic field extension and let J � F ′[x] be an ideal, then

dim(J) = dim(J ∩ F [x]).

Proof: Since the field extension is algebraic the ring extension F [x] ⊆ F ′[x]

is integral again. But then the ring extension F [x]/J ∩ F [x] →֒ F ′[x]/J is

integral again (see [AtM69] Prop. 5.6), and in particular they have the same

dimension (see [Eis96] Prop. 9.2).

For Section 4 — where we want to intersect an ideal of arbitrary dimension to

get a zero-dimensional ideal —we need to understand how dimension behaves

when we intersect. The following result is concerned with that question. Ge-

ometrically it just means that intersecting an equidimensional variety with a

hypersurface which does not contain any irreducible component leads again

to an equidimensional variety of dimension one less. We need this result over

RN instead of a field K.

Lemma 5.6

Let R be a catenary integral domain, let I � R with codim(Q) = d for all Q ∈
minAss(I), and let f ∈ R such that f 6∈ Q for all Q ∈ minAss(I). Then

minAss(I + 〈f〉) =
⋃

Q∈minAss(I)

minAss(Q+ 〈f〉).

In particular, codim(Q′) = d+ 1 for all Q′ ∈ minAss(I + 〈f〉).

Proof: If Q′ ∈ minAss(I + 〈f〉) then Q′ is minimal among the prime ideals

containing I+ 〈f〉. Moreover, since I ⊆ Q′ there is a minimal associated prime

Q ∈ minAss(I) of I which is contained in Q′. And, since f ∈ Q′ we have

Q + 〈f〉 ⊆ Q′ and Q′ must be minimal with this property since it is minimal

over I + 〈f〉. Hence Q′ ∈ minAss(Q+ 〈f〉).
Conversely, if Q′ ∈ minAss(Q + 〈f〉) where Q ∈ minAss(I), then I + 〈f〉 ⊆ Q′.

Thus there exists a Q′′ ∈ minAss(I + 〈f〉) such that Q′′ ⊆ Q′. Then I ⊆ Q′′

and therefore there exists a Q̃ ∈ minAss(I) such that Q̃ ⊆ Q′′. Moreover, since

f 6∈ Q̃ but f ∈ Q′′ this inclusion is strict which implies

codim(Q′) ≥ codim(Q′′) ≥ codim
(
Q̃
)

+ 1 = codim(Q) + 1,

where the first inequality comes from Q′′ ⊆ Q′ and the last equality is due to

our assumption on I. But by Krull’s Principal Ideal Theorem (see [AtM69]

Cor. 11.17) we have

codim(Q′/Q) = 1,
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since Q′/Q by assumption is minimal over f in R/Q where f is neither a unit

(otherwise Q+ 〈f〉 = R and no Q′ exists) nor a zero divisor. Finally, since R is

catenary and thus all maximal chains of prime ideals from 〈0〉 to Q′ have the

same length this implies

codim(Q′) = codim(Q) + 1. (5.4)

This forces that codim(Q′) = codim(Q′′) and thus Q′ = Q′′ ∈ minAss(I + 〈f〉).
The “in particular” part follows from (5.4).

6. Good Behaviour of the Dimension

In this section we want to show (see Theorem 6.14) that for an ideal J � L[x],

N ∈ N (J) and a point ω ∈ Trop(P ) ∩ Qn≤0 in the non-positive quadrant of the

tropical variety of an associated prime P of maximal dimension we have

dim(JRN
) = dim

(
t-inω(J)

)
+ 1 = dim(J) + 1.

The results in this section are independent of Sections 2, 3 and 4.

Let us first give examples which show that the hypotheses on ω are necessary.

Example 6.1

Let J = 〈1 + tx〉 � L[x] and consider ω = 1 ∈ Trop(J). Then t-inω(J) = 〈1 + x〉
has dimension zero in K[x], and

I = J ∩R1[x] = 〈1 + tx〉R1[x]

has dimension zero as well by Lemma 6.8 (d).

Example 6.2

Let J = 〈x− 1〉�L[x] and ω = −1 6∈ Trop(J), then t-inω(J) = 〈1〉 has dimension

−1, while J ∩ R1[x] = 〈x− 1〉 has dimension 1.

Example 6.3

Let J = P ·Q = P ∩Q�L[x, y, z] with P = 〈tx−1〉 andQ = 〈x−1, y−1, z−1〉, and
let ω = (0, 0, 0) ∈ Trop(Q) ∩Q3

≤0. Then t-inω(J) = 〈x− 1, y − 1, z − 1〉�K[x, y, z]

has dimension zero, while

J ∩ R1[x, y, z] = (P ∩R1[x, y, z]) ∩ (Q ∩ R1[x, y, z])

has dimension two by Lemma 6.8 (d).

