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Abstract. In this paper, we prove that for a plane cubic over the field of
Puiseux series, the negative of the generic valuation of the j-invariant is equal
to the cycle length of the tropicalization of the curve, if there is a cycle at all.

1. Introduction

The j-invariant is an invariant which coincides for two smooth elliptic curves over an
algebraically closed field if and only if they are isomorphic. In [8], equivalences be-
tween abstract tropical curves are defined, and two elliptic abstract tropical curves
are equivalent if and only if they have the same cycle length. Thus the cycle length
seems to plays the same role in the tropical setting as the j-invariant does in the
algebraic setting.
The aim of this paper is to show that for a plane cubic the j-invariant really
tropicalizes to the negative of the cycle length.
More precisely, we define plane cubic curves over the field K of Puiseux series and
use the valuation map to tropicalize them. The j-invariant of an elliptic curve over
the Puiseux series is a Puiseux series itself. Our main result, Theorem 4.1 is that if
the tropicalization of a smooth cubic curve in P2

K
has a cycle then the negative of

the cycle length is always equal to the generic valuation of the j-invariant, and it is
equal to the valuation of the j-invariant itself if no terms in the j-invariant cancel –
which generically is the case. A corollary of this theorem is that if an elliptic curve
has a j-invariant with a non-negative valuation, then its tropicalization does not
have a cycle.
After the completion of our work, David Speyer [13, Proposition 9.2] proved a
similar result for not necessarily plane genus one tropical curves, which implies our
result in the case that the dual subdivision of the Newton polygon is a unimodular
triangulation. His proof uses the Tate uniformization of elliptic curves while our
approach is combinatorial.
This paper is organized as follows. In Section 2 we recall the definition of the
j-invariant of a plane cubic as a rational function in the cubic’s coefficients. Its
denominator is the discriminant of the cubic. Moreover, we observe that the generic
valuation (see Definition 2.1) of the j-invariant is a piece-wise linear function. In
Section 3 we recall basic definitions of tropical geometry and show that the function
cycle length is piece-wise linear as well. The main theorem is stated in Section 4.
As we know already that the two functions we compare are piece-wise linear the
proof consists of two main steps: first we compare certain domains of linearity, then
we compare the two linear functions on each domain. As domains of linearity we
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choose cones of the Gröbner fan of the discriminant. The comparison of the two
linear functions, generic valuation of the j-invariant and cycle length on each such
cone is done in Section 5. In Section 6 we study the numerator of the j-invariant,
which is important to understand the domains of linearity of the generic valuation
of the j-invariant.
The tropical curves and their Newton subdivisions were partly produced using the
procedure drawtropicalcurve from the Singular library tropical.lib (see [6])
which can be obtained via the URL

http://www.mathematik.uni-kl.de/˜keilen/en/tropical.html.

This library contains also a procedure tropicalJInvariant which computes the
cycle length of a tropical curve as defined in Definition 3.4. Parts of our proofs and
many examples rely on computations performed using polymake [3], TOPCOM [10]
and Singular [5]. The Singular code that we used for this is contained in the
library jinvariant.lib (see [7]) and it is available via the URL

http://www.mathematik.uni-kl.de/˜keilen/en/jinvariant.html.

More detailed explanations on how to use the code can be found there.
The authors would like to acknowledge Vladimir Berkovich, Jordan Ellenberg, Bjorn
Poonen, David Speyer, Charles Staats, Bernd Sturmfels and John Voight for valu-
able discussions.

2. The j-invariant and its valuation

In this paper we study plane cubics given by an equation of the form

f =
∑

0≤i+j≤3

aijx
iyj = 0

over the field of Puiseux series

K =

∞
⋃

N=1

Quot
(

C
[[

t
1
N

]]

)

=

{

∞
∑

ν=m

cν · t
ν
N

∣

∣

∣ cν ∈ C, N ∈ Z>0, m ∈ Z

}

.

The Newton polygon of a general cubic is the triangle Qc with vertices (0, 0), (0, 3)
and (3, 0), and we denote its lattice points by Ac := Qc ∩Z2 . In that way we can
write the equation as f =

∑

(i,j)∈Ac
aijx

iyj .

Figure 1. Qc and Ac

We are only interested in the solutions of f = 0 in the torus (K∗)2, but this already
determines its closure, say Cf , in the projective plane. Moreover, we are only
interested in the case where Cf is smooth, i.e. is an elliptic curve. In this situation
the isomorphism class of Cf is determined by a single invariant, the j-invariant of
the elliptic curve Cf .
The j-invariant can be computed from the defining polynomial f as a rational
function

j(f) =
A

∆
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in the coefficients aij of f where A, ∆ ∈ Q[a] are homogeneous polynomials of
degree 12. We here use the convention a = (aij | (i, j) ∈ Ac) and if ω ∈ NAc is a
multi index then aω =

∏

(i,j)∈Ac
a

ωij

ij . The denominator ∆ is the discriminant of f

(see [4]).
The field K of Puiseux series comes with a valuation,

val : K∗ → Q :

∞
∑

ν=m

cν · t
ν
N 7→ min

{ ν

N

∣

∣

∣ cν 6= 0
}

,

and we may extend the valuation to K by val(0) = ∞. We sometimes call val(k)
the tropicalization of k.
The j-invariant of Cf is a Puiseux series and, unless some unfortunate cancellations
occur, its valuation can be read from the polynomials A and ∆. To do this, we
introduce the notion of generic valuation of the j-invariant.

