
IRREDUCIBILITY OF EQUISINGULAR FAMILIES OF CURVESTHOMAS KEILENAbstrat. In 1985 Joe Harris (f. [Har85℄) proved the long standing laim ofSeveri that equisingular families of plane nodal urves are irreduible wheneverthey are non-empty. For families with more ompliated singularities this is nolonger true. Given a divisorD on a smooth projetive surfae � it thus makes senseto look for onditions whih ensure that the family V irrjDj �S1; : : : ;Sr� of irreduibleurves in the linear system jDjl with preisely r singular points of types S1; : : : ;Sris irreduible. Considering di�erent surfaes inluding general surfaes in P3C andproduts of urves, we produe a suÆient ondition of the typerXi=1 deg �X(Si)�2 <  � (D �K�)2;where  is some onstant and X(Si) some zero-dimensional sheme assoiated tothe singularity type. Our results arry the same asymptotis as the best knownresults in this diretion in the plane ase, even though the oeÆient is worse(f. [GLS00℄). For most of the onsidered surfaes these are the only known resultsin that diretion. Contents1. Introdution 12. The Main Results 63. V irr;reg is irreduible 124. The Tehnial Details 13Referenes 291. IntrodutionEquisingular families of urves have been studied quite intensively sine the lastentury. If we �x a linear system jDjl on a smooth projetive surfae � and singu-larity types S1; : : : ;Sr we denote by V irr = V irrjDj �S1; : : : ;Sr� the variety of irreduibleDate: August, 2001.1991 Mathematis Subjet Classi�ation. Primary 14H10, 14H15, 14H20; Seondary 14J26, 14J27,14J28, 14J70.Key words and phrases. Algebrai geometry, singularity theory.The author was partially supported by the DFG-Shwerpunkt \Globale Methoden in der komplexenGeometrie". The author would like to thank the referee for pointing out Example 2.5.1



2 THOMAS KEILENurves in jDjl with preisely r singular points of the given types. The main questionsare whether the equisingular family V irr is non-empty, smooth of the expeted di-mension, and irreduible. For results in the plane ase we refer to [GLS98, GLS00℄,and results on the �rst and the seond question on other surfaes may be found in[GLS97, GLS98a, ChC99, Fla01, KeT02℄. In this paper for the �rst time the ques-tion of the irreduibility of V irr for a wider range of surfaes is studied. As alreadyfamilies of uspidal urves in the plane (f. [Zar35℄) or nodal urves on surfaes in P3C(f. [ChC99℄) show, in general we annot expet a omplete answer as for families ofplane nodal urves, saying that the family is irreduible whenever it is non-empty.All we may hope for are numerial onditions depending on invariants of the sin-gularity types, the surfae and the linear system, whih ensure the irreduibility ofV irr.The main ondition whih we get (f. Setion 2) looks likerXi=1 deg �X(Si)�2 <  � (D �K�)2; (1.1)where  is some onstant. Applying the estimates (1.6) for deg �X(Si)� from Sub-setion 1.3 we ould replae (1.1) byrXi=1 �(Si)2 < 9 � (D �K�)2; (1.2)in the ase of analytial types, and in the topologial ase byrXi=1 ��(Si) + 43�2 < 4�9 � (D �K�)2: (1.3)In this setion we introdue the basi onepts and notations used throughout thepaper, and we state several important known fats. Setion 2 ontains the mainresults and their proofs, omitting the tehnial details. These are presented inSetion 3 and Setion 4.1.1. General Assumptions and Notations. Throughout this artile � will de-note a smooth projetive surfae over C. N denotes the non-negative integers.We will denote by Div(�) the group of divisors on � and by K� its anonialdivisor. If D is any divisor on �, O�(D) shall be the orresponding invertible sheafand we will sometimes write H�(X;D) instead of H��X;OX(D)�. A urve C � �will be an e�etive (non-zero) divisor, that is a one-dimensional loally prinipalsheme, not neessarily redued; however, an irreduible urve shall be redued byde�nition. jDjl denotes the system of urves linearly equivalent to D, while we usethe notation jDja for the system of urves algebraially equivalent to D (f. [Har77℄Ex. V.1.7), that is, jDja is the redution of the onneted omponent of Hilb�, theHilbert sheme of all urves on �, ontaining any urve algebraially equivalent toD (f. [Mum66℄ Chapter 15). We will use the notation Pi(�) for the Piard groupof �, that is Div(�) modulo linear equivalene (denoted by �l), and NS(�) for the



IRREDUCIBILITY 3N�eron{Severi group, that is Div(�) modulo algebrai equivalene (denoted by �a).Given a redued urve C � � we will write g(C) for its geometri genus.Given any losed subsheme X � Y of a sheme Y , we denote by JX = JX=Y theideal sheaf of X in OY . If X is zero-dimensional we denote by #X the number ofpoints in its support supp(X) and by deg(X) =Pz2Y dimC(OY;z=JX=Y;z) its degree.If X � � is a zero-dimensional sheme on � and D 2 Div(�), we denote by��JX=�(D)��l the linear system of urves C in jDjl with X � C.If L � � is any redued urve and X � � a zero-dimensional sheme, we de�ne theresidue sheme X : L � � of X by the ideal sheaf JX:L=� = JX=� : JL=� with stalksJX:L=�;z = JX=�;z : JL=�;z;where \:" denotes the ideal quotient. This leads to the de�nition of the trae shemeX \ L � L of X via the ideal sheaf JX\L=L given by the exat sequene0 //JX:L=�(�L) �L //JX=� //JX\L=L // 0:1.2. Singularity Types. The germ (C; z) � (�; z) of a redued urve C � �at a point z 2 � is alled a plane urve singularity, and two plane urve sin-gularities (C; z) and �C 0; z0� are said to be topologially (respetively analytiallyequivalent) if there is homeomorphism (respetively an analytial isomorphism)� : (�; z) ! (�; z0) suh that �(C) = C 0. We all an equivalene lass withrespet to these equivalene relations a topologial (respetively analytial singu-larity type). The following are known to be invariants of the topologial typeS of the plane urve singularity (C; z): r(S) = r(C; z), the number of branhesof (C; z); � es(S) = � es(C; z), the odimension of the �-onstant stratum in thesemiuniversal deformation of (C; z); Æ(S) = Æ(C; z) = dimC ���O eC;z=OC;z�, thedelta invariant of S, where � : � eC; z� ! (C; z) is a normalisation of (C; z); and�(S) = �(C; z) = dimCO�;zÆ��f�x ; �f�y �, the Milnor number of S, where f 2 O�;zdenotes a loal equation of (C; z) with respet to the loal oordinates x and y. Forthe analytial type S of (C; z) we have as additional invariant the Tjurina numberof S de�ned as �(S) = �(C; z) = dimCO�;zÆ�f; �f�x ; �f�y �. We reall the relation2Æ(S) = �(S)+r(S)�1 (f. [Mil68℄ Chapter 10). Furthermore, sine the Æ-onstantstratum of the semiuniversal deformation of (C; z) ontains the �-onstant stratumand sine its odimension is just Æ(S), we have Æ(S) � � es(S) (see also [DiH88℄);and hene �(S) � 2Æ(S) � 2� es(S): (1.4)1.3. Singularity Shemes. For a redued urve C � � we reall the de�nition ofthe zero-dimensional shemes Xes(C) � Xs(C) and Xea(C) � Xa(C) from [GLS00℄.They are de�ned by the ideal sheaves JXes(C)=�, JXs(C)=�, JXea(C)=�, and JXa(C)=�respetively, given by the following stalks