Before now starting with studying the behaviour of dimension we have to

collect some technical results used throughout the proofs.

Lemma 6.4

Let J � L[x] be an ideal and Trop(J) ∩Qn≤0 6= ∅, then 1 6∈ in0(JRN
).



186 IX. AN ALGORITHM FOR LIFTING POINTS IN A TROPICAL VARIETY

Proof: Let ω ∈ Trop(J) ∩ Qn≤0 and suppose that f ∈ JRN
with in0(f) = 1. If

tα · xβ is a monomial of f with tα · xβ 6= 1, then in0(f) = 1 implies α > 0, and

hence −α+β1 ·ω1 + . . .+βn ·ωn < 0, since ω1, . . . , ωn ≤ 0 and β1, . . . , βn ≥ 0. But

this shows that inω(f) = 1, and therefore 1 ∈ t-inω(J), in contradiction to our

assumption that t-inω(J) is monomial free.

Lemma 6.5

Let I � RN [x] be an ideal such that I = I :
〈
t

1
N

〉∞
and let P ∈ Ass(I), then

P = P :
〈
t

1
N

〉∞
and t

1
N 6∈ P .

Proof: Since RN [x] is noetherian and P is an associated prime there is an

f ∈ RN [x] such that P = I : 〈f〉 (see [AtM69] Prop. 7.17).

Suppose that t
α
N · g ∈ P for some g ∈ RN [x] and α > 0. Then t

α
N · g · f ∈ I, and

since I is saturated with respect to t
1
N it follows that g · f ∈ I. This, however,

implies that g ∈ P . Thus P is saturated with respect to t
1
N . If t

1
N ∈ P then

1 ∈ P , which contradicts the fact that P is a prime ideal.

Contractions of ideals in L[x] to RN [x] are always t
1
N -saturated.

Lemma 6.6

Let I � RN [x] be an ideal in RN [x] and J = 〈I〉L[x], then JRN
= I :

〈
t

1
N

〉∞
.

Proof: Since LN ⊂ L is a field extension [Mar07] Corollary 6.13 implies J ∩
LN [x] = 〈I〉LN [x], and it suffices to see that 〈I〉LN [x] ∩ RN [x] = I :

〈
t

1
N

〉∞
. If

I ∩SN 6= ∅ then both sides of the equation coincide with RN [x], so that we may

assume that I ∩ SN is empty. Recall that LN = S−1
N RN , so that if f ∈ RN [x]

with t
α
N · f ∈ I for some α, then

f =
t

α
N · f
t

α
N

∈ 〈I〉LN [x] ∩ RN [x].

Conversely, if

f =
g

t
α
N

∈ 〈I〉LN [x] ∩ RN [x]

with g ∈ I, then g = t
α
N · f ∈ I and thus f is in the right hand side.

Lemma 6.7

Let J � L[x] and N ∈ N (J). Then t-in0(J) = t-in0(JRN
), and

1 6∈ t-in0(J) ⇐⇒ 1 6∈ in0(JRN
).

Proof: Suppose that f ∈ JRN
⊂ J then t-in0(f) ∈ t-in0(J), and if in addition

in0(f) = 1, then by definition 1 = t-in0(f) ∈ t-in0(J).

Let now f ∈ J , then by assumption there are f1, . . . , fk ∈ RN ·M [x] for some

M ≥ 1, g1, . . . , gk ∈ JRN
and some α ≥ 0 such that

t
α

M·N · f = f1 · g1 + . . .+ fk · gk ∈ RN ·M [x].
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By [Mar07] Corollary 6.17 we thus get

t-in0(f) = t-in0

(
t

α
N·M · f

)
∈ t-in0(JRN·M

) = t-in0(JRN
).

Moreover, if we assume that 1 = t-in0(f) = t-in0

(
t

α
N·M · f

)
then there is an

α′ ≥ 0 such that

t
α′

M·N · t-in0(f) = in0

(
t

α
N·M · f

)
∈ in0(JRN·M

).

This necessarily implies that each monomial in t
α

N·M · f is divisible by t
α′

N·M , or

by Lemma 6.5 equivalently that t
α−α′

N·M · f ∈ JRN·M
. But then

1 = in0

(
t

α−α′

N·M · f
)
∈ in0(JRN·M

),

and thus by [Mar07] Corollary 6.19 also 1 ∈ in0(JRN
).