Definition 2.1

The generic valuation of a polynomial 0 6= H =
∑

ω Hωaω ∈ Q[a] is the function

valH : RAc −→ R : u 7→ valH(u) = min{u · ω | Hω 6= 0},

where

u · ω =
∑

(i,j)∈Ac

uij · ωij

is the standard scalar product of u and ω. The generic valuation of the j-invariant
is

valj : RAc −→ R : u 7→ valj(u) = valA(u) − val∆(u).

Note that the tropical j-invariant is a tropical rational function in the sense of [8,
Sec. 2.2] and [1, Def. 3.1].
The following remark is obvious from the definitions, since for u in a top dimensional
cone of the Gröbner fan of H ∈ Q[a] the minimum in the definition of valH(u) is
attained by only one fixed term.

Remark 2.2

The generic valuation of H ∈ Q[a] is piece-wise linear, and it is linear on a top-
dimensional cone of the Gröbner fan of H . Moreover, if u ∈ RAc is in the interior
of a top-dimensional cone of the Gröbner fan of H , then valH(u) = val(H(b)) for
any b ∈ (K∗)Ac with val(b) = u.
From this it follows that

valj : RAc −→ R : u 7→ valj(u)

is linear on intersections D ∩ D′ of a top-dimensional cone D of the Gröbner fan
of the numerator polynomial A and a top-dimensional cone D′ of the Gröbner
fan of ∆. For u in the open interior of D ∩ D′, valj(u) = val

(

j(f)
)

for any

f =
∑

(i,j)∈Ac
aijx

iyj with val(aij) = uij .

3. Tropicalizations and the cycle length of a plane tropical cubic

In this section we will study the tropicalization of a plane cubic Cf , by which we
mean

Trop
(

Cf

)

= val
(

Cf ∩ (K∗)2) ⊆ R2,
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i.e. the closure of val
(

Cf ∩ (K∗)2
)

with respect to the Euclidean topology in R2.
By abuse of notation

val : (K∗)2 −→ Q2 : (k1, k2) 7→
(

val(k1), val(k2)
)

denotes here the Cartesian product of the valuation map from Section 2.
This definition is not too helpful when it comes down to computing tropical curves.
There it is better to consider the tropical polynomial associated to f , that is, the
piecewise linear function

trop(f) : R2 −→ R : (x, y) 7→ min{val(aij) + i · x + j · y | (i, j) ∈ Ac}.

Given any plane cubic tropical polynomial

F : R2 −→ R : (x, y) 7→ min{uij + i · x + j · y | (i, j) ∈ Ac}

with uij ∈ R we call the locus of non-differentiability of this piece-wise linear
function a plane cubic tropical curve, or a plane tropical cubic for short.
Sometimes it will be convenient to allow some of the uij to be ∞, or equivalently
the corresponding aij are allowed to be zero. As long as the point (1, 1) lies in the
interior of the convex hull of the (i, j)’s for which uij is finite, everything makes
perfect sense. This allows us to replace Qc by some subpolygon that has a single
interior lattice point at (1, 1).
By Kapranov’s Theorem(see [2, Theorem 2.1.1]), Trop(Cf ) coincides with the plane
tropical cubic defined by trop(f). In particular, Trop(Cf ) is a piece-wise linear
graph.
An important fact is that this graph is dual to a subdivision of the marked Newton
polygon (Qc,Ac). For the precise definition of the notions in their full generality
and the proofs of the main statements we refer the reader to [4, Chapter 7]. Here
we summarize what we need for our special situation.
A marked polygon is a 2-dimensional convex lattice polygon Q in R2 together with
a subset A of the lattice points Q ∩ Z2 containing the vertices of Q. The Newton
polygon (Qc,Ac) as shown in Figure 1 is a marked polygon.
A marked subdivision of a marked polygon (Q,A) is a collection of marked polygons,
T = {(Q1,A1), . . . , (Qk,Ak)}, such that

• Q =
⋃k

i=1 Qi,
• Qi ∩ Qj is a face (possibly empty) of Qi and of Qj for all i, j = 1, . . . , k,
• Ai ⊂ A for i = 1, . . . , k, and
• Ai ∩ (Qi ∩ Qj) = Aj ∩ (Qi ∩ Qj) for all i, j = 1, . . . , k.

We do not mandate that
⋃k

i=1 Ai = A. Example 3.1 shows an example of a marked
subdivision of (Qc,Ac).
A point in u ∈ RAc induces a marked subdivision of (Qc,Ac) by considering the
convex hull of

{

(i, j, uij)
∣

∣ (i, j) ∈ Ac} ⊂ R3

in R3, and projecting the lower faces onto the xy-plane. A lattice point (i, j) will
be marked if the point (i, j, uij) was contained in one of the lower faces. Marked
subdivisions of (Qc,Ac) obtained in this way are called regular or coherent. We say
two points u and u′ in RAc are equivalent if and only if they induce the same regular
subdivision of (Qc,Ac). This defines an equivalence relation whose equivalence
classes are the interiors of cones. The collection of these cones is the secondary fan
of Ac.
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The secondary fan of Ac is an important object because we will see that the cycle
length is a function that is linear on each of its top-dimensional cones. Since we
have already seen that the valuation of the j-invariant is linear on each cone of
the common refinement of the Gröbner fans of A and ∆, our strategy will be to
compare the secondary fan with these two Gröbner fans.
Marked subdivisions of (Qc,Ac) are dual to plane tropical cubics. Given a point
u ∈ RAc it defines a plane tropical cubic, say CF , via the plane tropical polynomial

