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ibility of Equisingular Families ofCurves { Improved ConditionsThomas KeilenMathemati
s Institute, University of Warwi
k,Coventry, United Kingdom,email:keilen�mathematik.uni-kl.deAbstra
tIn [7℄ we gave suÆ
ient 
onditions for the irre-du
ibility of the family V irrjDj �S1; : : : ;Sr� of irredu
ible
urves in the linear system jDjl with pre
isely r sin-gular points of topologi
al respe
tively analyti
al typesS1; : : : ;Sr on several 
lasses of smooth proje
tive sur-fa
es �. The 
onditions were of the formrXi=1 �� �(Si) + 2�2 < 
 � (D �K�)2;where � � is some invariant of singularity types, K� isthe 
anoni
al divisor of � and 
 is some 
onstant. Inthe present paper we improve this 
ondition, that is the
onstant 
, by a fa
tor 9.Key Words: Algebrai
 geometry, singularity theory,equisingular families of 
urves1Copyright C
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2 KeilenI. Introdu
tionIf we �x a linear system jDjl on a smooth proje
tive surfa
e � overthe 
omplex numbers C and singularity types S1; : : : ;Sr we denoteby V irr = V irrjDj �S1; : : : ;Sr� the variety of irredu
ible 
urves in jDjlwith pre
isely r singular points of the given types. We would like togive numeri
al 
onditions, depending on the singularity types, thelinear system and the surfa
e, whi
h ensure that the family V irr isirredu
ible, on
e it is non-empty.In order to keep the presentation as short as possible we refer thereader to [7℄ for an introdu
tion to the signi�
an
e of the questionand for most of the notation we are going to use. Moreover, we willapply many of the te
hni
al results shown there. The proof runs alongthe same lines as the original one by showing that some irredu
ible\regular" subs
heme of V irr is dense in V irr. We do this again by
onsidering a morphism � on a 
ertain subs
heme of V irr and 
om-paring dimensions. However, the subs
heme whi
h we 
onsider andthe morphism are 
ompletely di�erent.In [7℄ the morphism asso
iated to ea
h 
urve C in V irr its singularitys
heme X(C), and the regular part V irr;reg 
onsisted of the 
urvesbelonging to smooth �bres of expe
ted dimension. Sin
e V irr;reg isirredu
ible by default, only 
onditions were needed whi
h ensuredthe vanishing of h1��;JX(C)=�(C)� generi
ally. In the present paperwe 
onsider the morphism whi
h asso
iates to ea
h 
urve C the setof singular points, and again the regular part V irr;fix of V irr 
onsistsof the smooth �bres of expe
ted dimension. Sin
e V irr;fix will not beirredu
ible in general, we have to �nd 
onditions whi
h ensure that itis dense in V irr and that it shares a dense subset with V irr;reg. The�rst part is the hard part and 
omes down a generi
 h1-vanishingfor the ideal sheaves of the s
hemes X�fix(C). For this we use thete
hnique of Bogomolov unstable ve
tor bundles �rst applied in [2℄.The general ideas for this approa
h in the 
ase of planar 
urves 
anbe found in [4℄, whi
h has not been published sin
e in the plane 
asebetter 
onditions 
ould be derived repla
ing the Bogomolov argu-



IRREDUCIBILITY 3ments by the Castelnuovo fun
tion (see [5℄), whi
h 
an not so easilybe generalised to other surfa
es. We 
ombine these ideas with thete
hni
al lemmata developed for surfa
es with Pi
ard number one,produ
ts of 
urves and geometri
ally ruled surfa
es in [7℄.The te
hniques applied in [7℄ and in this paper give 
onditions whi
hdepend on the square of the lo
al degree of the involved zero-dimen-sional s
heme, i. e. they depend on deg �X(C); z�2 respe
tively ondeg �X�fix(C); z�2 = �� �(C; z) + 2�2. The degree of X(C) at z is notpre
isely known in general, so in [7℄ it is repla
ed by the best possiblegeneral upper bound 3 � � �(C; z) + 2. The 
onditions this way areimproved by a fa
tor 9.We now introdu
e the new obje
ts. In Se
tion II we formulate themain results, and they are proved in Se
tion III. Lemma III.1 is themost important te
hni
al adjustment whi
h leads to the improved
oeÆ
ient. A. The Deformation Determina
yIf S is a topologi
al (respe
tively analyti
al) singularity type withrepresentative (C; z) then�s(S) = �s(C; z) = min�m � 0 �� mm+1�;z � Is(C; z)	respe
tively�a(S) = �a(C; z) = min�m � 0 �� mm+1�;z � Ia(C; z)	;where Is(C; z) = JXs(C)=�;z is the singularity ideal of the topologi
alsingularity type (C; z) and Ia(C; z) = JXa(C)=�;z is the analyti
alsingularity ideal of (C; z) respe
tively (
f. [7℄ Se
tion 1.3). These areinvariants of the topologi
al (respe
tively analyti
al) singularity typesatisfying (
f. [5℄ Se
tion 1.2 and 1.3)�s(S) � � es(S) respe
tively �a(S) � �(S);and they are 
alled topologi
al deformation determina
y (respe
-tively analyti
al deformation determina
y)