4 THOMAS KEILEN� JXes(C)=�;z = Ies(C; z) = �g 2 O�;z �� f + "g is equisingular over C["℄=("2)	,where f 2 O�;z is a loal equation of C at z. Ies(C; z) is alled the equisingularityideal of (C; z).� JXs(C)=�;z = ng 2 O�;z ��� g goes through the luster C` �C; T �(C; z)�o, whereT �(C; z) denotes the essential subtree of the omplete embedded resolution treeof (C; z).� JXea(C)=�;z = Iea(C; z) = �f; �f�x ; �f�y � � O�;z, where x; y denote loal oordinatesof � at z and f 2 O�;z is a loal equation of C. Iea(C; z) is alled the Tjurinaideal of (C; z).� JXa(C)=�;z = Ia(C; z) � O�;z, where we refer for the somewhat lengthy de�nitionof Ia(C; z) to [GLS00℄ Setion 1.3.We all Xes(C) the equisingularity sheme of C and Xs(C) its singularity sheme.Analogously we all Xea(C) the equianalytial singularity sheme of C and Xa(C)its analytial singularity sheme.Throughout this artile we will frequently treat topo-logial and analytial singularities at the same time.Whenever we do so, we will write X�(C) for Xes(C)respetively for Xea(C) and similarly X(C) for Xs(C)respetively for Xa(C).In [Los98℄, Proposition 2.19 and 2.20 and in Remark 2.40 (see also [GLS00℄) and 2.41,it is shown that, �xing a point z 2 � and a topologial (respetively analytial) typeS, the singularity shemes (respetively analytial) singularity shemes having thesame topologial (respetively analytial) type are parametrised by an irreduibleHilbert sheme, whih we are going to denote by Hilbz(S). This then leads to anirreduible family Hilb(S) =az2�Hilbz(S): (1.5)In partiular, equisingular (respetively equianalytial) singularities have singularityshemes (respetively analytial singularity shemes) of the same degree (see also[GLS98℄ or [Los98℄ Lemma 2.8). The same is of ourse true, regarding the equisin-gularity sheme (respetively the equianalytial singularity sheme). If C � � is aredued urve suh that z is a singular point of topologial (respetively analytial)type S, we may therefore de�ne deg �X(S)� = deg �X(C); z� and deg �X�(S)� =deg �X�(C); z�. We note that, with this notation, dimHilbz(S) = deg �X(S)� �deg �X�(S)�� 2 for any z 2 �, and thusdimHilb(S) = deg �X(S)�� deg �X�(S)�:In the appliations it is onvenient to replae the degree of an (analytial) singularitysheme by an upper bound in known invariants of the singularities. From [Los98℄p. 28, p. 103, and Lemma 2.44, it follows for a topologial (respetively analytial)



IRREDUCIBILITY 5singularity type S one hasdeg �Xa(S)� � 3�(S) and deg �Xs(S)� � 32�(S) + 2: (1.6)1.4. Equisingular Families. Given a divisor D 2 Div(�) and topologial or an-alytial singularity types S1; : : : ;Sr, we denote by V = VjDj(S1; : : : ;Sr) the loallylosed subspae of jDjl of redued urves in the linear system jDjl having preisely rsingular points of types S1; : : : ;Sr. By1 V reg = V regjDj (S1; : : : ;Sr) we denote the open(f. Proof of Theorem 3.1) subsetV reg = �C 2 V �� h1��;JX(C)=�(D)� = 0	 � V:Similarly, we use the notation V irr = V irrjDj (S1; : : : ;Sr) to denote the open subsetof irreduible urves in the spae V , and we set V irr;reg = V irr;regjDj (S1; : : : ;Sr) =V irr \ V reg, whih is open in V reg and in V . If a type S ours k > 1 times, werather write kS than S; k: : :;S. We all these families of urves equisingular familiesof urves.We say that V is T-smooth at C 2 V if the germ (V; C) is smooth of the (expeted)dimension dim jDjl � deg �X�(C)�.By [Los98℄ Proposition 2.1 (see also [GrK89℄, [GrL96℄, [GLS00℄) T-smoothness of Vat C follows by the vanishing of H1��;JX�(C)=�(C)�. This is due to the fat thatthe tangent spae of V at C may be identi�ed with H0��;JX�(C)=�(C)�=H0(�;O�).1.5. Fibrations. Let D 2 Div(�) be a divisor, S1; : : : ;Sr distint topologial oranalytial singularity types, and k1; : : : ; kr 2 Nnf0g. We denote by eB the irreduibleparameter spae eB = eB(k1S1; : : : ; krSr) = rYi=1 Symki �Hilb(Si)�;and by B = B(k1S1; : : : ; krSr) the non-empty open, irreduible and dense subspaeB = n�[X1;1; : : : ; X1;k1℄; : : : ; [Xr;1; : : : ; Xr;kr℄� 2 eB ��� supp(Xi;j) \ supp(Xs;t) = ;8 1 � i; s � r; 1 � j � ki; 1 � t � kso:Note that dim(B) does not depend on �; more preisely, with the notation of Sub-setion 1.3 we havedim(B) = rXi=1 ki � � deg �X(Si)�� deg �X�(Si)��:1V reg should not be onfused with �C 2 V �� h1��;JX�(C)=�(D)� = 0	, whih is the part of V ,where V is smooth of the expeted dimension. Curves in the latter subsheme are often alledregular (. f. [ChC99℄). See also Example 2.5.



6 THOMAS KEILENLet us set n =Pri=1 ki deg �X(Si)�. We then de�ne an injetive morphism =  (k1S1; : : : ; krSr) : B(k1S1; : : : ; krSr) //Hilbn��[X1;1; : : : ; X1;k1℄; : : : ; [Xr;1; : : : ; Xr;kr℄� � //
Sri=1Skij=1Xi;j;where Hilbn� denotes the smooth onneted Hilbert sheme of zero-dimensionalshemes of degree n on � (f. [Los98℄ Setion 1.3.1).We denote by 	 = 	D(k1S1; : : : ; krSr) the �bration of VjDj(k1S1; : : : ; krSr) induedby B(k1S1; : : : ; krSr); in other words the morphism 	 is given by	 : VjDj(k1S1; : : : ; krSr) //B(k1S1; : : : ; krSr)C � //

�[X1;1; : : : ; X1;k1℄; : : : ; [Xr;1; : : : ; Xr;kr ℄�where Sing(C) = fzi;j j i = 1; : : : ; r; j = 1; : : : ; kig, Xi;j = X(C; zi;j) and (C; zi;j) �=Si for all i = 1; : : : ; r; j = 1; : : : ; ki.With notation of Subsetion 1.4 note that for C 2 V the �bre 	�1�	(C)� is theopen dense subset of the linear system ��JX(C)=�(D)��l onsisting of the urves C 0with X�C 0� = X(C). In partiular, the �bres of 	 restrited to V reg are irreduible,and sine for C 2 V reg the ohomology group H1��;JX(C)=�(D)� vanishes, they areequidimensional of dimensionh0��;JX(C)=�(D)�� 1 = h0��;O�(D)�� rXi=1 ki deg �X(Si)�� 1:2. The Main ResultsIn this setion we give suÆient onditions for the irreduibility of equisingular fam-ilies of urves on ertain surfaes with Piard number one { inluding the projetiveplane, generi surfaes in P3C and generi K3-surfaes {, on produts of urves, andon a sublass of geometrially ruled surfaes.2.1. Surfaes with Piard Number One.Theorem 2.1 Let � be a surfae suh that(i) NS(�) = L �Z with L ample, and(ii) h1(�; C) = 0, whenever C is e�etive.Let D 2 Div(�), let S1; : : : ;Sr be pairwise distint topologial or analytial singu-larity types and let k1; : : : ; kr 2 N n f0g.Suppose that(2.1) D �K� is big and nef,(2.2) D +K� is nef,(2.3) rPi=1 ki deg �X(Si)� < � � (D �K�)2 for some 0 < � � 14 , and



IRREDUCIBILITY 7(2.4) rPi=1 ki deg �X(Si)�2 <  � (D �K�)2, where  = �1+p1�4��2�L24��(O�)+maxf0;2�K�:Lg+6�L2 .Then either V irrjDj (k1S1; : : : ; krSr) is empty or it is irreduible of the expeted dimen-sion. 2Remark 2.2 If we set = 36�(3�+ 4)2 with � = 4 � �(O�) + maxf0; 2 �K�:Lg+ 6 � L2L2 ;then a simple alulation shows that (2.3) beomes redundant. For this we have totake into aount that deg �X(S)� � 3 for any singularity type S. The laim thenfollows with � = 13 �  � 14 . 2We now apply the result in several speial ases.Corollary 2.3 Let d � 3, L � P2C be a line, and S1; : : : ;Sr be topologial or ana-lytial singularity types.Suppose that rXi=1 deg �X(Si)�2 < 90289 � (d+ 3)2:Then either V irrjdLj(S1; : : : ;Sr) is empty or it is irreduible and T-smooth. 2Many authors were onerned with the question in the ase of plane urves withnodes and usps or with nodes and one more ompliated singularity or simply withordinary multiple points { f. e. g. [Sev21, BrG81, ArC83, Har85, Kan89a, Kan89b,Ran89, Shu91b, Shu91a, Bar93, Shu94, Shu96b, Shu96a, Wal96, GLS98a, GLS98b,Los98, Bru99, GLS00℄. Using partiularly designed tehniques for these ases theyget of ourse better results than we may expet to.The best general results in this ase an be found in [GLS00℄ (see also [Los98℄Corollary 6.1). Given a plane urve of degree d, omitting nodes and usps, they getrXi=1 �� �(Si) + 2�2 � 910 � d2as the main irreduibility ondition, where � �(Si) = �(Si) in the analytial aserespetively � �(Si) = � es(Si) in the topologial ase. By Subsetion 1.2 we knowthat �(Si) � 2 � � es(Si). Thus, in view of (1.2), (1.3), (1.4) and of Theorem 2.1 weget the suÆient onditionrXi=1 �� �(Si) + 23�2 < 10289 � (d+ 3)2;whih has the same asymptotis. However, the oeÆients di�er by a fator of about26.