In the following lemma we gather the basic information on the ring RN [x]

which is necessary to understand how the dimension of an ideal in L[x] be-

haves when restricting to RN [x].

Lemma 6.8

Consider the ring extension RN [x] ⊂ LN [x]. Then:

(a) RN is universally catenary, and thus RN [x] is catenary.

(b) If I � RN [x], then the following are equivalent:

(1) 1 6∈ in0(I).

(2) ∀ p ∈ RN [x] : 1 + t
1
N · p 6∈ I.

(3) I +
〈
t

1
N

〉
$ RN [x].

(4) ∃ P � RN [x] maximal such that I ⊆ P and t
1
N ∈ P .

(5) ∃ P � RN [x] maximal such that I ⊆ P and 1 6∈ in0(P ).

In particular, if P � RN [x] is a maximal ideal, then

1 6∈ in0(P ) ⇐⇒ t
1
N ∈ P.

(c) If P �RN [x] is a maximal ideal such that 1 6∈ in0(P ), then every maximal

chain of prime ideals contained in P has length n+ 2.

(d) If I � RN [x] is any ideal with 1 ∈ in0(I), then RN [x]/I ∼= LN [x]/〈I〉, and
I ∩ SN = ∅ unless I = RN [x]. In particular, dim(I) = dim

(
〈I〉LN [x]

)
.

(e) If P �RN [x] is a maximal ideal such that 1 ∈ in0(P ), then every maximal

chain of prime ideals contained in P has length n+ 1.

(f) dim(RN [x]) = n+ 1.

(g) If P � RN [x] is a prime ideal such that 1 6∈ in0(P ), then

dim(P ) + codim(P ) = dim(RN [x]) = n+ 1.



188 IX. AN ALGORITHM FOR LIFTING POINTS IN A TROPICAL VARIETY

(h) If P �RN [x] is a prime ideal such that 1 ∈ in0(P ), then

dim(P ) + codim(P ) = n.

Proof: For (a), see [Mat86] Thm. 29.4.

In (b), the equivalence of (1) and (2) is obvious from the definitions. Let us

now use this to show that for a maximal ideal P �RN [x]

1 6∈ in0(P ) ⇐⇒ t
1
N ∈ P.

If t
1
N 6∈ P then t

1
N is a unit in the field RN [x]/P and thus there is a p ∈ RN [x]

such that 1 ≡ t
1
N ·p (mod P ), or equivalently that 1− t 1

N ·p ∈ P . If on the other

hand t
1
N ∈ P then 1 + t

1
N · p ∈ P would imply that 1 = (1 + t

1
N · p) − t

1
N · p ∈ P .

This proves the claim and shows at the same time the equivalence of (4) and

(5).

If there is a maximal ideal P containing I and such that 1 6∈ in0(P ), then of

course also 1 6∈ in0(I). Therefore (5) implies (1).

Let now I be an ideal such that 1 6∈ in0(I). Suppose that I + 〈t 1
N 〉 = RN [x].

Then 1 = q + t
1
N · p with q ∈ I and p ∈ RN [x], and thus q = 1 − t

1
N · p ∈ I, which

contradicts our assumption. Thus I + 〈t 1
N 〉 6= RN [x], and (1) implies (3).

Finally, if I + 〈t 1
N 〉 6= RN [x], then there exists a maximal ideal P such that

I + 〈t 1
N 〉 ⊆ P . This shows that (3) implies (4), and we are done.

To see (c), note that if 1 6∈ in0(P ), then t
1
N ∈ P by (b), and we may consider

the surjection ψ : RN [x] −→ RN [x]/〈t 1
N 〉 = K[x]. The prime ideals of K[x] are

in 1 : 1-correspondence with those prime ideals of RN [x] which contain t
1
N . In

particular, P/〈t 1
N 〉 = ψ(P ) is a maximal ideal of K[x] and thus any maximal

chain of prime ideals in P which starts with 〈t 1
N 〉, say 〈t 1

N 〉 = P0 ⊂ . . . ⊂ Pn = P

has precisely n + 1 terms since every maximal chain of prime ideals in K[x]

has that many terms. Moreover, by Krull’s Principal Ideal Theorem (see e.g.