F = min{uij + i · x + j · y | (i, j) ∈ Ac}

and it defines a regular subdivision of (Qc,Ac). Each marked polygon of the sub-
division is dual to a vertex of CF , and each edge of a marked polygon is dual to an
edge of CF . Moreover, if the edge, say e, has end points (x1, y1) and (x2, y2) then
the direction vector v(E) of the dual edge E in CF is defined (up to sign) as

v(E) = (y2 − y1, x1 − x2)

and points in the direction of E. In particular, the edge E is orthogonal to its dual
edge e. Finally, the edge E is unbounded if and only if its dual edge e is contained
in an edge of Qc.

e E

Example 3.1

The marked subdivision below is induced by the plane tropical polynomial F =
min{3x, 3y, 0, x,−1 + x + y}.

Definition 3.2

We say that a plane tropical cubic C has a cycle if the interior point (1, 1) is visible
as a vertex of a marked polygon in its dual marked subdivision. If this is the case,
the cycle of C is the union of those bounded edges of C which are dual to the edges
of marked polygons in the marked subdivision which emanate from (1, 1), and we
say that these edges form the cycle.

Example 3.3

In the picture below, the left plane tropical cubic has a cycle while the right one
does not, since (1, 1) is visible but it is not a vertex of one of the marked polygons
in the subdivision.
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Definition 3.4

For a bounded edge E of a plane tropical curve with direction vector v(E), we

define the lattice length l(E) = ||E||
||v(E)|| to be the Euclidean length of E divided by

the Euclidean length of v(E).
For a plane tropical cubic with cycle, we define its cycle length to be the sum of the
lattice lengths of the edges which form the cycle. If the plane tropical cubic has no
cycle we say its length is zero. This defines a cycle length function,

cl : RAc → R : u = (uω | ω ∈ Ac) 7→ cl(u) = “cycle length of CF ”

associating to every plane cubic tropical polynomial F = min{uij+i·x+j·y | (i, j) ∈
Ac} the cycle length of the corresponding plane tropical cubic CF .

Example 3.5

The following picture shows a plane tropical cubic with cycle length 9
2 , since each

of the edges of the cycle has lattice length 3
2 .

One can define plane tropical curves other than cubics by considering other finite
subsets A ⊂ N2 as support. Let Q be the convex hull of A. The duality above
works with (Qc,Ac) replaced by (Q,A). In this manner we can also generalize
Definition 3.2 to plane tropical curves other than cubics.

Definition 3.6

Let C be a plane tropical curve with Newton polygon Q and with dual marked
subdivision {(Qi,Ai) | i = 1, . . . , l}. Suppose that ω̃ ∈ Int(Q) ∩ Z2 and that the
(Qi,Ai) are ordered such that ω̃ is a vertex of Qi for i = 1, . . . , k and it is not
contained in Qi for i = k + 1, . . . , l (see Figure 2). We then say that ω̃ determines

ω2

ω1 = ωk+1

ωk

ω0

ωk−1

ω3 ω4

ω̃

Qk

Q1

Q2

Q3
Qk+1

Qk+2

Figure 2. Marked subdivision determining a cycle

a cycle of C, namely the union of the edges of C dual to the edges emanating from
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ω̃, and we say that these edges form the cycle determined by ω̃. The length of this
cycle is defined as in Definition 3.4.

Lemma 3.7

Let (Q,A) be a marked polygon in R2 with a regular marked subdivision {(Qi,Ai) | i =
1, . . . , l} and suppose that ω̃ ∈ Int(Q) ∩ Z2 is a vertex of Qi for i = 1, . . . , k and
it is not contained in Qi for i = k + 1, . . . , l. If u ∈ RA is in the cone of the
secondary fan corresponding to this subdivision, then ω̃ determines a cycle in the
plane tropical curve C given by the tropical polynomial

min{uij + i · x + j · y | (i, j) ∈ A}

and, using the notation in Figure 2, its length is

k
∑

j=1

(uω̃ − uωj
) ·

Dj−1,j + Dj,j+1 + Dj+1,j−1

Dj−1,j · Dj,j+1

where Di,j = det(wi, wj) with wi = ωi − ω̃ and wj = ωj − ω̃.

Proof:

By definition ω̃ determines a cycle. It remains to prove the statement on its length.
For this we consider the convex polygon Qj having ωj+1, ω̃ and ωj as neighboring
vertices:

ω̃

ωj ωj+1

wj wj+1
Qj

The vertex vj = (vj,1, vj,2) of C dual to Qj is given by the system of linear equations

ωj · vj + uj = ωj+1 · vj + uj+1 = ω̃ · vj + u,

where uj = uωj
, uj+1 = uωj+1

and u = uω̃. This system can be rewritten as
(

wt
j

wt
j+1

)

· vj =

(

u − uj

u − uj+1

)

.

