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Irreduibility of Equisingular Families ofCurves { Improved ConditionsThomas KeilenMathematis Institute, University of Warwik,Coventry, United Kingdom,email:keilen�mathematik.uni-kl.deAbstratIn [7℄ we gave suÆient onditions for the irre-duibility of the family V irrjDj �S1; : : : ;Sr� of irreduibleurves in the linear system jDjl with preisely r sin-gular points of topologial respetively analytial typesS1; : : : ;Sr on several lasses of smooth projetive sur-faes �. The onditions were of the formrXi=1 �� �(Si) + 2�2 <  � (D �K�)2;where � � is some invariant of singularity types, K� isthe anonial divisor of � and  is some onstant. Inthe present paper we improve this ondition, that is theonstant , by a fator 9.Key Words: Algebrai geometry, singularity theory,equisingular families of urves1Copyright C 2000 by Marel Dekker, In. www.dekker.om



2 KeilenI. IntrodutionIf we �x a linear system jDjl on a smooth projetive surfae � overthe omplex numbers C and singularity types S1; : : : ;Sr we denoteby V irr = V irrjDj �S1; : : : ;Sr� the variety of irreduible urves in jDjlwith preisely r singular points of the given types. We would like togive numerial onditions, depending on the singularity types, thelinear system and the surfae, whih ensure that the family V irr isirreduible, one it is non-empty.In order to keep the presentation as short as possible we refer thereader to [7℄ for an introdution to the signi�ane of the questionand for most of the notation we are going to use. Moreover, we willapply many of the tehnial results shown there. The proof runs alongthe same lines as the original one by showing that some irreduible\regular" subsheme of V irr is dense in V irr. We do this again byonsidering a morphism � on a ertain subsheme of V irr and om-paring dimensions. However, the subsheme whih we onsider andthe morphism are ompletely di�erent.In [7℄ the morphism assoiated to eah urve C in V irr its singularitysheme X(C), and the regular part V irr;reg onsisted of the urvesbelonging to smooth �bres of expeted dimension. Sine V irr;reg isirreduible by default, only onditions were needed whih ensuredthe vanishing of h1��;JX(C)=�(C)� generially. In the present paperwe onsider the morphism whih assoiates to eah urve C the setof singular points, and again the regular part V irr;fix of V irr onsistsof the smooth �bres of expeted dimension. Sine V irr;fix will not beirreduible in general, we have to �nd onditions whih ensure that itis dense in V irr and that it shares a dense subset with V irr;reg. The�rst part is the hard part and omes down a generi h1-vanishingfor the ideal sheaves of the shemes X�fix(C). For this we use thetehnique of Bogomolov unstable vetor bundles �rst applied in [2℄.The general ideas for this approah in the ase of planar urves anbe found in [4℄, whih has not been published sine in the plane asebetter onditions ould be derived replaing the Bogomolov argu-



IRREDUCIBILITY 3ments by the Castelnuovo funtion (see [5℄), whih an not so easilybe generalised to other surfaes. We ombine these ideas with thetehnial lemmata developed for surfaes with Piard number one,produts of urves and geometrially ruled surfaes in [7℄.The tehniques applied in [7℄ and in this paper give onditions whihdepend on the square of the loal degree of the involved zero-dimen-sional sheme, i. e. they depend on deg �X(C); z�2 respetively ondeg �X�fix(C); z�2 = �� �(C; z) + 2�2. The degree of X(C) at z is notpreisely known in general, so in [7℄ it is replaed by the best possiblegeneral upper bound 3 � � �(C; z) + 2. The onditions this way areimproved by a fator 9.We now introdue the new objets. In Setion II we formulate themain results, and they are proved in Setion III. Lemma III.1 is themost important tehnial adjustment whih leads to the improvedoeÆient. A. The Deformation DeterminayIf S is a topologial (respetively analytial) singularity type withrepresentative (C; z) then�s(S) = �s(C; z) = min�m � 0 �� mm+1�;z � Is(C; z)	respetively�a(S) = �a(C; z) = min�m � 0 �� mm+1�;z � Ia(C; z)	;where Is(C; z) = JXs(C)=�;z is the singularity ideal of the topologialsingularity type (C; z) and Ia(C; z) = JXa(C)=�;z is the analytialsingularity ideal of (C; z) respetively (f. [7℄ Setion 1.3). These areinvariants of the topologial (respetively analytial) singularity typesatisfying (f. [5℄ Setion 1.2 and 1.3)�s(S) � � es(S) respetively �a(S) � �(S);and they are alled topologial deformation determinay (respe-tively analytial deformation determinay)