[AtM69] Cor. 11.17) the prime ideal 〈t 1
N 〉 has codimension 1, so that the chain

of prime ideals

〈0〉 ⊂ 〈t 1
N 〉 = P0 ⊂ . . . ⊂ Pn = P

is maximal. Since by (a) the ring RN [x] is catenary every maximal chain of

prime ideals in between 〈0〉 and P has the same length n+ 2.

For (d), we assume that there exists an element 1 + t
1
N · p ∈ I due to (b). But

then t
1
N · (−p) ≡ 1 (mod I). Thus the elements of SN =

{
1, t

1
N , t

2
N , . . .

}
are

invertible modulo I. Therefore

RN [x]/I ∼= S−1
N (RN [x]/I) ∼= S−1

N RN [x]/S−1
N I = LN [x]/〈I〉.

In particular, if I 6= RN [x] then 〈I〉 6= LN [x] and thus I ∩ SN = ∅.
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To show (e), note that by assumption there is an element 1 + t
1
N · p ∈ P due to

(b), and since P is maximal p 6∈ RN . Choose a prime ideal Q contained in P

which is minimal w.r.t. the property that it contains 1+ t
1
N ·p. Since 1+ t

1
N ·p is

neither a unit nor a zero divisor Krull’s Principal Ideal Theorem implies that

codim(Q) = 1. Moreover, since Q ∩ SN = ∅ by Part (d) the ideal 〈Q〉LN [x] is a

prime ideal which is minimal over 1 + t
1
N · p by the one-to-one correspondence

of prime ideals under localisation. Since every maximal chain of primes in

LN [x] has length n , and by Part (d) we have dim(Q) = dim
(
〈Q〉LN [x]

)
= n − 1.

Hence there is a maximal chain of prime ideals of length n from 〈Q〉LN [x] to

〈P 〉LN [x]. Since codim(Q) = 1 it follows that there is a chain of prime ideals of

length n+1 starting at 〈0〉 and ending at P which cannot be prolonged. But by

(a) the ring RN [x] is catenary, and thus every maximal chain of prime ideals

in P has length n+ 1.

Claim (f) follows from (c) and (e).

To see (g), note that by (b) there exists a maximal ideal Q containing P and

t
1
N . If k = codim(P ) then we may choose a maximal chain of prime ideals of

length k + 1 in P , and we may prolong it by at most dim(P ) prime ideal to

a maximal chain of prime ideals in Q, which by (b) and (c) has length n + 2.

Taking (f) into account this shows that

dim(P ) ≥ (n+ 2) − (k + 1) = dim(RN [x]) − codim(P ).

However, the converse inequality always holds, which finishes the proof.

For (h) note that by (b) there is no maximal ideal which contains t
1
N so that

every maximal ideal containing P has codimension n. The result then follows

as in (g).

Corollary 6.9

Let P � L[x] be a prime ideal and N ≥ 1, then

dim(PRN
) = dim(P ) + 1 ⇐⇒ 1 6∈ in0(PRN

), and

dim(PRN
) = dim(P ) ⇐⇒ 1 ∈ in0(PRN

).

In any case

codim(PRN
) = codim(P ).

Proof: Since the field extension LN ⊂ L is algebraic by Lemma 5.5 we have

dim(P ) = dim
(
P ∩ LN [x]

)
(6.1)

in any case. If 1 ∈ in0

(
PRN

)
, then Lemma 6.8(d) implies

dim
(
PRN

)
= dim

(
〈PRN

〉LN [x]

)
= dim

(
P ∩ LN [x]

)
,

since LN [x] is a localisation of RN [x].

It thus suffices to show that dim
(
PRN

)
= dim(P ) + 1 if 1 6∈ in0

(
PRN

)
.
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Since P 6= L[x] we know that SN ∩ P = ∅. The 1 : 1-correspondence of prime

ideals under localisation thus shows that

l := codim
(
P ∩ LN [x]

)
= codim

(
PRN

)
.

Hence there exists a maximal chain of prime ideals

〈0〉 = Q0 $ . . . $ Ql = PRN

of length l + 1 in RN [x]. Note also that by (6.1)

l = codim
(
P ∩ LN [x]) = n− dim

(
P ∩ LN [x]

)
= n− dim(P ), (6.2)

since LN [x] is a polynomial ring over a field.

Moreover, since 1 6∈ in0

(
PRN

)
by Lemma 6.8(b), there exists a maximal ideal

Q � RN [x] containing PRN
such that 1 6∈ in0(Q). Choose a maximal chain of

prime ideals

PRN
= Ql $ Ql+1 $ . . . $ Qk = Q

in RN [x] from PRN
to Q, so that taking (6.2) into account

dim(PRN
) ≥ k − l = k − n+ dim(P ). (6.3)

Finally, since the sequence

〈0〉 = Q0 $ Q1 $ . . . $ Ql $ . . . $ Qk = Q

cannot be prolonged and since 1 6∈ in0(Q), Lemma 6.8(c) implies that k = n+1.