Since ωj+1, ω̃ and ωj are neighboring vertices of the polygon Qj the vectors wj and
wj+1 are linearly independent and we may apply Cramer’s Rule to find

vj,1 =

det

(

u − uj wj,2

u − uj+1 wj+1,2

)

Dj,j+1
and vj,2 =

det

(

wj,1 u − uj

wj+1,1 u − uj+1

)

Dj,j+1
. (1)

The lattice length of the edge from vj−1 to vj is the real number λj ∈ R such that
(vj − vj−1) = λj · w

⊥
j , where w⊥

j = (−wj,2, wj,1) is perpendicular to wj . Thus

λj =
(vj − vj−1) · w

⊥
j

w⊥
j · w⊥

j

=
(vj − vj−1) · w

⊥
j

wj · wj

. (2)

In order to understand the right hand side of this equation better we need the
following observation. The last row of the matrix

M =





wj−1,1 wj,1 wj+1,1

wj−1,2 wj,2 wj+1,2

wj−1 · wj wj · wj wj+1 · wj




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is a linear combination of the first two, and thus the determinant of M is zero.
Expanding the determinant along the last row we get

0 = det(M) = wj−1 · wj · Dj,j+1 − wj · wj · Dj−1,j+1 + wj+1 · wj · Dj−1,j ,

or equivalently

Dj+1,j−1

Dj−1,j · Dj,j+1
= −

Dj−1,j+1

Dj−1,j · Dj,j+1
= −

wj−1 · wj

wj · wj · Dj−1,j

−
wj+1 · wj

wj · wj · Dj,j+1
.

Expanding the right hand side of (2) using (1) and plugging in this last equality
we get

λj =
u − uj−1

Dj−1,j

+
u − uj+1

Dj,j+1
− (u − uj) ·

(

wj · wj+1

wj · wj · Dj,j+1
+

wj−1 · wj

wj · wj · Dj−1,j

)

=
u − uj−1

Dj−1,j

+
u − uj+1

Dj,j+1
+

(u − uj) · Dj+1,j−1

Dj−1,j · Dj,j+1
.

The lattice length of the cycle of C is then given by adding the λj , i.e. it is

λ1 + . . . + λk =

k
∑

j=1

u − uj−1

Dj−1,j

+
u − uj+1

Dj,j+1
+

(u − uj) · Dj+1,j−1

Dj−1,j · Dj,j+1

=

k
∑

j=1

(u − uj) ·

(

Dj−1,j + Dj,j+1 + Dj+1,j−1

Dj−1,j · Dj,j+1

)

.

�

Remark 3.8

An immediate consequence of Lemma 3.7 is that the function cycle length, cl, from
Definition 3.4 is linear on each cone of the secondary fan of Ac.

4. The main theorem

Theorem 4.1

Let CF be a plane tropical cubic given by the tropical polynomial

F = min
(i,j)∈Ac

{uij + ix + jy}

and assume that CF has a cycle. Then the negative of the generic valuation of the
j-invariant at u = (uij | (i, j) ∈ Ac) is equal to the cycle length of C, i.e.

− valj(u) = cl(u).

Furthermore, if the marked subdivision dual to C corresponds to a top-dimensional
cone of the secondary fan of Ac (that is, if it is a triangulation), then

valj(u) = val
(

j(f)
)

for any f =
∑

(i,j)∈Ac
aijx

iyj with coefficients aij ∈ K satisfying val(aij) = uij.

There are two main parts of the proof: the first part is to compare certain domains
of linearity in RAc of the two piece-wise linear functions cycle length, cl, and generic
valuation of j, valj , and the second part is to compare the two linear functions on
each domain.
The proof relies on the results of and the notions introduced in the following two
sections.
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Proof:

Note that our claim only involves curves C which have a cycle or, equivalently, where
the point (1, 1) is a vertex in the dual subdivision of the marked polygon. Therefore
we may replace RAc as domain of definition of cl and valj by the union U of
those cones of the secondary fan of Ac where the corresponding marked subdivision
contains (1, 1) as a vertex of a marked polygon. The coordinates on U are given by
u =

(

uij | (i, j) ∈ Ac

)

and the canonical basis vector ekl =
(

δik · δjl | (i, j) ∈ Ac

)

has a one in position kl and zeros elsewhere.
Lemma 6.2 below shows that U is contained in a single cone of the Gröbner fan
of the numerator A of the j-invariant. That vertex is the one dual to the vertex
12 · e11 of the Newton polytope of A. Hence the generic valuation of A is linear on
U . In fact, it is

valA : U → R : u 7→ 12 · u11.

Thus, if we want to divide U into cones on which valj is linear, it suffices to consider
val∆, and we know already that the latter is linear on cones of the Gröbner fan of
∆ by Remark 2.2. Thus so is valj restricted to U , and by Lemma 5.2 and Remark
5.1 the function cl is so as well. Moreover, by definition U is a union of cones of
the Gröbner fan of ∆, and each such cone is a union of certain ∆-equivalent cones
(see Remark 5.1) of the secondary fan of Ac.
Hence to prove that the two functions valj and cl coincide it is enough to compare
the linear functions on each cone of the Gröbner fan of ∆ contained in U . To do
this, we use Theorem 11.3.2 of [4] which enables us to compute the linear function
val∆ on each such cone, D, given a (top-dimensional) marked subdivision T whose
corresponding cone in the secondary fan of Ac is contained in D. In fact, it provides
us with a formula to compute the coefficient of uij for each (i, j) ∈ Ac. Since we
already know that the two functions val∆ and cl are linear on D, we can for our
comparison assume that T is the representative of its class with as few edges as
possible. The coefficient of uij in the linear function cl for the marked subdivision
is given by Lemma 3.7. To compare the two coefficients, there are some cases to
distinguish, which is done by Lemma 5.5. This proves the first part of the theorem.
Finally, for any point u in the interior of a cone of the Gröbner fan of ∆, valj(u) =
val(j(f)) for any polynomial f =