4 KeilenB. Singularity S
hemesFor a redu
ed 
urve C � � we re
all the de�nition of the zero-dimensional s
hemesXesfix(C) andXeafix(C) from [5℄ Se
tion 1.1. Theyare de�ned by the ideal sheaves JXesfix(C)=� and JXeafix(C)=� respe
-tively, given by the following stalks� JXesfix(C)=�;z = Iesfix(C; z) = ng 2 O�;z ��� f +"g is equisingular over C["℄=("2)along the trivial se
tion o,where f 2 O�;z is a lo
al equation of C at z.� JXeafix(C)=�;z = Ieafix(C; z) = hfi+m � 
�f�x ; �f�y � � O�;z, where x; ydenote lo
al 
oordinates of � at z and f 2 O�;z is a lo
al equa-tion of C.So by de�nition we havedeg �Xesfix(C); z� = � es(C; z) + 2and deg �Xeafix(C); z� = �(C; z) + 2:Throughout this arti
le we will frequently treat topologi
aland analyti
al singularities at the same time. Whenever wedo so, we will write X�fix(C) for Xesfix(C) respe
tively forXeafix(C), we will write ��(S) for �s(S) respe
tively �a(S),and we will write � �(S) for � es(S) respe
tively �(S). Forthe s
hemes borrowed from [7℄ we sti
k to the analogous
onvention made there.C. Equisingular FamiliesGiven a divisor D 2 Div(�) and topologi
al (respe
tively analyti
al)singularity types S1; : : : ;Sr.We denote by V irr;fix = V irr;fixjDj (S1; : : : ;Sr) the open subs
heme ofV irr given asV irr;fix = �C 2 V irrjDj (S1; : : : ;Sr) �� h1��;JX�fix(C)=�(D)� = 0	:



IRREDUCIBILITY 5We de�ne the map � = �D(S1; : : : ;Sr) by� : V irrjDj (S1; : : : ;Sr) // Symr(�) : C �

// Sing(C);sending a 
urve C to the unordered tuple of its singular points.Note that H0��;JX�fix(C)(D)�=H0(O�) is the tangent spa
e of the�bre ��1��(C)� at C 2 V irr, so thatdim���1��(C)�� � h0��;JX�fix(C)(D)�� 1: (I.1)Moreover, suppose that h1��;JX�fix(C)=�(D)� = 0, then the germ ofthe �bration at C(�; C) : �V;C�! �Symr(�);Sing(C)�is smooth of �bre dimension h0��;JX�fix(C)(D)�� 1, i. e. lo
ally atC the morphism � is a proje
tion of the produ
t of the smooth basespa
e with the smooth �bre. This implies in parti
ular, that 
lose toC there is a 
urve having its singularities in very general position.(Cf. [9℄ Proposition 2.1 (e).)II. The Main ResultsIn this se
tion we give suÆ
ient 
onditions for the irredu
ibility ofequisingular families of 
urves on 
ertain surfa
es with Pi
ard num-ber one { in
luding the proje
tive plane, general surfa
es in P3C andgeneral K3-surfa
es {, on produ
ts of 
urves, and on a sub
lass ofgeometri
ally ruled surfa
es.A. Surfa
es with Pi
ard Number OneTheorem II.1Let � be a surfa
e su
h that(i) NS(�) = L �Z with L ample, and(ii) h1(�; C) = 0, whenever C is e�e
tive.