8 THOMAS KEILENA smooth omplete intersetion surfae with Piard number one satis�es the as-sumptions of Theorem 2.1. Thus by the Theorem of Noether the result applies inpartiular to generi surfaes in P3C .Corollary 2.4 Let � � P3C be a smooth hypersurfae of degree n � 4, let H � � bea hyperplane setion, and suppose that the Piard number of � is one. Let d > n�4and let S1; : : : ;Sr be topologial or analytial singularity types.Suppose that rXi=1 deg �X(Si)�2 < 6��n3�3n2+8n�6��n2�n3�3n2+10n�6�2 � (d+ 4� n)2;Then either V irrjdHj(S1; : : : ;Sr) is empty or irreduible of the expeted dimension. 2We would like to thank the referee for pointing out the following example of reduiblefamilies V irrjHj (3A1) of nodal urves on surfaes in P3C .Example 2.5 If � � P3C is a general surfae of degree n � 4, then there is a �nitenumber N > 1 of 3-tangent planes to �. However, every 3-tangent plane uts outan irreduible 3-nodal urve on �, and sine the Piard group is generated by ahyperplane setion H, every 3-nodal urve is of this form. Therefore, V irrjHj (3A1)onsists of N distint points. It is thus reduible, but smooth of the expeteddimension dim �V irrjHj (3A1)� = dim jHjl � 3 = 0:Note that in this situation for C 2 V irrjHj (3A1) and z 2 Sing(C) we have JX(C)=�;z =m2�;z and thus h1��;JX(C)=�(H)� = 6 > 0:Therefore, V irr;regjHj (3A1) = ;. The parameter spae B is just Sym3(�).A generi K3-surfae has Piard number one and in this situation, by the KodairaVanishing Theorem � also satis�es the assumption (ii) in Theorem 2.1.Corollary 2.6 Let � be a smooth K3-surfae with NS(�) = L � Z with L ampleand set n = L2. Let d > 0, D �a dL and let S1; : : : ;Sr be topologial or analytialsingularity types.Suppose that rXi=1 deg �X(Si)�2 < 54n2+72n(11n+12)2 � d2 � n:Then either V irrjDj (S1; : : : ;Sr) is empty or irreduible of the expeted dimension. 22.2. Produts of Curves. If � = C1�C2 is the produt of two smooth projetiveurves, then for a generi hoie of C1 and C2 the N�eron{Severi group will be gen-erated by two �bres of the anonial projetions, by abuse of notation also denotedby C1 and C2. If both urves are ellipti, then \generi" just means that the twourves are non-isogenous.



IRREDUCIBILITY 9Theorem 2.7 Let C1 and C2 be two smooth projetive urves of genera g1 and g2respetively with g1 � g2 � 0, suh that for � = C1 � C2 the N�eron{Severi group isNS(�) = C1Z� C2Z.Let D 2 Div(�) suh that D �a aC1 + bC2 with a > maxf2g2 � 2; 2 � 2g2g andb > maxf2g1�2; 2�2g1g, let S1; : : : ;Sr be pairwise distint topologial or analytialsingularity types and k1; : : : ; kr 2 N n f0g.Suppose that rXi=1 ki deg �X(Si)�2 <  � (D �K�)2; (2.5)where  may be taken from the following table with � = a�2g2+2b�2g1+2 > 0.g1 g2  , if � = 10 0 124 1241 0 1maxf32;2�g 132� 2 0 1maxf24+16g1;4g1�g 124+16g11 1 1max�32;2�; 2�	 132� 2 � 1 1max�24+16g1+16g2;4g1�;4g2� � 124+16g1+16g2Then either V irrjDj (k1S1; : : : ; krSr) is empty or it is irreduible of the expeted dimen-sion. 2Only in the ase � �= P1C � P1C we get a onstant  whih does not depend on thehosen divisor D, while in the remaining ases the ratio of a and b is involved in. This means that an asymptotial behaviour an only be examined if the ratioremains unhanged.2.3. Geometrially Ruled Surfaes. Let � : � = P(E) ! C be a geometriallyruled surfae with normalised bundle E (in the sense of [Har77℄ V.2.8.1). The N�eron{Severi group of � is NS(�) = C0Z � FZ with intersetion matrix ( �e 11 0 ) whereF �= P1C is a �bre of �, C0 a setion of � with O�(C0) �= OP(E)(1), g = g(C) thegenus of C, e = �2E and e = � deg(e) � �g. For the anonial divisor we haveK� �a �2C0 + (2g � 2� e) � F .Theorem 2.8 Let � : � ! C be a geometrially ruled surfae with e � 0. LetD = aC0 + bF 2 Div(�) with a � 2, b > 2g � 2 + ae2 , and if g = 0 then b �2. Let S1; : : : ;Sr be pairwise distint topologial or analytial singularity types andk1; : : : ; kr 2 N n f0g.Suppose that rXi=1 ki deg �X(Si)�2 <  � (D �K�)2; (2.6)



10 THOMAS KEILENwhere  may be taken from the following table with � = a+2b+2�2g�ae2 > 0.g e  , if � = 10 0 124 1241 0 1maxf24;2�g 1241 �1 1maxnmin�30+16� +4�;40+9�	;132 �o 149� 2 0 1maxf24+16g;4g�g 124+16g� 2 < 0 1maxnmin�24+16g�9e�;18+16g�9e�� 16e�	;4g��9e�oThen either V irrjDj (k1S1; : : : ; krSr) is empty or it is irreduible of the expeted dimen-sion. 2One more, only in the ase g = 0, i. e. when � �= P1C �P1C , we are in the luky situ-ation that the onstant  does not at all depend on the hosen divisor D, whereas inthe ase g � 1 the ratio of a and b is involved in . This means that an asymptotialbehaviour an only be examined if the ratio remains unhanged.If � is a produt C � P1C the onstant  here is the same as in Setion 2.2.In [Ran89℄ and in [GLS98a℄ the ase of nodal urves on the Hirzebruh surfaeF1 is treated, sine this is just P2C blown up at one point. F1 is an example of ageometrially ruled surfae with invariant e = 1 > 0, a ase whih we so far annottreat with our methods, due to the setion with self-intersetion �1. However, itseems to be possible to extend the methods of [GLS98a℄ to the situation of arbitraryruled surfaes with positive invariant e { at least if we restrit to singularities whihare not too bad.2.4. The Proofs. Our approah to the problem proeeds along the lines of anunpublished result of Greuel, Lossen and Shustin (f. [GLS98b℄). The basi ideas arein some respet similar to the approah used in [GLS00℄, replaing the \Castelnuovo-funtion" arguments by \Bogomolov unstability".We �rst show that the open subsheme V irr;reg = V irr;regjDj (k1S1; : : : ; krSr) of V irr =V irrjDj (k1S1; : : : ; krSr), and hene its losure V irr;reg in V irr, is always irreduible(f. Theorem 3.1), and then we look for riteria whih ensure that the omplementof V irr;reg in V irr is empty (f. Setion 4). For the latter, we onsider the restritionof the morphism (f. Subsetion 1.5)	 : V ! Bto an irreduible omponent V � of V irr not ontained in V irr;reg. From the fat thatthe dimension of V � is at least the expeted dimension dim �V irr;reg�, we dedue thatthe odimension of B� = 	�V �� in B is at most h1��;JX(C)=�(D)�, where C 2 V �



IRREDUCIBILITY 11(f. Lemma 4.7). It thus suÆes to �nd onditions whih ontradit this inequality,that is, we have to get our hands on odimB(B�). However, on the surfaes whihwe onsider the non-vanishing of h1��;JX(C)=�(D)� means in some sense that thezero-dimensional sheme X(C) is in speial position. We may thus hope to realiselarge parts X0i of X(C) on urves �i of \small degree" (i = 1; : : : ; m), whih wouldimpose at least #X0i � dim j�ijl onditions on X(C), giving rise to a lower boundPmi=1#X0i � dim j�ijl for odimB(B�). The X0i 's and the �i's are found in Lemma4.1 with the aid of ertain Bogomolov unstable rank-two bundles. It thus �nallyremains (f. Lemma 4.3, 4.4 and 4.6) to give onditions whih implymXi=1 #X0i � dim j�ijl > h1��;JX(C)=�(D)�:These onsiderations lead to the following proofs.Proof of Theorem 2.1: We may assume that V irr is non-empty. By Theorem 3.1it suÆes to show that V irr = V irr;reg.Suppose the ontrary, i.e., there is an irreduible urve C0 2 V irr n V irr;reg, in par-tiular h1��;JX0=�(D)� > 0 for X0 = X(C0). Sine deg(X0) =Pri=1 ki deg �X(Si)�and Pz2� � deg(X0;z)�2 = rPi=1 ki deg(X�Si)�2 the assumptions (0)-(3) of Lemma 4.1and (4) of Lemma 4.3 are ful�lled. Thus Lemma 4.3 implies that C0 satis�es Con-dition (4.20) in Lemma 4.7, whih it annot satisfy by the same Lemma. Thus wehave derived a ontradition. �Proof of Theorem 2.7: The assumptions on a and b ensure that D � K� is bigand nef and that D+K� is nef. Thus, one we know that (2.5) implies Condition (3)in Lemma 4.1 we an do the same proof as in Theorem 2.1, just replaing Lemma 4.3by Lemma 4.4.For Condition (3) we note thatrXi=1 ki deg �X(Si)� � rXi=1 ki � � deg �X(Si)��2 � 124 � (D �K�)2 < 14 � (D �K�)2:�Proof of Theorem 2.8: The proof is idential to that of Theorem 2.7, just repla-ing Lemma 4.4 by Lemma 4.6. �2.5. Some Remarks. What are the obstrutions by whih our approah is re-strited?First, the Bogomolov unstability does not give us muh information about the urves�i apart from their existene and the fat that they are in some sense \small" om-pared with the divisor D. It is thus obvious that we are bound to the study ofsurfaes where we have a good knowledge of the dimension of arbitrary omplete



12 THOMAS KEILENlinear systems. Seond, in order to derive the above inequality many nasty al-ulations are neessary whih strongly depend on the partiular struture of theN�eron{Severi group of the surfae, that is, we are restrited to surfaes where theN�eron{Severi group is not too large and the intersetion pairing is not too hard(f. Lemma 4.3, 4.4 and 4.6). Finally, in order to ensure the Bogomolov unstabilityof the vetor bundle onsidered throughout the proof of Lemma 4.1 we heavily usethe fat that the surfae � does not ontain any urve of negative self-intersetion,whih exludes e. g. general Hirzebruh surfaes.If the number of irreduible urves of negative self-intersetion is not too large, onemight overome this last obstale with the tehnique used in [GLS98a℄. That is, wewould have to show that under ertain additional onditions the singular points ofthe onsidered urves ould be independently moved, in partiular, they ould bemoved o� the exeptional urves - more preisely, the subvariety of V irr of urveswhose singular lous does not lie on any exeptional urve is dense in V irr. For thisone basially just needs riteria for the existene of \small" urves realising a zero-dimensional sheme slightly bigger than the equisingularity sheme (respetively theequianalytial singularity sheme) of the members in V irr. E. g. in the ase of urveswith r nodes, that means the existene of urves passing through r arbitrary pointsand having multipliity two in one of them.In Setion 3 we not only prove that V irr;reg is irreduible, but also that this indeedremains true if we drop the requirement that the urves should be irreduible, i. e. weshow that V reg is irreduible. However, unfortunately our approah does not giveonditions for the emptiness of the omplement of V reg, and thus we annot sayanything about the irreduibility of the variety of possibly reduible urves in jDjlwith presribed singularities. The reason for this is that in the proof of Lemma 4.1we use the Theorem of B�ezout to estimate D:�i.3. V irr;reg is irreduibleWe now show that V irr;reg is always irreduible. We do this by showing that under	 : V ! B every irreduible omponent of V irr;reg is smooth and maps dominantto the irreduible variety B with irreduible �bres.Theorem 3.1 Let D 2 Div(�), S1; : : : ;Sr be pairwise distint topologial or ana-lytial singularity types and k1; : : : ; kr 2 N n f0g.If V irr;regjDj (k1S1; : : : ; krSr) is non-empty, then it is a T-smooth, irreduible, opensubset of V irrjDj (k1S1; : : : ; krSr) of dimension dim jDjl �Pri=1 ki deg �X�(Si)�.Proof: Sine V irr;regjDj (k1S1; : : : ; krSr) is an open subset of V regjDj (k1S1; : : : ; krSr) =V reg, it suÆes to show the laim for V reg.Let us onsider the following maps from Subsetion 1.5	 = 	D(k1S1; : : : ; krSr) : V = VjDj(k1S1; : : : ; krSr) //B(k1S1; : : : ; krSr)



IRREDUCIBILITY 13and  =  (k1S1; : : : ; krSr) : B(k1S1; : : : ; krSr) //Hilbn� :Step 1: Every irreduible omponent V � of V reg is T-smooth of dimension dim jDjl�Pri=1 ki deg �X�(Si)�.By [Los98℄ Proposition 2.1 (2) V � is T-smooth at any C 2 V � of dimensiondim jDjl � deg �X�(C)�, sine h1��;JX�=�(D)� = 0. Note that deg �X�(C)� =Pri=1 ki deg �X�(Si)� only depends on k1S1; : : : ; krSr (f. Subsetion 1.3).Step 2: V reg is open in V .Let C 2 V reg, then h1��;JX(C)=�(D)� = 0. Thus by semiontinuity there exists anopen, dense neighbourhood U of X(C) in Hilbn� suh that h1��;JY=�(D)� = 0 forall Y 2 U . But then 	�1� �1(U)� � V reg is an open neighbourhood of C in V , andhene V reg is open in V .Step 3: 	 restrited to any irreduible omponent V � of V reg is dominant.Let V � be an irreduible omponent of V reg and let C 2 V �. Sine 	�1�	(C)� isan open, dense subset of ��JX(C)=�(D)��l and sine h1��;JX(C)=�(D)� = 0, we havedim	�1�	(C)� = h0��;JX(C)=�(D)�� 1 = dim jDjl � deg �X(C)�:By Step 1 we know the dimension of V � and by Subsetion 1.5 we also know thedimension of B. Thus we onludedim	�V �� = dimV � � dim	�1�	(C)�= �dim jDjl � degX�(C)�� �dim jDjl � degX(C)�= deg �X(C)�� deg �X�(C)� = dimB:Sine B is irreduible 	�V �� must be dense in B.Step 4: V reg is irreduible.Let V � and V �� be two irreduible omponents of V reg. Then 	�V ��\	�V ��� 6= ;,and thus some �bre F of 	 intersets both, V � and V ��. However, the �bre isirreduible and by Step 1 both V � and V �� are smooth. Thus F must be ompletelyontained in V � and V ��, whih implies that V � = V ��, sine both are smooth ofthe same dimension. Thus V reg is irreduible. �4. The Tehnial DetailsThe following lemma is the heart of the proof. Given a urve C 2 jDjl, whose(analytial) singularity sheme X0 = X(C) is speial with respet to D in the sensethat h1��;JX0=�(D)� > 0, provides a \small" urve �1 through a subsheme X01of X0, so that we an redue the problem by replaing X0 and D by X0 : �1 andD � �1 respetively. We an of ourse proeed indutively as long as the newzero-dimensional sheme is again speial with respet to the new divisor.



14 THOMAS KEILENIn order to �nd �1 we hoose a subsheme X01 � X0 whih is minimal among thosesubshemes speial with respet to D. By Grothendiek-Serre dualityH1��;JX01=�(D)� �= Ext1 �JX01=�(D �K�);O��and a non-trivial element of the latter group gives rise to an extension0! O� ! E1 ! JX01=�(D �K�)! 0:We then show that the rank-two bundle E1 is Bogomolov unstable and dedue theexistene of a divisor �01 suh thatH0��;JX01=��D �K� ��01�� 6= 0;that is, we �nd a urve �1 2 ��JX01=��D �K� ��01���l.Lemma 4.1 Let � be a surfae suh that any urve C � � is nef (*).Let D 2 Div(�) and X0 � � a zero-dimensional sheme satisfying(0) D �K� is big and nef, and D +K� is nef,(1) 9 C0 2 jDjl irreduible : X0 � C0,(2) h1��;JX0=�(D)� > 0, and(3) deg(X0) < � � (D �K�)2 for some 0 < � � 14 .Then there exist urves �1; : : : ;�m � � and zero-dimensional loally omplete in-tersetions X0i � Xi�1\�i for i = 1; : : : ; m, where Xi = Xi�1 : �i for i = 1; : : : ; m,suh that(a) h1��;JXm=��D �Pmi=1�i�� = 0,and for i = 1; : : : ; m(b) h1��;JX0i =��D �Pi�1k=1�k�� = 1() D:�i � deg(Xi�1 \�i) � deg �X0i � � �D �K� �Pik=1�k�:�i � �2i � 0(d) �D �K� �Pik=1�k ��i�2 > 0,(e) �D �K� �Pik=1�k ��i�:H > 0 for all H 2 Div(�) ample, and(f) D �K� �Pik=1�k is big and nef.Moreover, it follows0 � 14(D �K�)2 � mXi=1 deg �X0i � �  12(D �K�)� mXi=1 �i!2 : (4.1)Proof: We are going to �nd the shemes �i and X0i reursively. Let us thereforesuppose that we have already found �1; : : : ;�i�1 andX01 ; : : : ; X0i�1 satisfying (b)-(f),and suppose that still h1��;JXi�1=��D �Pi�1i=1�i�� > 0.We hoose X0i � Xi�1 minimal suh that h1��;JX0i =��D �Pi�1k=1�k�� > 0.