∑

(i,j)∈Ac
aijx

iyj with val(aij) = uij by Remark

2.2. As a point u in the interior of a top-dimensional cone of the secondary fan of
Ac is in the interior of a cone of the Gröbner fan of ∆, the last statement follows
as well. �

Remark 4.2

For our proof we use the cones of the Gröbner fan of ∆ as common domains of
linearity of cl and valj . Instead we could have used top-dimensional cones of the

secondary fan of Ac. Classifying up to Sym3-symmetry the rays of Ac (see Figure
3) and comparing a generalized cycle length on these rays one gets an alternative
proof of Theorem 4.1.

Corollary 4.3

Let f =
∑

(i,j)∈Ac
aijx

iyj define a smooth elliptic curve over K such that the val-

uation of its j-invariant is non-negative. Then its tropicalization does not have a
cycle.
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Figure 3. Classification of the rays of the secondary fan of Ac

Remark 4.4

It is obvious that the tropicalization of an elliptic curve over K depends on the
embedding into the projective plane that one chooses. An elliptic curve in reduced
Weierstrass form

y2 − x3 + ax + b = 0

has no xy-term, and thus there is no cycle which could reflect the j-invariant. One
might think that the Weierstrass-form is just a bad choice of normal form, and that
generically things work out better. More precisely, one might expect the following:
given a family of embeddings of an elliptic curve, the tropicalization of the general
member will exhibit a cycle with the right cycle length. This, however, is yet again
false as one can verify by the example (see Figure 4)

f = xy + t ·
(

1 + y + xy2 + x3
)

+ t3 · y2 + t7 · y3 + t100 ·
(

x + x2 + x2y
)

and the 1-dimensional family of coordinate changes given by (x, y) 7→ (x + k, y)
with k ∈ K. There are infinitely many tropicalizations having a cycle and infinitely
many having none.

Figure 4. The tropicalization of Cf and its dual Newton subdivision

5. ∆- equivalent marked subdivisions

In this section we want to show that the function cycle length, cl, is linear on the
union of cones of the secondary fan of Ac which are ∆-equivalent. Also, we provide
the classification of the different cases we need to consider in order to compare
the two linear functions valj and cl on such a union. This is part of our proof of
Theorem 4.1.
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Remark 5.1

The Prime Factorization Theorem, [4, Chap. 10, Thm. 1.2] tells us that the codi-
mension one cones of the Gröbner fan of ∆ do not meet the interior of any top-
dimensional cone of the secondary fan of Ac. Thus the Gröbner fan of ∆ is a
coarsening of the secondary fan of Ac. Two cones of the secondary fan of Ac are
called ∆-equivalent if they are contained in the same cone of the Gröbner fan of ∆.
It has been studied how two top-dimensional marked subdivisions whose cones
belong to the same ∆-equivalence class can differ. By [4, Chap. 11, Prop. 3.8] they
can be obtained from each other by a sequence of modifications along a circuit
(see [4, Chap. 7, Sect. 2C]) such that each intermediate (top-dimensional) marked
subdivision belongs to the same equivalence class. Instead of defining in its full
generality what a modification along a circuit is, we use [4, Chap. 11, Prop. 3.9] to
explain what this means in the case of the marked polygon (Qc,Ac): a subdivision
T can be obtained from a subdivision T ′ via a modification along a circuit if there
are three points a, b, c in order on one edge of Qc such that T and T ′ differ by the
fact that one contains the triangle {a, (1, 1), c}, while the other one contains the
two triangles, {a, (1, 1), b} and {b, (1, 1), c} instead. An example is shown in the
following picture, the three points are a = (0, 0), b = (1, 0) and c = (3, 0).

Lemma 5.2

The function cl (see Definition 3.4) is linear on a cone of the Gröbner fan of ∆.

Proof:

Given two ∆-equivalent marked subdivisions T and T ′ of the secondary fan of Ac,
we can use Lemma 3.7 to determine the function cl on the cone corresponding to
each of them. Recall from Remark 3.8 that the function is linear on each cone
of the secondary fan of Ac. We want to show that the these two linear functions
coincide.
Without restriction we can assume that T can be obtained from T ′ by a modification
along a circuit, and this circuit consists of three collinear points on an edge of Qc

(see Remark 5.1).
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T

ωi

ωi−1

ωi+1

ωi−2

ωi+2

ωi−1

ωi+1

ωi−2

ωi+2

T
′

ω̃ ω̃

Recall from Lemma 3.7 that the coefficients of the linear function cl can be deter-
mined using the determinants Di,j = det(wi, wj), where wi = ωi − ω̃. One easily
sees that for T and T ′ the following two equations hold:

Di−1,i + Di,i+1 = Di−1,i+1, and (3)

Di,i+1 = λ · Di−1,i for λ satisfying λ · (wi−1 − wi) = wi − wi+1. (4)
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To show that the expressions for cl on the cones for T and T ′ coincide, we have to
show that for T the summand for ωi equals 0 and the summand for ωi−1 equals the
summand for ωi−1 for T ′. The first statement follows immediately from Equation
(3) above. To show the second statement, we subtract the two summands from
each other:

Di−2,i−1 + Di−1,i + Di,i−2

Di−2,i−1 · Di−1,i

−
Di−2,i−1 + Di−1,i+1 + Di+1,i−2

Di−2,i−1 · Di−1,i+1
.