6 KeilenLet D 2 Div(�), let S1; : : : ;Sr be topologi
al (respe
tively analyti
al)singularity types.Suppose that(II.1) D �K� is big and nef,(II.2) D +K� is nef,(II.3) rPi=1 �� �(Si) + 2� < � � (D �K�)2 for some 0 < � � 14 , and(II.4) rPi=1 �� �(Si) + 2�2 < 
 � (D �K�)2,where 
 = �1+p1�4��2�L24��(O�)+maxf0;2�K�:Lg+6�L2 .Then either V irrjDj (S1; : : : ;Sr) is empty, or it is irredu
ible of the ex-pe
ted dimension. 2Remark II.2If we set
 = 36�(3�+ 4)2 with � = 4 � �(O�) + maxf0; 2 �K�:Lg+ 6 � L2L2 ;then a simple 
al
ulation shows that (II.3) be
omes redundant. Forthis we have to take into a

ount that � �(S) � 1 for any singularitytype S. The 
laim then follows with � = 13 � 
 � 14 . 2We now apply the result in several spe
ial 
ases, 
ombining the abovetheorem with the existen
e results in [8℄ and the T-smoothness re-sults in [3℄.Corollary II.3Let d � 3, L � P2C be a line, and S1; : : : ;Sr be topologi
al or analyti
alsingularity types.Suppose that rXi=1 �� �(Si) + 2�2 < 90289 � (d+ 3)2:Then V irrjdLj(S1; : : : ;Sr) is non-empty, irredu
ible and T-smooth. 2



IRREDUCIBILITY 7The best general results in this 
ase 
an still be found in [5℄ (see also[9℄ Corollary 6.1), where the 
oeÆ
ient on the right hand side is 910 .A smooth 
omplete interse
tion surfa
e with Pi
ard number one sat-is�es the assumptions of Theorem II.1. Thus by the Theorem ofNoether the result applies in parti
ular to general surfa
es in P3C .Corollary II.4Let � � P3C be a smooth hypersurfa
e of degree n � 4, let H � �be a hyperplane se
tion, and suppose that the Pi
ard number of �is one. Let d � n+ 6 and let S1; : : : ;Sr be topologi
al (respe
tivelyanalyti
al) singularity types.Suppose thatrXi=1 �� �(Si) + 2�2 < 6��n3�3n2+8n�6��n2�n3�3n2+10n�6�2 � (d+ 4� n)2;Then V irrjdHj(S1; : : : ;Sr) is non-empty and irredu
ible of the expe
teddimension.Moreover, if we assume additionally d � n � �� �(Si) + 1� for all i =1; : : : ; r, then V irrjdHj(S1; : : : ;Sr) is also T-smooth.A general K3-surfa
e has Pi
ard number one and in this situation,by the Kodaira Vanishing Theorem � also satis�es the assumption(ii) in Theorem II.1.Corollary II.5Let � be a smooth K3-surfa
e with NS(�) = L �Z with L ample andset n = L2. Let d > 0, D �a dL and let S1; : : : ;Sr be topologi
al (re-spe
tively analyti
al) singularity types.Suppose that rXi=1 �� �(Si) + 2�2 < 54n2+72n(11n+12)2 � d2 � n:Then V irrjDj (S1; : : : ;Sr) is irredu
ible and T-smooth, on
e it is non-empty.Moreover, if d � 19, then V irrjdHj(S1; : : : ;Sr) is non-empty. 2



8 KeilenB. Produ
ts of CurvesIf � is the produ
t of smooth proje
tive 
urves, then for a general
hoi
e of the 
urves the N�eron{Severi group NS(�) will be generatedby two �bres of the 
anoni
al proje
tions.If both 
urves are ellipti
,then \general" just means that the two 
urves are non-isogenous.Theorem II.6Let C1 and C2 be smooth proje
tive 
urves of genera g1 respe
tively g2with g1 � g2 � 0, su
h that NS(�) = C1Z� C2Z for � = C1 � C2.Let S1; : : : ;Sr be topologi
al or analyti
al singularity types, and letD 2 Div(�) su
h that D �a aC1 + bC2 witha � �max�2; ��(Si) �� i = 1; : : : ; r	; if g2 = 0;2g2 � 1; else;and b � �max�2; ��(Si) �� i = 1; : : : ; r	; if g1 = 0;2g1 � 1; else:Suppose that rXi=1 �� �(Si) + 2�2 < 
 � (D �K�)2; (II.5)where 
 may be taken from the following table with � = a�2g2+2b�2g1+2 > 0.g1 g2 
0 0 1241 0 1maxf32;2�g� 2 0 1maxf24+16g1 ;4g1�g1 1 1max�32;2�; 2�	� 2 � 1 1max�24+16g1+16g2;4g1�;4g2� �Then either V irrjDj (S1; : : : ;Sr) is empty, or it is irredu
ible of the ex-pe
ted dimension. 2