IRREDUCIBILITY 15Step 1: h1��;JX0i =��D �Pi�1k=1�k�� = 1, i. e. (b) is ful�lled.Suppose it was stritly larger than one. By (0) respetively (f), and by the Kawa-mata{Viehweg Vanishing Theorem we have h1��;O��D �Pi�1k=1�k�� = 0.Thus X0i annot be empty, that is deg �X0i � � 1 and we may hoose a subshemeY � X0i of degree deg(Y ) = deg �X0i � � 1. The inlusion JX0i ,! JY impliesh0��;JX0i =��D �Pi�1k=1�k�� � h0��;JY=��D �Pi�1k=1�k�� and the struture se-quenes of Y and X0i thus lead toh1��;JY=��D �Pi�1k=1�k�� � h1��;JX0i =��D �Pi�1k=1�k��� 1 > 0ontraditing the minimality of X0i .Step 2: deg �X0i � � deg(X0)�Pi�1k=1 deg(Xk�1 \�k).The ase i = 1 follows from the fat that X01 � X0, and for i > 1 the inlusionX0i � Xi�1 = Xi�2 : �i�1 impliesdeg �X0i � � deg(Xi�2 : �i�1) = deg(Xi�2)� deg(Xi�2 \�i�1):It thus suÆes to show, thatdeg(Xi�2)� deg(Xi�2 \�i�1) = deg(X0)� i�1Xk=1 deg(Xk�1 \�k):If i = 2, there is nothing to show. Otherwise Xi�2 = Xi�3 : �i�2 impliesdeg(Xi�2)� deg(Xi�2 \�i�1)= deg(Xi�3 : �i�2)� deg(Xi�2 \�i�1)= deg(Xi�3)� deg(Xi�3 \�i�2)� deg(Xi�2 \�i�1)and we are done by indution.Step 3: There exists a \suitable" loally free rank-two vetor bundle Ei.By the Grothendiek-Serre duality we have0 6= H1��;JX0i =��D � i�1Xk=1 �k�� �= Ext1 �JX0i =��D �K� �Pi�1k=1�k�;O��:That is, there exists an extension0! O� ! Ei ! JX0i =� �D �K� �Pi�1k=1�k�! 0: (4.2)The minimality of X0i implies that Ei is loally free and hene that X0i is a loallyomplete intersetion (f. [Laz97℄). Moreover, we have1(Ei) = D �K� � i�1Xk=1 �k and 2(Ei) = deg �X0i �: (4.3)



16 THOMAS KEILENStep 4: Ei is Bogomolov unstable.Aording to the Theorem of Bogomolov we only have to show 1(Ei)2 > 42(Ei)(f. [Bog79℄ or [Laz97℄ Theorem 4.2). Sine (4� � 1) � (D � K�)2 � 0 by (3) andsine �2k � 0 by (*) we dedue:42(Ei) = 4 deg �X0i � �Step 2 4 deg(X0)� 4Pi�1k=1 deg(Xk�1 \�k)<(3)/() 4�(D �K�)2 � 2Pi�1k=1�k:�D �K� �Pkj=1�j�� 2Pi�1k=1�2k= �D �K� �Pi�1k=1�k�2 + (4� � 1) � (D �K�)2 �Pi�1k=1�2k� �D �K� �Pi�1k=1�k�2 = 1(Ei)2:Step 5: Find �i.Sine Ei is Bogomolov unstable there exists a zero-dimensional sheme Zi � � anda divisor �0i 2 Div(�) suh that0! O���0i �! Ei ! JZi=� �D �K� �Pi�1k=1�k ��0i�! 0 (4.4)is exat and that(d') �2�0i �D +K� +Pi�1k=1�k�2 � 1(Ei)2 � 4 � 2(Ei) > 0, and(e') �2�0i �D +K� +Pi�1k=1�k�:H > 0 for all H 2 Div(�) ample.Tensoring (4.4) with O����0i � leads to the following exat sequene0! O� ! Ei���0i �! JZi=� �D �K� �Pi�1k=1�k � 2�0i�! 0; (4.5)and we dedue that h0��; Ei���0i �� 6= 0.Now tensoring (4.2) with O����0i � leads to0! O����0i �! Ei���0i �! JX0i =� �D �K� �Pi�1k=1�k ��0i�! 0: (4.6)By (e'), and (0) respetively (f)��0i :H < �12�D �K� �Pi�1k=1�k�:H � 0for an ample divisor H, hene ��0i annot be e�etive, that is H0��;��0i � = 0.But the long exat ohomology sequene of (4.6) then implies0 6= H0��; Ei���0i �� ,! H0 ��;JX0i =� �D �K� �Pi�1k=1�k ��0i�� :In partiular we may hoose �i 2 ���JX0i =��D �K� �Pi�1k=1�k ��0i ����l:Step 6: �i satis�es (d)-(f).We note that by the hoie of �i we have�0i �l D �K� �Pik=1�k (4.7)



IRREDUCIBILITY 17and �0i ��i �l 2�0i �D +K� +Pi�1k=1�k �l D �K� �Pik=1�k ��i: (4.8)Thus (d) and (e) is a reformulation of (d') and (e').Moreover, sine ��0i ��i�:H > 0 for any ample H, then ��0i ��i�:H � 0 for anyH in the losure of the ample one, in partiular��0i ��i�:H � 0 for all H nef: (4.9)But then �0i :H � �i:H � 0 for all H nef; (4.10)sine �i is e�etive. And �nally, sine by assumption (*) any e�etive divisor is nef,we dedue that �0i :C � 0 for any urve C, that is, �0i is nef. In view of (4.7) for (f)it remains to show that ��0i �2 > 0. Taking one more into aount that �i is nefby (*) we have by (d'), (4.8), (4.9) and (4.10)��0i �2 = ��0i ��i�2 + ��0i ��i�:�i +�0i :�i > 0:Step 7: �i satis�es ().We would like to apply the Theorem of B�ezout to C0 and �i. Thus suppose that theirreduible urve C0 is a omponent of �i and let H be any ample divisor. Applying(d) and the fat that D +K� is nef by (0), we derive the ontradition0 � (�i � C0):H < �12 � D +K� + i�1Xk=1 �k! :H � �12 � (D +K�):H � 0:Sine Xi�1 � X0 � C0 the Theorem of B�ezout therefore impliesD:�i = C0:�i � deg(Xi�1 \�i):By de�nition X0i � Xi�1 and X0i � �i, thusdeg(Xi�1 \�i) � deg �X0i �:By assumption (*) the urve �i is nef and thus (4.10) gives�D �K� �Pik=1�k�:�i = �0i :�i � �2i � 0:Finally from (d') and by (4.3) it follows that��0i ��i�2 � 1(Ei)2 � 4 � 2(Ei) = ��0i +�i�2 � 4 � deg �X0i �;and thus deg �X0i � � �0i :�i.Step 8: After a �nite number m of steps h1��;JXm=��D �Pmi=1�i�� = 0.As we have mentioned in Step 1 deg �X0i � > 0. This ensures thatdeg(Xi) = deg(Xi�1)� deg(Xi�1 \�i) � deg(Xi�1)� deg �X0i � < deg(Xi�1);i. e. the degree of Xi stritly dereases eah time. Thus the proedure must stopafter a �nite number m of steps.