Multiplied with (Di−1,i · Di−1,i+1) this difference is equal to:

Di−2,i−1 · Di−1,i+1 + Di−1,i · Di−1,i+1 + Di,i−2 · Di−1,i+1

− Di−2,i−1 · Di−1,i − Di−1,i+1 · Di−1,i − Di+1,i−2 · Di−1,i

= Di−2,i−1 · Di,i+1 + Di,i−2 · Di,i+1 + Di,i−2 · Di−1,i − Di+1,i−2 · Di−1,i

= − det(wi−1 − wi, wi−2) · Di,i+1 + det(wi − wi+1, wi−2) · Di−1,i = 0

where the first equality follows from Equation (3) above and the last from (4). �

Definition 5.3

Let us fix a cone CT of the secondary fan of Ac corresponding to the marked
subdivision T . We then denote by ηT (i, j) the coefficient of uij in the linear function
val∆ on CT , and by cT (i, j) we denote the coefficient of uij in the linear function
cl restricted to CT .

Remark 5.4

Note that by Remark 2.2 and Remark 5.1 ηT (i, j) = ηT ′(i, j) for all (i, j) ∈ Ac

whenever T and T ′ belong to ∆-equivalent cones of the secondary fan of Ac, and
by Lemma 5.2 also cT (i, j) = cT ′(i, j) for all (i, j) ∈ Ac in this situation.

Lemma 5.5

Let T be a marked subdivision of (Qc,Ac) corresponding to a top-dimensional cone
in the secondary fan of Ac (i.e. a triangulation) such that (1, 1) is a vertex of
some marked polygon in T (i.e. all dual plane tropical curves have a cycle). Then
cT (1, 1) = ηT (1, 1)− 12 and cT (i, j) = ηT (i, j) for all (i, j) 6= (1, 1).

Proof:

Due to Remark 5.4 we may assume for the proof that T = {(Qθ,Aθ) | θ ∈ Θ} is
the representative of its ∆-equivalence class with as few edges as possible.
Moreover, if two triangulations T and T ′ can be transformed into each other by an
integral unimodular linear isomorphism, i.e. by a linear coordinate change of the
projective coordinates (x, y, z) with a matrix in Gl3(Z), and the claim holds for T
then it obviously also holds for T ′. Therefore, we only have to prove the claim up
to Gl3(Z)-symmetry.
We want to use [4, Chap. 11, Thm. 3.2] which explains how ηT (i, j) can be com-
puted. For each (i, j) ∈ Ac we have to consider all (Qθ,Aθ) such that (i, j) ∈ Aθ.
Note that since T by assumption is a triangulation then (i, j) ∈ Aθ implies neces-
sarily that (i, j) is a vertex of Qθ. We have to distinguish four cases, where in the
formulas vol(Qθ) denotes he generalized lattice area (i.e. twice the Euclidean area
of Qθ):
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• If (i, j) is a vertex of Qc, then ηT (i, j) = 1−l1−l2+
∑

(i,j)∈Aθ
vol(Qθ) where

l1 and l2 denote the lattice lengths of those edges of some Qθ adjacent
to (i, j) which are contained in edges of Qc. E.g. if (i, j) = (0, 3) in the
following triangulation T , then ηT (0, 3) = 1− l1− l2 +vol(Qθ1

)+vol(Qθ2
) =

1 − 3 − 2 + 3 + 2 = 1.

Qθ1

Qθ2

Qθ3

Qθ4

l2 = 2

l1 = 3

l3 = 1

• If (i, j) lies on an edge of Qc, is not a vertex of Qc, but is a vertex of some
Qθ′ , then ηT (i, j) = −l1−l2+

∑

(i,j)∈Aθ
vol(Qθ) where again l1 and l2 denote

the lattice lengths of those edges of some Qθ adjacent to (i, j) which are
contained in edges of Qc, e.g. if in the previous example (i, j) = (2, 1) then
ηT (i, j) = −l2− l3 +vol(Qθ2

)+vol(Qθ3
)+vol(Qθ4

) = −2−1+2+1+1 = 1.
• If (i, j) lies on an edge of Qc, is not a vertex of any Qθ, then ηT (i, j) = 0.
• And finally ηT (1, 1) =

∑

(1,1)∈Aθ
vol(Qθ).

Let Q be the union of all those Qθ which contain (1, 1), and endow the marked
polygon (Q, Q∩Ac) with the subdivision, TQ, induced by T . We say that Q meets
an edge of Qc if the intersection of Q with this edge is 1-dimensional (and not only
a vertex). Moreover, we say that an edge of Q is multiple if it contains more than
two lattice points.
We first want to show that ηT (i, j) and cT (i, j) are as claimed whenever (i, j) ∈ Q.
Up to symmetry, we have to distinguish the following cases for Q and TQ:

• Assume Q meets all three edges of Qc and that for all three edges the
intersection with Q is multiple. Then Q looks (up to symmetry) like one of
the following two pictures:

In the second case, ηT (1, 1) = 8. Using Lemma 3.7 we can compute cT (1, 1).
It is a sum with a summand for each vertex of Q. The summand for (0, 0)
is

det

(

1 −1
−1 −1

)

+ det

(

−1 −1
−1 2

)

+ det

(

−1 1
2 −1

)

det

(

1 −1
−1 −1

)

· det

(

−1 −1
−1 2

) = −1.