But since we always have

dim
(
PRN

)
≤ dim

(
RN [x]

)
− codim

(
PRN

)
= n+ 1 − l,

it follows from (6.2) and (6.3)

dim(P ) + 1 ≤ dim
(
PRN

)
≤ n+ 1 − l = dim(P ) + 1.

The claim for the codimensions then follows from Lemma 6.8 (g) and (h).

As an immediate corollary we get one of the main results of this section.

Theorem 6.10

Let J � L[x] and N ∈ N (J). Then dim
(
JRN

)
= dim(J) + 1 if and only if ∃ P ∈

Ass(J) s.t. dim(P ) = dim(J) and 1 6∈ in0

(
PRN

)
. Otherwise dim

(
JRN

)
= dim(J).

Proof: If there is such a P ∈ Ass(J) then Corollary 6.9 implies

dim
(
PRN

)
= dim(P ) + 1 = dim(J) + 1 and

dim
(
P ′
RN

)
≤ dim(P ′) + 1 ≤ dim(J) + 1

for any other P ′ ∈ Ass(J). This shows that

dim
(
JRN

)
= max{dim

(
P ′
RN

) ∣∣ P ′ ∈ Ass(J)
}

= dim(J) + 1,

due to Proposition 5.3.
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If on the other hand 1 ∈ in0

(
PRN

)
for all P ∈ Ass(J) with dim(P ) = dim(J),

then again by Corollary 6.9 dim(PRN
) ≤ dim(J) for all associated primes with

equality for some, and we are done with Proposition 5.3.

It remains to show that also the dimension of the t-initial ideal behaves well.

Proposition 6.11

Let I � RN [x] be an ideal such that I = I : 〈t 1
N 〉∞ and such that 1 6∈ in0(P ) for

some P ∈ Ass(I) with dim(P ) = dim(I). Then

dim(I) = dim
(
t-in0(I)

)
+ 1.

More precisely, dim(Q′) = dim(P ) − 1 for all Q′ ∈ minAss
(
t-in0(P )

)
.

Proof: We first want to show that

t-in0(I) =
(
I +

〈
t

1
N

〉)
∩K[x].

Any element f ∈ 〈t 1
N 〉 + I can be written as f = t

1
N · g + h with g ∈ RN [x]

and h ∈ I such that in0(h) ∈ K[x], and if in addition f ∈ K[x] then obviously

f = in0(h) = t-in0(h) ∈ t-in0(I). If, on the other hand, g = t-in0(f) ∈ t-in0(I) for

some f ∈ I, then t
α
N · g = in0(f) ∈ in0(I) for some α ≥ 0, and every monomial

in f is necessarily divisible by t
α
N . Thus f = t

α
N · h for some h ∈ RN [x] and

g = in0(h) ≡ h (mod 〈t 1
N 〉). But since I is saturated with respect to t

1
N it

follows that h ∈ I, and thus g is in the right hand side. This proves the claim.

Therefore, the inclusion K[x] →֒ RN [x] induces an isomorphism

K[x]/ t-in0(I) ∼= RN [x]/
(
〈t 1

N 〉 + I
)

(6.4)

which shows that

dim
(
K[x]/ t-in0(I)

)
= dim

(
RN [x]/

(
I +

〈
t

1
N

〉))
. (6.5)

Next, we want to show that

dim
(
P +

〈
t

1
N

〉)
= dim(P ) − 1 = dim(I) − 1. (6.6)

For this we consider an arbitrary P ′ ∈ minAss
(
P +

〈
t

1
N

〉)
. By Lemma 6.8 (b),

1 /∈ in0(P
′). Applying Lemma 6.8 (g) to P and P ′ we get

dim(RN [x]) = dim(P ) + codim(P ) and dim(RN [x]) = dim(P ′) + codim(P ′).

Moreover, since I is saturated with respect to t
1
N by Lemma 6.5 P does not

contain t
1
N . Thus t

1
N is neither a zero divisor nor a unit in RN [x]/P , and

by Krull’s Principal Ideal Theorem (see [AtM69] Cor. 11.17) we thus get

codim(P ′) = codim(P ) + 1, since by assumption P ′ is minimal over t
1
N in

RN [x]/P . Plugging the two previous equations in we get

dim(P ′) = dim(P ) − 1. (6.7)
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This proves (6.6), since P ′ was an arbitrary minimal associated prime of P +〈
t

1
N

〉
.