18 THOMAS KEILENStep 9: It remains to show (4.1).By assumption (*) the urves �i are nef, in partiular �i:�j � 0 for all i; j. Thus() impliesPmi=1 deg �X0i � � Pmi=1 �D �K� �Pik=1�k�:�i= (D �K�):Pmi=1�i � 12 ��Pmi=1�i�2 +Pmi=1�2i�� (D �K�):Pmi=1�i � �Pmi=1�i�2:But then, taking ondition (3) into aount,0 � 14(D �K�)2 � deg(X0) � 14(D �K�)2 �Pmi=1 deg �X0i �� 14(D �K�)2 � (D �K�):Pmi=1�i + �Pmi=1�i�2= �12(D �K�)�Pmi=1�i�2: �It is our overall aim to ompare the dimension of a ohomology group of the formH1��;JX0=�(D)� with some invariants of the X0i and �i. The following lemma willbe vital for the neessary estimates.Lemma 4.2 Let D 2 Div(�) and let X0 � � be a zero-dimensional sheme suhthat there exist urves �1; : : : ;�m � � and zero-dimensional shemes X0i � Xi�1for i = 1; : : : ; m, where Xi = Xi�1 : �i for i = 1; : : : ; m, suh that (a)-(f) in Lemma4.1 are ful�lled.Then: h1��;JX0=�(D)� � mPi=1 h1��i;JXi�1\�i=�i�D �Pi�1k=1�k��� mPi=1�1 + deg(Xi�1 \�i)� deg �X0i ��� mPi=1��i � �K� +Pik=1�k�+ 1�:Proof: Throughout the proof we use the following notationGi = JXi�1\�i=�i �D �Pi�1k=1�k� and G0i = JX0i =�i�D �Pi�1k=1�k�for i = 1; : : : ; m, and for i = 0; : : : ; mFi = JXi=� �D �Pik=1�k� :Sine Xi+1 = Xi : �i+1 we have the following short exat sequene0 //Fi+1 ��i+1
//Fi //Gi+1 // 0 (4.11)



IRREDUCIBILITY 19for i = 0; : : : ; m� 1 and the orresponding long exat ohomology sequene0 //H0(�;Fi+1) //H0(�;Fi) //H0(�;Gi+1) //H1(�;Fi+1)
��0 = H2(�;Gi+1) H2(�;Fi)oo H2(�;Fi+1)oo H1(�;Gi+1)oo H1(�;Fi)oo

(4.12)Step 1: h1(�;Fi) �Pmj=i+1 h1(�;Gj) for i = 0; : : : ; m� 1.We prove the laim by desending indution on i. From (4.12) we dedue0 = H1(�;Fm) //H1(�;Fm�1) //H1(�;Gm);whih implies h1(�;Fm�1) � h1(�;Gm) and thus proves the ase i = m� 1.We may therefore assume that 1 � i � m� 2. One more from (4.12) we deduea = h0(�;Fi+1)� h0(�;Fi) + h0(�;Gi+1) � 0;and b = h2(�;Fi+1)� h2(�;Fi) � 0;and �nallyh1(�;Fi) = h1(�;Gi+1) + h1(�;Fi+1)� a� b � h1(�;Gi+1) + h1(�;Fi+1)�Ind. h1(�;Gi+1) +Pmj=i+2 h1(�;Gj) = Pmj=i+1 h1(�;Gj):Step 2: h1(�i;Gi) = h0(�i;Gi)� ��O�i�D �Pi�1k=1�k�� + deg(Xi�1 \�i).We onsider the exat sequene0 // Gi //O�i �D �Pi�1k=1�k� //OXi�1\�i=�i �D �Pi�1k=1�k� // 0:The result then follows from the long exat ohomology sequene.Step 3: h0��i;G0i �� ��O�i�D �Pi�1k=1�k�� = h1��i;G0i �� deg(X0i ).This follows analogously, replaing Xi�1 by X0i , sine X0i = X0i \�i.Step 4: h1��i;G0i � � h1 ��;JX0i =��D �Pi�1k=1�k�� = 1.Note that X0i : �i = ;, and hene JX0i :�i=� = O�. We thus have the following shortexat sequene0 //O� �D �Pik=1�k���i
//JX0i =� �D �Pi�1k=1�k� // G0i // 0: (4.13)By assumption (f) the divisor D �K� �Pik=1�k is big and nef and hene0 = h0��;O���D +K� +Pik=1�k�� = h2��;O��D �Pik=1�k��:Thus the long exat ohomology sequene of (4.13) givesH1��;JX0i =��D �Pi�1k=1�k�� //H1��i;G0i � // 0;



20 THOMAS KEILENand h1��i;G0i � � h1 ��;JX0i =��D �Pi�1k=1�k�� :However, by assumption (b) the latter is just one.Step 5: h1(�i;Gi) � 1 + deg(Xi�1 \�i)� deg �X0i �.We note that Gi ,! G0i , and thus h0(�i;Gi) � h0(�i;G0i �. But thenh1(�i;Gi) �Step 2/3 h1��i;G0i �� deg �X0i �+ deg(Xi�1 \�i)�Step 4 1� deg �X0i �+ deg(Xi�1 \�i):Step 6: Finish the proof.Taking into aount, that h1(�;Gi) = h1(�i;Gi), sine Gi is onentrated on �i, the�rst inequality follows from Step 1, while the seond inequality is a onsequene ofStep 5 and the last inequality follows from assumption (). �In the Lemmata 4.3, 4.4 and 4.6 we onsider speial lasses of surfaes whih allowus to do the neessary estimates in order to �nally derivemXi=1 �#X0i � dim j�ijl� > h1��;JX0=�(D)�:We �rst onsider surfaes with Piard number one.Lemma 4.3 Let � be a surfae suh that(i) NS(�) = L �Z and L ample, and(ii) h1(�; C) = 0, whenever C is e�etive.Let D 2 Div(�) and X0 � � a zero-dimensional sheme satisfying (0){(3) fromLemma 4.1 and(4) Pz2� � deg(X0;z)�2 <  � (D �K�)2, where  = �1+p1�4��2�L24��(O�)+maxf0;2�K�:Lg+6�L2 .Then, using the notation of Lemma 4.1 and setting XS = Smi=1X0i ,h1��;JX0=�(D)�+ mXi=1 �h0��;O�(�i)�� 1� < #XS:Proof: We �x the following notation:D �a d � L; K� �a � � L; �i �a Æi � L; and l = pL2 > 0:Furthermore, we have  = �1+p1�4��24� , where� = 4��(O�)+maxf0;2�K�:Lg+6�L24�L2 = 8<: �(O�)l2 + �+32 ; if � � 0;�(O�)l2 + 32 ; if � < 0;Step 1: By (i) � satis�es the assumption (*) of Lemma 4.1.



IRREDUCIBILITY 21Step 2: Pmi=1 Æi � l � (d��)�l2 �q (d��)2�l24 � deg(XS), by (4.1).Step 3: h1��;JX0(D)� � �� �Pmi=1 Æi� � l2 + 12��Pmi=1 Æi�2 +Pmi=1 Æ2i � � l2 +m.By Lemma 4.2 we know:h1��;JX0(D)� � Pmi=1 ��i � �K� +Pik=1�k�+ 1�= �� �Pmi=1 Æi� � l2 + 12��Pmi=1 Æi�2 +Pmi=1 Æ2i � � l2 +m:Step 4: Pmi=1 �h0��;O�(�i)�� 1� � m � ��(O�)� 1�+ l22 �Pmi=1 Æ2i � ��l22 �Pmi=1 Æi.Sine �i is e�etive by (ii), h1(�;�i) = 0. Hene by Riemann-RohPmi=1 �h0��;O�(�i)�� 1� � �m +m � �(O�) + 12Pmi=1 ��2i �K�:�i�= m � ��(O�)� 1�+ l22 �Pmi=1 Æ2i � ��l22 �Pmi=1 Æi:Step 5: Finish the proof.In the following onsideration we use that deg(XS) � deg(X0) � � � (d� �)2 � l2.h1��;JX0(D)�+Pmi=1 �h0��;O�(�i)�� 1��Step 3 / 4 m � �(O�) + l2 �Pmi=1 Æ2i + ��l22 �Pmi=1 Æi + l22 � �Pmi=1 Æi�2� � � �l �Pmi=1 Æi�2 �Step 2 � � � (d��)�l2 �q (d��)2�l24 � deg(XS)�2� � � � (d��)2�l24 �� (d��)2�l24 �deg(XS)�(d��)�l2 +q (d��)2�l24 �deg(XS) �2 = � � � 2�deg(XS)�(d��)�l+p(d��)2�l2�4�deg(XS)�2� 4��1+p1�4��2�(d��)2�l2 � � deg(XS)�2 = 1�(D�K�)2 � �Pz2� deg(XS;z)�2� #XS�(D�K�)2 �Pz2� deg(XS;z)2 � #XS�(D�K�)2 �Pz2� deg(X0;z)2 <(4) #XS: �The seond lass of surfaes whih we onsider, are produts of urves.Lemma 4.4 Let C1 and C2 be two smooth projetive urves of genera g1 and g2respetively with g1 � g2 � 0, suh that for � = C1 � C2 the N�eron{Severi groupis NS(�) = C1Z � C2Z, and let D 2 Div(�) suh that D �a aC1 + bC2 witha > maxf2g2 � 2; 2� 2g2g and b > maxf2g1 � 2; 2� 2g1g. Suppose moreover thatX0 � � is a zero-dimensional sheme satisfying (1){(3) from Lemma 4.1 and(4) Pz2� �deg(X0;z)�2 <  � (D �K�)2,where  may be taken from the table in Theorem 2.7.