IRREDUCIBILITY 9C. Geometri
ally Ruled Surfa
esLet � : � = PC(E)! C be a geometri
ally ruled surfa
e with nor-malised bundle E (in the sense of [6℄ V.2.8.1). The N�eron{Severigroup of � is NS(�) = C0Z� FZ with interse
tion matrix ��e 11 0 �where F �= P1C is a �bre of �, C0 a se
tion of � with O�(C0) �=OPC(E)(1), g = g(C) the genus of C, e = �2E and e = �deg(e) � �g.For the 
anoni
al divisor we have K� �a �2C0 + (2g � 2� e) � F .Theorem II.7Let � : �! C be a geometri
ally ruled surfa
e with e � 0. Let S1; : : : ;Srbe topologi
al or analyti
al singularity types, and let D 2 Div(�) su
hthat D �a aC0 + bF with a � max �2; ��(Si) �� i = 1; : : : ; r	, and,b > �max�1; ��(Si)� 1 �� i = 1; : : : ; r	; if g = 0;2g � 2 + ae2 ; if g > 0:Suppose that rXi=1 �� �(Si) + 2�2 < 
 � (D �K�)2; (II.6)where 
 may be taken from the table below with � = a+2b+2�2g�ae2 > 0.g e 
0 0 1241 0 1maxf24;2�g1 �1 1maxnmin�30+16� +4�;40+9�	;132 �o� 2 0 1maxf24+16g;4g�g� 2 < 0 1maxnmin�24+16g�9e�;18+16g�9e�� 16e�	;4g��9e�oThen either V irrjDj (S1; : : : ;Sr) is empty, or it is irredu
ible of the ex-pe
ted dimension. 2



10 KeilenFor geometri
ally ruled surfa
es as well as for produ
ts of 
urves, onlywhen � �= P1C �P1C , we are in the lu
ky situation that the 
onstant
 does not at all depend on the 
hosen divisor D, whereas otherwisethe ratio of a and b is involved in 
. This means that an asymptoti
albehaviour 
an only be examined if the ratio remains un
hanged.If � is a produ
t C �P1C the 
onstant 
 derived here is the same asin Se
tion B. III. The ProofsOur approa
h to the problem pro
eeds along the lines of an unpub-lished result of Greuel, Lossen and Shustin (
f. [4℄), whi
h is basedon ideas of Chiantini and Ciliberto (
f. [1℄). It is a slight modi�
ationof the proof given in [7℄. We ta
kle the problem in three steps:Step 1: By [7℄ Theorem 3.1 we know that the open subvarietyV irr;reg of 
urves in V irr with h1��;JX(C)=�(D)� = 0 is always irre-du
ible, and hen
e so is its 
losure in V irr.Step 2: We �nd 
onditions whi
h ensure that the open subvarietyV irr;fix of 
urves in V irr with h1��;JX�fix(C)=�(D)� = 0 is dense inV irr.Step 3: And �nally, we 
ombine these 
onditions with 
onditionswhi
h guarantee that V irr;reg is dense in V irr;fix by showing thatthey share some open dense subset V genU of 
urves with singularitiesin very general position.More pre
isely, taking Lemma III.2 into a

ount, we dedu
e fromLemma III.3 
onditions whi
h ensure that there exists a very gen-eral subset U � �r su
h that the family V genU = V genjDj;U (S1; : : : ;Sr),as de�ned there, satis�es(a) V genU is dense in V irr;fix, and(b) V genU � V irr;reg.But then V irr;reg is dense in V irr, whi
h is irredu
ible by Step 1. 2