We now claim that

dim
(
P +

〈
t

1
N

〉)
= dim

(
I +

〈
t

1
N

〉)
. (6.8)

Suppose this is not the case, then there is a P ′ ∈ Ass
(
I +

〈
t

1
N

〉)
such that

dim(P ′) > dim
(
P +

〈
t

1
N

〉)
= dim(I) − 1,

and since I ⊂ P ′ it follows that

dim(P ′) = dim(I).

But then P ′ is necessarily a minimal associated prime of I in contradiction to

Lemma 6.5, since P ′ contains t
1
N . This proves (6.8).

Equations (6.5), (6.6) and (6.8) finish the proof of the first claim. For the

“more precisely” part notice that replacing I by P in (6.4) we see that there is

a dimension preserving 1 : 1-correspondence between minAss
(
P + 〈t 1

N 〉
)
and

minAss
(
t-in0(P )

)
. The result then follows from (6.7).

Remark 6.12

The condition that I is saturated with respect to t
1
N in Proposition 6.11 is

equivalent to the fact that I is the contraction of the ideal 〈I〉LN [x]. Moreover,

it implies that RN [x]/I is a flat RN -module, or alternatively that the family

ι∗ : Spec
(
RN [x]/I

)
−→ Spec(RN)

is flat, where the generic fibre is just Spec
(
LN [x]/〈I〉

)
and the special fibre is

Spec
(
K[x]/ t-in0(I)

)
. The condition 1 6∈ in0(P ) implies that the component of

Spec
(
RN [x]/I

)
defined by P surjects onto Spec(RN). With this interpretation

the proof of Proposition 6.11 is basically exploiting the dimension formula for

local flat extensions.

Corollary 6.13

Let J � L[x] and ω ∈ Qn, then
dim

(
t-inω(J)

)
= max

{
dim(P )

∣∣ P ∈ Ass(J) : 1 6∈ t-inω(P )
}
.

Moreover, if J is prime, 1 6∈ t-inω(J) and Q′ ∈ minAss
(
t-inω(J)

)
then

dim(Q′) = dim(J).

Proof: Let J = Q1 ∩ . . . ∩Qk be a minimal primary decomposition of J , and

Φω(J) = Φω(Q1) ∩ . . . ∩ Φω(Qk)
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the corresponding minimal primary decomposition of Φω(J). If we define a

new ideal

J ′ =
⋂

16∈t-in0

(√
Φω(Qi)

)
Φω(Qi),

then this representation is already a minimal primary decomposition of J ′.

Choose an N such that N ∈ N (J), N ∈ N (J ′) and N ∈ N
(
Φω(Qi)

)
for all

i = 1, . . . , k. By Lemma 6.7 we have

1 6∈ t-in0

(√
Φω(Qi)

)
⇐⇒ 1 6∈ in0

(√
Φω(Qi) ∩RN [x]

)
. (6.9)

Proposition 5.3 implies

Ass(JRN
) =

{√
Φω(Qi) ∩ RN [x]

∣∣∣ i = 1, . . . , k
}

where the
√

Φω(Qi) ∩RN [x] are not necessarily pairwise different, and

Ass(J ′
RN

) =
{√

Φω(Qi) ∩ RN [x]
∣∣∣ 1 6∈ in0

(√
Φω(Qi) ∩RN [x]

)}
,

for which we have to take (6.9) into account.

Moreover, by Lemma 6.6 J ′
RN

is saturated with respect to t
1
N . Thus we can

apply Proposition 6.11 to J ′
RN

to deduce dim(J ′
RN

) = dim
(
t-in0(J

′
RN

)
)

+ 1.

Taking (6.9) into account we can apply Theorem 6.10 to J ′ and deduce that

then dim(J ′
RN

) = dim(J ′) + 1, but

dim(J ′) =max
{

dim
(√

Φω(Qi)
)
| 1 6∈ t-in0

(√
Φω(Qi)

)}

=max
{

dim
(√

Qi

)
| 1 6∈ t-inω

(√
Qi

)}
.