Computing the other 3 summands analogously we get cT (1, 1) = −4 =
ηT (1, 1) − 12. In the first case, ηT (1, 1) = 9 and cT (1, 1) = −3.

• Assume Q meets two edges of Qc multiply and one edge non-multiply.
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In both cases, ηT (1, 1) = 7 and cT (1, 1) = −5.
• Assume Q meets two edges of Qc multiply and the third edge not at all.

In both cases, ηT (1, 1) = 6 and cT (1, 1) = −6.

• Assume Q meets only one edge of Qc multiply (and the two remaining
edges non-multiply, or only one of them and that one non-multiply, or none
of them at all).

In the first case, ηT (1, 1) = 6 and cT (1, 1) = −6, in the second and third
case, ηT (1, 1) = 5 and cT (1, 1) = −7, and in the last case, ηT (1, 1) = 4 and
cT (1, 1) = −8.

• Assume Q meets three edges of Qc, but none of them multiply.

In the first case, ηT (1, 1) = 5 and cT (1, 1) = −7, and in the second case,
ηT (1, 1) = 6 and cT (1, 1) = −6.

• Assume Q meets only two edges of Qc, and none of them multiply.

In the first case, ηT (1, 1) = 5 and cT (1, 1) = −7, and in the second case,
ηT (1, 1) = 4 and cT (1, 1) = −8.

• Assume Q meets only one edge of Qc and it does so non-multiply.

In the first and second case, ηT (1, 1) = 4 and cT (1, 1) = −8, and in the
third case, ηT (1, 1) = 3 and cT (1, 1) = −9.

• Assume Q meets no edge of Qc at all.

Finally, in this case, ηT (1, 1) = 3 and cT (1, 1) = −9.

Thus the claim for (1, 1) is shown. Now assume (1, 1) 6= (i, j) ∈ Q is not a vertex of
Qc. If (i, j) is also not a vertex of any Qθ then there is no edge in the subdivision
from (1, 1) to (i, j) and thus (i, j) does not contribute to the formula for the cycle
length, i.e. cT (i, j) = 0. However, the same holds for ηT (i, j). We may thus
assume that (i, j) is a vertex of some Qθ, and we may without restriction assume
(i, j) = (0, 1). The classification of cases we have to consider is very similar to the
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above, and we will not give the details, leaving the computation of cT (i, j) and
ηT (i, j) to the reader. We do not have to consider the whole of Q, but only the
triangles which are adjacent to (i, j).

If (1, 1) 6= (i, j) ∈ Q is a vertex of Qc (without restriction (i, j) = (0, 0)), the
following cases have to be considered:

Finally, we have to consider the case were (i, j) is not part of Q. Obviously,
cT (i, j) = 0 in this case and we have to show the same for ηT (i, j). Assume first
that (i, j) is a vertex of Qc, without restriction we can assume (i, j) = (0, 0). There
must be an edge of Q such that (0, 0) is on one side of it and (1, 1) is on the other.
Then (up to symmetry) there are 3 possibilities for that edge.

Since we assumed that T is the representative with as few edges as possible, the
triangle formed by that edge of Q and (0, 0) can not be additionally subdivided in
the second and third picture. In any case, (0, 0) is a vertex of only one triangle,
which has one edge of integer length 1 and one edge of integer length l where
1 ≤ l ≤ 3. Thus ηT (0, 0) = 1− 1− l + l = 0. Now assume that (i, j) is not a vertex
of Qc, without restriction (i, j) = (1, 0). Again there must be an edge of Q such
that (1, 0) is on one side and (1, 1) is on the other. Up to symmetry this can only
be one of the line segments in the two right pictures above. We assumed that T
is the representative of its ∆-equivalence class with as few edges as possible. But
that means there is no edge through (1, 0) and (1, 0) is not a vertex of a triangle in
the subdivision. Thus ηT (1, 0) = 0. �

As pointed out by a referee the distinction of cases that we did in the proof for
showing cT (1, 1) = 12 − ηT (1, 1) proves in particular the following corollary, where
by definition a tropical curve is smooth if and only if the dual Newton subdivision
is a unimodular triangulation.

Corollary 5.6

Up to symmetry there are precisely 18 unimodular triangulations of Qc, all of which
are regular. In particular, there are up to symmetry precisely 18 combinatorial types
of smooth elliptic tropical curves with support set Ac.

Remark 5.7

In the proof above the computation that shows that ηT (i, j) = cT (i, j) is different
in each of the considered cases. In particular, in the computation of ηT (i, j) the
part of Qc which is not part of the cycle is involved while this is not the case for
cT (i, j). Therefore it is unfortunately not possible to replace the consideration of
several cases by an argument which holds for all of them at the same time.
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However, using polymake and Singular one can compute the vertices of the New-
ton polytope of ∆ and for each vertex one can compute the dual cone in the Gröbner
fan of ∆ and the triangulation of (Qc,Ac) with as few edges as possible correspond-
ing to this cone. That way one can verify the above computations for cT and ηT ,
since the values for ηT can be read off immediately from the exponents of the vertex
of the Newton polytope, while the cT can be computed with the formula in Lemma
3.7. These computations have been made using the procedure displayFan and the
result can be obtained via the URL

http://www.mathematik.uni-kl.de/˜keilen/en/jinvariant.html.