IRREDUCIBILITY 11The diÆ
ult part is Step 2. For this one we 
onsider the restri
tionof the morphism (
f. Subse
tion C)� : V irr ! Symr(�) =: Bto an irredu
ible 
omponent V � of V irr not 
ontained in the 
lo-sure V irr;fix in V irr. Knowing, that the dimension of V � is at leastthe expe
ted dimension dim �V irr;fix� we dedu
e that the 
odimen-sion of ��V �� in B is at most h1��;JX�fix(C)=�(D)�, where C 2 V �(
f. Lemma III.1). It thus suÆ
es to �nd 
onditions whi
h 
ontradi
tthis inequality, that is, we have to get our hands on 
odimB ��(V �)�.This is a
hieved by applying the results of [7℄ Lemma 4.1 to Lemma4.6 to the zero-dimensional s
heme X0 = X�fix(C).These 
onsiderations lead to the following proofs.Proof of Theorem II.1: We may assume that the family V irr =V irrjDj (S1; : : : ;Sr) is non-empty. As indi
ated above it suÆ
es to showthat:Step 2: V irr = V irr;fix, where V irr;fix = V irr;fixjDj (S1; : : : ;Sr), andStep 3: the 
onditions of Lemma III.3 are ful�lled.For Step 3 we note that ��(Si) � � �(Si). Thus (II.4) implies thatrXi=1 ���(Si) + 2�2 � rXi=1 �� �(Si) + 2�2� 
 � (D �K�)2 � 12 � (D �K�)2;whi
h gives the �rst 
ondition in Lemma III.3. Sin
e a surfa
e withPi
ard number one has no 
urves of sel�nterse
tion zero, the se
ond
ondition in Lemma III.3 is void, while the last 
ondition is satis�edby (II.1).It remains to show Step 2, i. e. V irr = V irr;fix. Suppose the 
on-trary, that is, there is an irredu
ible 
urve C0 2 V irr n V irr;fix, inparti
ular h1��;JX0=�(D)� > 0 forX0 = X�fix(C0). Sin
e deg(X0) =Pri=1 �� �(Si) + 2� andPz2� �deg(X0;z)�2 =Pri=1 �� �(Si) + 2�2 theassumptions (0)-(3) of [7℄ Lemma 4.1 and (4) of [7℄ Lemma 4.3 are ful-�lled. Thus [7℄ Lemma 4.3 implies that C0 satis�es Condition (III.1)



12 Keilenin Lemma III.1 below, whi
h it 
annot satisfy by the same Lemma.Thus we have derived a 
ontradi
tion.Proof of Theorem II.6: The assumptions on a and b ensure thatD �K� is big and nef and that D +K� is nef. Thus, on
e we knowthat (II.5) implies Condition (3) in [7℄ Lemma 4.1 we 
an do thesame proof as in Theorem II.1, just repla
ing [7℄ Lemma 4.3 by [7℄Lemma 4.4.For Condition (3) we note thatrXi=1 deg �X�fix(Si)� � rXi=1 �� �(Si) + 2�2� 124 � (D �K�)2 < 14 � (D �K�)2:Proof of Theorem II.7: The proof is identi
al to that of Theo-rem II.6, just repla
ing [7℄ Lemma 4.4 by [7℄ Lemma 4.6.A. Some Te
hni
al LemmataWe have applied [7℄ Lemma 4.1 to Lemma 4.6 to the zero-dimensio-nal s
heme X0 = X�fix(C), for a 
urve C 2 V irr n V irr;fix, in order to�nd with the aid of Bogomolov instability 
urves �i and subs
hemesX0i � Xi, where Xi = Xi�1 : �i, su
h that for XS = Smi=1X0ih1��;JX0(D)�+ mXi=1 �h0��;O�(�i)�� 1� < #XS :And we are now going to show that this simply is not possible.Lemma III.1Let D 2 Div(�), S1; : : : ;Sr be pairwise distin
t topologi
al (respe
-tively analyti
al) singularity types. Suppose that V irr;fixjDj (S1; : : : ;Sr)is non-empty.