It remains to show that t-in0(J
′
RN

) = t-inω(J). By Lemma 6.7 and Definition

3.3 we have t-in0(J
′
RN

) = t-in0(J
′) and

t-inω(J) = t-in0

(
Φω(J)

)
⊆ t-in0(J

′),

since J ⊆ J ′. By assumption for any
√

Φω(Qi) 6∈ Ass(J ′) there is an fi ∈√
Φω(Qi) such that t-in0(fi) = 1 and there is some mi such that fmi

i ∈ Φω(Qi).

If f ∈ J ′ is any element, then for

g := f ·
∏

√
Φω(Qi)6∈Ass(J ′)

fmi

i ∈
(
J ′ ·

∏
√

Φω(Qi)6∈Ass(J ′)

Φω(Qi)
)
⊆ J

we have

t-in0(f) = t-in0(f) ·
∏

√
Φω(Qi) 6∈Ass(J ′)

t-in0(fi)
mi = t-in0(g) ∈ t-in0(J).

This finishes the proof of the first claim.

For the “moreover” part note that by Lemma 6.7

t-inω(J) = t-in0

(
Φω(J)

)
= t-in0

(
Φω(J) ∩RN [x]

)
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and Φω(J) ∩RN [x] is saturated and prime. Applying Proposition 6.11 to

Q′ ∈ minAss
(

t-in0

(
Φω(J) ∩RN [x]

))
= minAss

(
t-inω(J)

)

we get

dim(Q′) = dim
(
Φω(J) ∩RN [x]

)
− 1 = dim(J),

where the latter equality is due to Corollary 6.9.

Theorem 6.14

Let J � L[x], N ∈ N (J) and ω ∈ Qn≤0.

If there is a P ∈ Ass(J) with dim(P ) = dim(J) and ω ∈ Trop(P ), then

dim(JRN
) = dim(J) + 1 = dim

(
t-inω(J)

)
+ 1.

Proof: By Lemma 6.4 the condition ω ∈ Trop(P ) ∩ Qn≤0 implies that 1 6∈
in0(PRN

). The result then follows from Theorem 6.10 and Corollary 6.13.

Corollary 6.15

If J�L[x] is zero dimensional and ω ∈ Trop(J), then dim
(
t-inω(J)

)
= dim(J) =

0. If in addition Trop(J) ∩Qn≤0 6= ∅ and N ∈ N (J) dim
(
JRN

) = 1.

Proof: Since dim(J) = 0 also dim(P ) = 0 for every associated prime P . By

2.12 there exists a P with ω ∈ Trop(P ). The first assertion thus follows from

Corollary 6.13. The second assertion follows from Theorem 6.14.

When cutting down the dimension we need to understand how the minimal

associated primes of J and JRN
relate to each other.

Lemma 6.16

Let J � L[x] be equidimensional and N ∈ N (J). Then

minAss(JRN
) = {PRN

| P ∈ minAss(J)}.

Proof: The left hand side is contained in the right hand side by default (see

Proposition 5.3). Let therefore P ∈ minAss(J) be given. By Proposition 5.3

PRN
∈ Ass(J), and it suffices to show that it is minimal among the associated

primes. Suppose therefore we have Q ∈ Ass(J) such that QRN
⊆ PRN

. By

Corollary 6.9 and the assumption we have

codim(PRN
) = codim(P ) ≤ codim(Q) = codim(QRN

),

so that indeed PRN
= QRN

.

Another consequence is that the t-initial ideal of an equidimensional ideal is

again equidimensional.
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Corollary 6.17

Let J � L[x] be an equidimensional ideal and ω ∈ Qn, then
minAss

(
t-inω(J)

)
=

⋃

P∈minAss(J)

minAss
(
t-inω(P )

)
.

In particular, if there is a P ∈ minAss(J) such that 1 6∈ t-inω(P ) then t-inω(J) is

equidimensional of dimension dim(J).

Proof: Applying Φω we may assume that ω = 0, and we then may choose an

N ∈ N (J) and N ∈ N (P ) for all P ∈ minAss(J).

Denoting by

π : RN [x] −→ RN [x]/
〈
t

1
N

〉
= K[x]

the residue class map we get

t-in0(J) = t-in0(JRN
) = π

(
JRN

+ 〈t 1
N 〉
)
and

t-in0(P ) = t-in0(PRN
) = π

(
PRN

+ 〈t 1
N 〉
)

for all P ∈ minAss(J), where the first equality in both cases is due to Lemma

6.7 and where the last equality uses Lemma 6.6. Since there is a one-to-one

correspondence between prime ideals in K[x] and prime ideals in RN [x] which

contain t
1
N , it suffices to show that

minAss
(
JRN

+ 〈t 1
N 〉
)

=
⋃

P∈minAss(J)

minAss
(
PRN

+ 〈t 1
N 〉
)
.