22 THOMAS KEILENThen, using the notation of Lemma 4.1 and setting XS = Smi=1X0i ,h1��;JX0(D)�+ mXi=1 �h0��;O�(�i)�� 1� < #XS:Proof: Then K� �a (2g2 � 2) � C1 + (2g1 � 2) � C2 and we �x the notation:�i �a aiC1 + biC2; �1 = a� 2g2 + 2 and �2 = b� 2g1 + 2:Step 1: � satis�es the assumption (*) of Lemma 4.1. Moreover, due to the as-sumptions on a and b we know that D�K� is ample and D+K� is nef, i. e. (0) inLemma 4.1 is ful�lled as well.Step 2a: ��14 � �Pmi=1 bi + ��24 � �Pmi=1 ai � deg(XS).Let us �rst notie that the strit inequality \<" in Lemma 4.1 (e) for ample divisorsH omes down to \�" for nef divisors H. We may apply this for H = C1 andH = C2 and dedue the following inequalities:0 �  D �K� � iXk=1 �k ��i! :C1 = �2 � iXk=1 bk � bi; (4.14)and 0 �  D �K� � iXk=1 �k ��i! :C2 = �1 � iXk=1 ak � ai: (4.15)For the following onsideration we hoose i0; j0 2 f1; : : : ; mg suh that ai0 � ai forall i = 1; : : : ; m and bj0 � bj for all j = 1; : : : ; m. Then�1 � 2ai and �2 � 2bj (4.16)for all i; j = 1; : : : ; m; �nally (4.14){(4.16) lead todeg(XS) = Pmi=1 deg �X0i � �Lemma 4.1 () Pmi=1 �D �K� �Pik=1�k�:�i= �1Pmi=1 bi + �2Pmi=1 ai �Pmi=1 aibi �Pmi=1 aiPmi=1 bi� �12 Pmi=1 bi + �22 Pmi=1 ai + am2 Pmi=1 bi + bm2 Pmi=1 ai �Pmi=1 aibi� �14 Pmi=1 bi + �24 Pmi=1 ai:Step 2b: Pmi=1 ai �Pmi=1 bi � 8(D�K�)2 � �deg(XS)�2.Using Step 2a we dedue�deg(XS)�2 > ��24 �Pmi=1 ai + �14 �Pmi=1 bi�2� 4��1��216 �Pmi=1 ai �Pmi=1 bi= (D�K�)28 �Pmi=1 ai �Pmi=1 bi:



IRREDUCIBILITY 23Step 2: Pmi=1 ai � 8<: 2�(D�K�)2 � �deg(XS)�2; if Pmi=1 bi = 0;8(D�K�)2 � �deg(XS)�2; otherwise:If Pmi=1 bi = 0, then the same onsideration as in Step 2a showsdeg(XS) � �2 � mXi=1 ai > 0;and thus (D�K�)22� � mXi=1 ai � �22 � mXi=1 ai!2 � �deg(XS)�2:If Pmi=1 bi 6= 0, then we are done by Step 2b.Step 2d: Pmi=1 bi � 8<: 2��(D�K�)2 � �deg(XS)�2; if Pmi=1 ai = 0;8(D�K�)2 � � deg(XS)�2; otherwise.This is proved in the same way as Step 2.Step 3: h1��;JX0(D)� � 2 mPi=1 ai mPi=1 bi + (2g1 � 2) mPi=1 ai + (2g2 � 2) mPi=1 bi +m.The following sequene of inequalities is due to Lemma 4.2 and the fat that �i:�j �0 for any i; j 2 f1; : : : ; mg:h1��;JX0(D)� � Pmi=1 ��i � �K� +Pik=1�k�+ 1�� K� �Pmi=1�i + �Pmi=1�i�2 +m= (2g1 � 2) �Pmi=1 ai + (2g2 � 2) �Pmi=1 bi + 2 �Pmi=1 ai �Pmi=1 bi +m:Step 4: We �nd the estimate Pmi=1 �h0��;O�(�i)�� 1� � �, where
� = 8>>>>>><>>>>>>:

Pmi=1 ai �Pmi=1 bi +Pmi=1 bi; if g1 = 1; g2 = 0;Pmi=1 ai �Pmi=1 bi �m; if g1 = 1; g2 = 1; 9 i0 : ai0bi0 > 0;Pmi=1 ai +Pmi=1 bi �m; if g1 = 1; g2 = 1; 8 i : aibi = 0;Pmi=1 ai �Pmi=1 bi +Pmi=1 ai +Pmi=1 bi; otherwise.In general h0��;O�(�i)� � aibi + ai + bi + 1, whereas if g1 = 1; g2 = 0 we haveh0��;O�(�i)� = aibi+ bi+1. It thus only remains to onsider the ase g1 = g2 = 1,where we get mXi=1 h0��;O�(�i)� = Xai;bi>0 aibi +Xai=0 bi +Xbi=0 ai:



24 THOMAS KEILENIf always either ai or bi is zero, we are done. Otherwise there exists some i0 2f1; : : : ; mg suh that ai0 6= 0 6= bi0 . Then looking at the right hand side we seemXi=1 h0��;O�(�i)� � Xai;bi>0 aibi + ai0 �Xai=0 bi + bi0 �Xbi=0 ai � mXi=1 ai � mXi=1 bi:Step 5: Finish the proof.Using Step 3 and Step 4, and taking m � Pmi=1 ai + bi into aount, we geth1��;JX0(D)�+Pmi=1 �h0��;O�(�i)�� 1� � � 0, where � 0 may be hosen as� 0 = 8>>><>>>: 3 �Pmi=1 ai �Pmi=1 bi; if g1 = 0; g2 = 0;3 �Pmi=1 ai �Pmi=1 bi +Pmi=1 ai; if g1 = 1; g2 = 0;3 �Pmi=1 ai �Pmi=1 bi + 2g1 �Pmi=1 ai + 2g2 �Pmi=1 bi; if g1 � 2; g2 � 0:For the ase g1 = g2 = 1 we take a loser look. We �nd at one the following upperbounds � 00 for h1��;JX0(D)�+Pmi=1 �h0��;O�(�i)�� 1�� 00 = 8<: 3 �Pmi=1 ai �Pmi=1 bi; if 9 i0 : ai0bi0 6= 0;2 �Pmi=1 ai �Pmi=1 bi +Pmi=1 ai +Pmi=1 bi; if 8 i : aibi = 0:Considering now the ases Pmi=1 ai 6= 0 6=Pmi=1 bi, Pmi=1 ai = 0 and Pmi=1 bi = 0, wean replae these by� 00 � � 0 = 8>>><>>>: 4 �Pmi=1 ai �Pmi=1 bi; if Pmi=1 ai 6= 0 6=Pmi=1 bi;Pmi=1 ai; if Pmi=1 bi = 0;Pmi=1 bi; if Pmi=1 ai = 0:Applying now the results of Step 2 in all ases we geth1��;JX0(D)�+Pmi=1 �h0��;O�(�i)�� 1� � � 0 � 1�(D�K�)2 � �deg(XS)�2= 1�(D�K�)2 � �Pz2� deg(XS;z)�2 � #XS�(D�K�)2 �Pz2� deg(XS;z)2� #XS�(D�K�)2 �Pz2� deg(X0;z)2 <(4) #XS: �Remark 4.5 Lemma 4.4, and hene Theorem 2.7 ould easily be generalised toother surfaes � with irreduible urves C1; C2 � � suh that NS(�) = C1Z� C2Zwith intersetion matrix ( 0 11 0 ) one we have an estimate similar toh0(�; aC1 + bC2) � ab + a+ b + 1for an e�etive divisor aC1 + bC2.With a number of small modi�ations we are even able to adapt it in the follow-ing lemma in the ase of geometrially ruled surfaes with non-positive invariant ealthough the intersetion pairing looks more ompliated.