The advantage is that the file discriminant fan of cubic.ps available via this
URL shows the cases not only up to symmetry, but it shows all possible cases.

6. Numerator of the j-invariant

Unfortunately, it is not true that the Gröbner fan of the numerator A of the j-
invariant is a coarsening of the secondary fan, as follows from Example 6.1.

Example 6.1

We provide an example which shows that the Gröbner fan of A is not a coarsening
of the secondary fan for curves of a particular form. The case of the full cubic is
more complicated but analogous. It can easily be proved by a computation using
polymake – this can be done using the procedure nonrefinementC in the library
jinvariant.lib (see [7]).
Let us consider curves of the form

y2 + axy − x3 − bx2 − 1 = 0.

This corresponds to considering the set A = {(0, 2), (1, 1), (3, 0), (2, 0), (0, 0)} of
lattice points and the corresponding marked polygon. The secondary fan is then
5-dimensional with a 3-dimensional linearity space L. The fixing of the constant
coefficient and the coefficients of y2 and x3 provides an isomorphism R2 ∼= RA/L.
By the usual formulas for the j-invariant, we have

A = (a2 + 4b)6 and ∆ = −(a2 + 4b)3 − 432,

so that

j = −
(a2 + 4b)6

(a2 + 4b)3 + 432
.

The following picture shows the tropicalization of the numerator A, the tropical-
ization of the denominator ∆, and the secondary fan in RA/L.

val(a)

val(b)

Observe that the tropicalization of the denominator is supported on the codimen-
sion one skeleton of the secondary fan while that of the numerator intersects a
top-dimensional cone of the secondary fan.
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However, we are only interested in plane tropical cubics which have a cycle, that
is, those that are dual to marked subdivisions for which the interior point can be
seen. All these cones of the secondary fan are completely contained in one cone
of the Gröbner fan of A. We verified this computationally using polymake (see
[3]). As usual we use the coordinates uij with (i, j) ∈ Ac on RAc and we denote
by ekl = (δik · δjl | (i, j) ∈ Ac) the canonical basis vector in RAc having a one in
position kl and zeros elsewhere.

Lemma 6.2

Let U be the union of all cones of the secondary fan of Ac corresponding to marked
subdivisions T = {(Qi,Ai) | i = 1, . . . , k} of (Qc,Ac) for which (1, 1) is a vertex of
some Qi. Then U is contained in a single cone of the Gröbner fan of the A, namely
in the cone dual to the vertex 12 · e11 of the Newton polytope of A.

Proof:

As input for polymake we use all exponents of the polynomial A ∈ Q[a]. The
convex hull of the set of all exponents is the Newton polytope, say N(A), of A and
its vertices are the output of polymake. The Newton polytope has 19 vertices. Dual
to each vertex is a top-dimensional cone of the Gröbner fan F(A) of A, because the
Gröbner fan is dual to the Newton polytope (see [14, Thm. 2.5 and Prop. 2.8]). The
inequalities describing the cone C dual to the vertex V are given by the hyperplanes
orthogonal to the edge vectors connecting V with its neighboring vertices in N(A).
We compute the neighboring vertices for each vertex using polymake and deduce
thus inequalities for each of the top-dimensional cones of the Gröbner fan of A.
In order for a marked subdivision Tu = {(Qi,Ai) | i = 1, . . . , k} of (Qc,Ac) given
by u ∈ RAc to have the point (1, 1) as vertex of some Qi it is obviously necessary
that the uij satisfy the following inequalities:

3 · u01 + 2 · u30 + u03 > 6 · u11 3 · u10 + 2 · u03 + u30 > 6 · u11

3 · u12 + u30 + 2 · u00 > 6 · u11 3 · u21 + u03 + 2 · u00 > 6 · u11

2 · u30 + 3 · u02 + u00 > 6 · u11 2 · u03 + 3 · u20 + u00 > 6 · u11

u12 + u30 + u00 + u02 > 4 · u11 u21 + u03 + u00 + u20 > 4 · u11

u01 + u10 + u03 + u30 > 4 · u11 2 · u01 + u12 + u30 > 4 · u11

2 · u10 + u21 + u03 > 4 · u11 2 · u12 + u20 + u00 > 4 · u11

2 · u21 + u02 + u00 > 4 · u11 2 · u02 + u10 + u30 > 4 · u11

2 · u20 + u01 + u03 > 4 · u11 u20 + u01 + u12 > 3 · u11

u02 + u10 + u21 > 3 · u11 u30 + u02 + u01 > 3 · u11

u03 + u10 + u20 > 3 · u11 u00 + u12 + u21 > 3 · u11

u00 + u30 + u03 > 3 · u11 u21 + u01 > 2 · u11

u10 + u12 > 2 · u11 u20 + u02 > 2 · u11

(5)

These inequalities determine a cone in RAc which contains U . A simple computa-
tion with polymake allows to compute the extreme rays of this cone and to check
that they satisfy the inequalities of the single cone of the Gröbner fan of A which
is dual to the vertex 12 · e11 in N(A). This proves the claim. �

Remark 6.3

The computations were done with the procedure testInteriorInequalities in
the library jinvariant.lib (see [7]). The inequalities in (5) precisely determine
the cone U as can again be easily tested using polymake.
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