However, since the PRN
are saturated with respect to t

1
N by Lemma 6.6 they

do not contain t
1
N . By Corollary 6.9 all PRN

have the same codimension, since

the P do by assumption. By Lemma 6.16,

minAss(JRN
) = {PRN

| P ∈ minAss(J)}.

Hence the result follows by Lemma 5.6.

The “in particular” part follows from Corollary 6.13.

7. Computing t-Initial Ideals

This section is devoted to an alternative proof of Theorem 2.8 which does not

need standard basis in the mixed power series polynomial ring K[[t]][x].

The following lemma is easy to show.

Lemma 7.1

Let w ∈ R<0 × Rn, 0 6= f =
∑k

i=1 gi · hi with f, gi, hi ∈ RN [x] and ordw(f) ≥
ordw(gi · hi) for all i = 1, . . . , k. Then

inw(f) ∈
〈
inw(g1), . . . , inw(gk)

〉
�K

[
t

1
N , x

]
.
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Proposition 7.2

Let I � K
[
t

1
N , x

]
, ω ∈ Qn and G be a standard basis of I with respect to the

monomial ordering >ω introduced in Remark 3.7. Then

inω(I) =
〈
inω(G)

〉
�K

[
t

1
N , x

]
and t-inω(I) =

〈
t-inω(G)

〉
�K[x].

Proof: It suffices to show that inω(f) ∈ 〈inω(G)〉 for every f ∈ I. Since f ∈ I

and G is a standard basis of I there exists a weak standard representation

u · f =
∑

g∈G
qg · g (7.1)

of f where the leading term of u with respect to >ω is lt>ω
(u) = 1. But then the

definition of>ω implies that automatically inω(u) = 1. Since (7.1) is a standard

representation we have lm>ω
(u · f) ≥ lm>ω

(qg · g) for all g. But this necessarily
implies that ordw(f) ≥ ordw(qg · g) where w = (−1, ω). Since K

[
t

1
N , x

]
⊂ RN [x]

we can use Lemma 7.1 to show

inw(f) = inw(u · f) ∈ 〈inw(g) | g ∈ G〉 �K
[
t

1
N , x

]
.

Proposition 7.3

Let I ⊆ K[t, x] be an ideal, J = 〈I〉L[x] and ω ∈ Rn. Then t-inω(I) = t-inω(J).

Proof: We need to prove the inclusion t-inω(I) ⊇ t-inω(J). The other inclusion

is clear since I ⊆ J . The right hand side is generated by elements of the form

f = t-inω(g) where g ∈ J . Consider such f and g. The polynomial g must

be of the form g =
∑

i ci · gi where gi ∈ I and ci ∈ L. Let d be the (−1, ω)-

degree of inω(g). The degrees of terms in gi are bounded. Terms a · tβ in ci
of large enough t-degree will make the (−1, ω)-degree of a · tβ · gi drop below

d since the degree of t is negative. Consequently, these terms can simply be

ignored since they cannot affect the initial form of g =
∑

i ci · gi. Renaming

and possibly repeating some gi’s we may write g as a finite sum g =
∑

i c
′
i · gi

where c′i = ai · tβi and gi ∈ I with ai ∈ K and βi ∈ Q. We will split the

sum into subsums grouping together the c′i’s that have the same t-exponent

modulo Z. For suitable index sets Aj we let g =
∑

j Gj where Gj =
∑

i∈Aj
c′i · gi.

Notice that all t-exponents in a Gj are congruent modulo Z while t-exponents

from different Gj ’s are not. In particular there is no cancellation in the sum

g =
∑

j Gj. As a consequence inω(g) =
∑

j∈S inω(Gj) for a suitable subset S.

We also have t-inω(g) =
∑

j∈S t-inω(Gj). We wish to show that each t-inω(Gj)

is in t-in(I). We can write tγj · Gj =
∑

i∈Aj
tγj · c′i · gi for suitable γj ∈ Q such

that tγj · c′i ∈ K[t] for all i ∈ Aj . Observe that

t-inω(Gj) = t-inω(t
γj ·Gj) = t-inω

(∑

i∈Aj

tγj · c′i · gi
)
∈ t-inω(I).

Applying t-inω(g) =
∑

j∈S t-inω(Gj) we see that f = t-inω(g) ∈ t-inω(I).
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By substituting t := t
1
n and scaling ω we get Theorem 2.8 as a corollary.
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