IRREDUCIBILITY 25The problem with arbitrary geometrially ruled surfaes is the existene of the se-tion with negative self-intersetion, one the invariant e > 0, sine then the proof ofLemma 4.1 no longer works.In the following lemma we use the notation of Subsetion 2.3.Lemma 4.6 Let � : � ! C be a geometrially ruled surfae with invariant e �0 and g = g(C), and let D 2 Div(�) suh that D �a aC0 + bF with a � 2,b > 2g � 2 + ae2 , and if g = 0 then b � 2. Suppose moreover that X0 � � is azero-dimensional sheme satisfying (1){(3) from Lemma 4.1 and(4) Pz2� �deg(X0;z)�2 <  � (D �K�)2,where  may be taken from the table in Theorem 2.8.Then, using the notation of Lemma 4.1 and setting XS = Smi=1X0i ,h1��;JX0(D)�+ mXi=1 �h0��;O�(�i)�� 1� < #XS:Proof: Remember that the N�eron{Severi group of � is generated by a setion C0of � and a �bre F with intersetion pairing given by ( �e 11 0 ). Then K� �a �2C0 +(2g � 2� e) � F and we �x the notation:�i �a aiC0 + b0iF:Note that then ai � 0 and bi := b0i � e2ai � 0:Finally we set �1 = a + 2 and �2 = b + 2� 2g � ae2 and get(D �K�)2 = �e � (a+ 2)2 + 2 � (a+ 2) � (b+ 2 + e� 2g) = 2 � �1 � �2: (4.17)Replaing the equations (4.14) and (4.15) by0 �  D �K� � iXk=1 �k ��i! : �C0 + e2F � = �2 � iXk=1 bk � bi; (4.18)and 0 �  D �K� � iXk=1 �k ��i! :F = �1 � iXk=1 ak � ai; (4.19)the assertions of Step 1 to Step 2 in the proof of Lemma 4.4 remain literally true.Step 2d: � mPi=1 ai�2 � 32�(D�K�)2 �deg(XS)�2 and � mPi=1 bi�2 � 32��(D�K�)2 �deg(XS)�2.This follows from the following inequality with the aid of Step 2a and (4.17),�deg(XS)�2 � ��24 �Pmi=1ai�2 + ��14 �Pmi=1bi�2� 2��1��232� � �Pmi=1ai�2 + 2��1��2��32 � �Pmi=1bi�2:



26 THOMAS KEILENStep 3: h1��;JX0(D)� � 2 � mPi=1 ai � mPi=1 bi + (2g � 2) � mPi=1 ai � 2 � mPi=1 bi +m is provedas Step 3 in Lemma 4.4.Step 4a: If e = 0, we �nd the estimatemXi=1 �h0��;O�(�i)�� 1� � 8>>>>>>><>>>>>>>:
mPi=1 ai � mPi=1 bi + mPi=1 bi �m; if g = 1;Pmi=1 bi 6= 0;mPi=1 ai � mPi=1 bi + mPi=1 bi = 0; if g = 1;Pmi=1 bi = 0;mPi=1 ai � mPi=1 bi + mPi=1 ai + mPi=1 bi; for g arbitrary.We note that in this ase b0i = bi and that bi = 0 thus implies ai > 0. But thenh0��;O�(�i)� � 8>>><>>>: aibi + bi; if g = 1; bi > 0;aibi + bi + 1 = 1; if g = 1; bi = 0;aibi + ai + bi + 1; otherwise.The results for g arbitrary respetively g = 1 andPmi=1 bi = 0 thus follow right away.If, however, some bi0 > 0, then Pi 6=j aibj � bi0Pi 6=i0 ai � #�bi j bi = 0	 and heneh0��;O�(�i)� � mXi=1 aibi + mXi=1 bi +#�bi j bi = 0	= mXi=1 ai � mXi=1 bi + mXi=1 bi +#�bi j bi = 0	�Xi 6=j aibj � mXi=1 ai � mXi=1 bi + mXi=1 bi:Step 4b: If e < 0, we give several upper bounds for � = mPi=1�h0��;O�(�i)�� 1�:

� � 8>>>>>>><>>>>>>>:
12 mPi=1 ai mPi=1 bi + 12 � mPi=1 bi�2 + 18 � mPi=1 ai�2 + 14 mPi=1 ai + 12 mPi=1 bi; if g = 1;mPi=1 ai mPi=1 bi + mPi=1 ai + mPi=1 bi � 9e32 � mPi=1 ai�2 ; for g arbitrary.14 mPi=1 ai mPi=1 bi + mPi=1 ai + mPi=1 bi � 9e32 � mPi=1 ai�2 � 12e � mPi=1 bi�2 ; g arbitrary.If g is arbitrary, the laim follows sine a thorough investigation leads toh0��;O�(�i)� � aibi + ai + bi + 1� 9e32 � a2iand h0��;O�(�i)� � 14 � aibi + ai + bi + 1� 9e32 � a2i � 12e � bi2:If g = 1, then e = �1 and b = b0 + a2 and we are done sineh0��;O�(�i)� � aib0i + b0i + 1 + ai(ai+1)2 + b0i(b0i�1)2= 12 � aibi + 12 � bi2 + 18 � a2i + 14 � ai + 12 � bi + 1:



IRREDUCIBILITY 27Step 5: In this last step we gather the information from the previous investigationsand �nish the proof onsidering a bunh of di�erent ases.Using Step 3 and Step 4 and taking Pmi=1 ai + bi � m into aount, we get thefollowing upper bounds for � 0 = h1��;JX0(D)�+Pmi=1 �h0��;O�(�i)�� 1�
� 0 �

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:
3 mPi=1 ai mPi=1 bi + 2g mPi=1 ai; if e = 0;3 mPi=1 ai mPi=1 bi + 2g mPi=1 ai � 9e32 � mPi=1 ai�2 ; if e < 0;94 mPi=1 ai mPi=1 bi + 2g mPi=1 ai � 9e32 � mPi=1 ai�2 � 12e � mPi=1 bi�2 ; if e < 0;3 mPi=1 ai mPi=1 bi; if e = 0; g = 1; mPi=1 bi 6= 0;m � mPi=1 ai; if e = 0; g = 1; mPi=1 bi = 0;52 mPi=1 ai mPi=1 bi + 12 � mPi=1 bi�2 + 18 � mPi=1 ai�2 + 54 mPi=1 ai; if e < 0; g = 1:Applying now Step 2b-2d we end up with �0�(D�K�)2�deg(XS)�2 � . We thus �nally geth1��;JX0(D)�+Pmi=1 �h0��;O�(�i)�� 1� = � 0 � 1�(D�K�)2 � �deg(XS)�2= 1�(D�K�)2 � �Pz2� deg(XS;z)�2 � #XS�(D�K�)2 �Pz2� deg(XS;z)2� #XS�(D�K�)2 �Pz2� deg(X0;z)2 <(4) #XS: �It remains to show, that the inequality whih we derived annot hold.Lemma 4.7 Let D 2 Div(�), S1; : : : ;Sr be pairwise distint topologial or analytialsingularity types and k1; : : : ; kr 2 N n f0g. Suppose that V irr;regjDj (k1S1; : : : ; krSr) isnon-empty.Then there exists no urve C 2 V irrjDj (k1S1; : : : ; krSr) n V irr;regjDj (k1S1; : : : ; krSr) suhthat for the zero-dimensional sheme X0 = X(C) there exist urves �1; : : : ;�m � �and zero-dimensional loally omplete intersetions X0i � Xi�1 for i = 1; : : : ; m,where Xi = Xi�1 : �i for i = 1; : : : ; m suh that XS = Smi=1X0i satis�esh1��;JX0(D)�+ mXi=1 �h0��;O�(�i)�� 1� < #XS: (4.20)Proof: Throughout the proof we use the notation V irr = V irrjDj (k1S1; : : : ; krSr) andV irr;reg = V irr;regjDj (k1S1; : : : ; krSr).



28 THOMAS KEILENSuppose there exists a urve C 2 V irr n V irr;reg satisfying the assumption of theLemma, and let V � be the irreduible omponent of V irr ontaining C. Moreover,let C0 2 V irr;reg.We onsider in the following the morphism from Subsetion 1.5	 = 	jDj(k1S1; : : : ; krSr) : VjDj(k1S1; : : : ; krSr)! B(k1S1; : : : ; krSr) = B:Step 1: h0��;JX(C0)=�(D)� = h0��;JX(C)=�(D)�� h1��;JX(C)=�(D)�:By the hoie of C0 we have0 = H1��;JX�(C0)=�(D)�! H1(�;O�(D)�! H1(�;OX�(C0)(D)� = 0;and thus D is non-speial, i. e. h1(�;O�(D)� = 0. But thenh0��;JX(C0)=�(D)� = h0��;JX(C)=�(D)�� h1��;JX(C)=�(D)�:Step 2: h1��;JX(C)(D)� � odimB �	�V ���.Suppose the ontrary, that is dim�	�V ��� < dim(B) � h1��;JX(C)=�(D)�, thenby Step 1 and Theorem 3.1dim �V �� � dim�	�V ��� + dim�	�1�	(C)��< dim(B)� h1��;JX(C)=�(D)�+ h0��;JX(C)=�(D)�� 1= dim(B) + h0��;JX(C0)=�(D)�� 1 = dim �V irr;reg�:However, any irreduible omponent of V irr has at least the expeted dimensiondim �V irr;reg�, whih gives a ontradition.Step 3: odimB �	�V ��� � #XS �Pmi=1 dim j�ijl.The existene of the subshemes X0i � X(C)\�i imposes at least #X0i � dim j�ijlonditions on X(C) and inreases thus the odimension of 	�V �� by the samenumber.Step 4: Colleting the results we derive the following ontradition:h1��;JX(C)(D)� �Step 2 odimB �	�V ����Step 3 #XS �Pmi=1 dim j�ijl>(4.20) h1��;JX(C)(D)�: �
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