IRREDUCIBILITY 13Then there is no 
urve* C 2 V irrjDj (S1; : : : ;Sr) n V irr;fixjDj (S1; : : : ;Sr)su
h that for the zero-dimensional s
heme X0 = X�fix(C) there ex-ist 
urves �1; : : : ;�m � � and zero-dimensional lo
ally 
omplete in-terse
tions X0i � Xi�1 for i = 1; : : : ;m, where Xi = Xi�1 : �i fori = 1; : : : ;m su
h that XS = Smi=1X0i satis�esh1��;JX0(D)�+ mXi=1 �h0��;O�(�i)�� 1� < #XS: (III.1)Proof: Throughout the proof we set V irr = V irrjDj (S1; : : : ;Sr) andV irr;fix = V irr;fixjDj (S1; : : : ;Sr).Suppose there exists a 
urve C 2 V irr n V irr;fix satisfying the as-sumption of the Lemma, and let V � be the irredu
ible 
omponent ofV irr 
ontaining C. Moreover, let C0 2 V irr;fix.We 
onsider in the following the morphism from Subse
tion C� = �jDj(S1; : : : ;Sr) : VjDj(S1; : : : ;Sr)! Symr(�) =: B:Step 1: h0�JX�fix(C0)=�(D)� = h0�JX�fix(C)=�(D)�� h1�JX�fix(C)=�(D)�:By the 
hoi
e of C0 we have the exa
t sequen
eH1��;JX�fix(C0)=�(D)�! H1(�;O�(D)�! H1(�;OX�fix(C0)(D)�where the groups on the left and right side vanish, and thus D isnon-spe
ial, i. e. h1(�;O�(D)� = 0. But thenh0��;JX�fix(C0)=�(D)� = h0��;O�(D)�� deg �X�fix(C0)�= h0��;O�(D)�� deg �X�fix(C)�= h0��;JX�fix(C)=�(D)�� h1��;JX�fix(C)=�(D)�:Step 2: h1��;JX�fix(C)(D)� � 
odimB ���V ���.Suppose the 
ontrary, that isdim���V ��� < dim(B)� h1��;JX�fix(C)=�(D)�:*For a subset U � V of a topologi
al spa
e V we denote by U the 
losure of Uin V .



14 KeilenThe vanishing of h1��;JX�fix(C0)=�(D)� implies that V irr is smoothof the expe
ted dimension dim �V irr;fix� at C0. Therefore, and byStep 1 and Equation (I.1) we havedim �V �� � dim���V ���+ dim���1��(C)��< dim(B)� h1��;JX�fix(C)=�(D)�+ h0��;JX�fix(C)=�(D)�� 1= 2r + h0��;JX�fix(C0)=�(D)�� 1 = dim �V irr;fix�:However, any irredu
ible 
omponent of V irr has at least the expe
teddimension dim �V irr;fix�, whi
h gives a 
ontradi
tion.Step 3: 
odimB ���V ��� � #XS �Pmi=1 dim j�ijl.The existen
e of the subs
hemesX0i � X�fix(C) \�i imposes at least#X0i � dim j�ijl 
onditions on X�fix(C) and in
reases thus the 
odi-mension of ��V �� by the same number.Step 4: Derive a 
ontradi
tion.Colle
ting the results we derive the following 
ontradi
tion:h1��;JX�fix(C)(D)� �Step 2 
odimB ���V ����Step 3 #XS �Pmi=1 dim j�ijl >(III.1) h1��;JX�fix(C)(D)�:The next two lemmata provide 
onditions whi
h ensure that V irr;regand V irr;fix share some dense subset V genU , and thus that V irr;reg isdense in V irr;fix.Lemma III.2Let S1; : : : ;Sr be topologi
al (respe
tively analyti
al) singularity types,let D 2 Div(�) and let V irr = V irrjDj (S1; : : : ;Sr).There exists a very general subset U � �r su
h that the family11Here � means either topologi
al equivalen
e �t or 
onta
t equivalen
e �
. { Bya very general subset of �r we mean the 
omplement of at most 
ountably many
losed subvarieties.



IRREDUCIBILITY 15V genU = V genjDj;U (S1; : : : ;Sr) = �C 2 V irr��z 2 U; (C; zi) � Si; 1 � i � rgis dense in V irr;fixjDj (S1; : : : ;Sr).Proof: This follows from the remark in Subse
tion C.Lemma III.3With the notation of Lemma III.2 we assume that(a) (D �K�)2 � 2 �Pki=1 ���(Si) + 2�2,(b) (D �K�):B > max ���(Si) + 1 �� i = 1; : : : ; r	 for any irredu-
ible 
urve B with B2 = 0 and dim jBja > 0, and(
) D �K� is nef.Then there exists a very general subset U � �r su
h that V genU �V irr;regjDj (S1; : : : ;Sr).Proof: By [8℄ Theorem 2.1 we know that there is a very generalsubset U � �r su
h that for z 2 U and � = ���(S1) + 1; : : : ; ��(Sr) +1� we have h1��;JX(�;z)=�(D)� = 0:However, if C 2 V irr and z 2 U with (C; zi) � Si, then by the de�-nition of ��(Si) we haveJX(�;z)=� ,! JX(C)=�;and hen
e the vanishing of H1��;JX(�;z)=�(D)� impliesh1��;JX(C)=�(D)� = 0;i. e. C 2 V irr;reg. Referen
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