4 KeilenB. Singularity ShemesFor a redued urve C � � we reall the de�nition of the zero-dimensional shemesXesfix(C) andXeafix(C) from [5℄ Setion 1.1. Theyare de�ned by the ideal sheaves JXesfix(C)=� and JXeafix(C)=� respe-tively, given by the following stalks� JXesfix(C)=�;z = Iesfix(C; z) = ng 2 O�;z ��� f +"g is equisingular over C["℄=("2)along the trivial setion o,where f 2 O�;z is a loal equation of C at z.� JXeafix(C)=�;z = Ieafix(C; z) = hfi+m � 
�f�x ; �f�y � � O�;z, where x; ydenote loal oordinates of � at z and f 2 O�;z is a loal equa-tion of C.So by de�nition we havedeg �Xesfix(C); z� = � es(C; z) + 2and deg �Xeafix(C); z� = �(C; z) + 2:Throughout this artile we will frequently treat topologialand analytial singularities at the same time. Whenever wedo so, we will write X�fix(C) for Xesfix(C) respetively forXeafix(C), we will write ��(S) for �s(S) respetively �a(S),and we will write � �(S) for � es(S) respetively �(S). Forthe shemes borrowed from [7℄ we stik to the analogousonvention made there.C. Equisingular FamiliesGiven a divisor D 2 Div(�) and topologial (respetively analytial)singularity types S1; : : : ;Sr.We denote by V irr;fix = V irr;fixjDj (S1; : : : ;Sr) the open subsheme ofV irr given asV irr;fix = �C 2 V irrjDj (S1; : : : ;Sr) �� h1��;JX�fix(C)=�(D)� = 0	:



IRREDUCIBILITY 5We de�ne the map � = �D(S1; : : : ;Sr) by� : V irrjDj (S1; : : : ;Sr) // Symr(�) : C �

// Sing(C);sending a urve C to the unordered tuple of its singular points.Note that H0��;JX�fix(C)(D)�=H0(O�) is the tangent spae of the�bre ��1��(C)� at C 2 V irr, so thatdim���1��(C)�� � h0��;JX�fix(C)(D)�� 1: (I.1)Moreover, suppose that h1��;JX�fix(C)=�(D)� = 0, then the germ ofthe �bration at C(�; C) : �V;C�! �Symr(�);Sing(C)�is smooth of �bre dimension h0��;JX�fix(C)(D)�� 1, i. e. loally atC the morphism � is a projetion of the produt of the smooth basespae with the smooth �bre. This implies in partiular, that lose toC there is a urve having its singularities in very general position.(Cf. [9℄ Proposition 2.1 (e).)II. The Main ResultsIn this setion we give suÆient onditions for the irreduibility ofequisingular families of urves on ertain surfaes with Piard num-ber one { inluding the projetive plane, general surfaes in P3C andgeneral K3-surfaes {, on produts of urves, and on a sublass ofgeometrially ruled surfaes.A. Surfaes with Piard Number OneTheorem II.1Let � be a surfae suh that(i) NS(�) = L �Z with L ample, and(ii) h1(�; C) = 0, whenever C is e�etive.



6 KeilenLet D 2 Div(�), let S1; : : : ;Sr be topologial (respetively analytial)singularity types.Suppose that(II.1) D �K� is big and nef,(II.2) D +K� is nef,(II.3) rPi=1 �� �(Si) + 2� < � � (D �K�)2 for some 0 < � � 14 , and(II.4) rPi=1 �� �(Si) + 2�2 <  � (D �K�)2,where  = �1+p1�4��2�L24��(O�)+maxf0;2�K�:Lg+6�L2 .Then either V irrjDj (S1; : : : ;Sr) is empty, or it is irreduible of the ex-peted dimension. 2Remark II.2If we set = 36�(3�+ 4)2 with � = 4 � �(O�) + maxf0; 2 �K�:Lg+ 6 � L2L2 ;then a simple alulation shows that (II.3) beomes redundant. Forthis we have to take into aount that � �(S) � 1 for any singularitytype S. The laim then follows with � = 13 �  � 14 . 2We now apply the result in several speial ases, ombining the abovetheorem with the existene results in [8℄ and the T-smoothness re-sults in [3℄.Corollary II.3Let d � 3, L � P2C be a line, and S1; : : : ;Sr be topologial or analytialsingularity types.Suppose that rXi=1 �� �(Si) + 2�2 < 90289 � (d+ 3)2:Then V irrjdLj(S1; : : : ;Sr) is non-empty, irreduible and T-smooth. 2



IRREDUCIBILITY 7The best general results in this ase an still be found in [5℄ (see also[9℄ Corollary 6.1), where the oeÆient on the right hand side is 910 .A smooth omplete intersetion surfae with Piard number one sat-is�es the assumptions of Theorem II.1. Thus by the Theorem ofNoether the result applies in partiular to general surfaes in P3C .Corollary II.4Let � � P3C be a smooth hypersurfae of degree n � 4, let H � �be a hyperplane setion, and suppose that the Piard number of �is one. Let d � n+ 6 and let S1; : : : ;Sr be topologial (respetivelyanalytial) singularity types.Suppose thatrXi=1 �� �(Si) + 2�2 < 6��n3�3n2+8n�6��n2�n3�3n2+10n�6�2 � (d+ 4� n)2;Then V irrjdHj(S1; : : : ;Sr) is non-empty and irreduible of the expeteddimension.Moreover, if we assume additionally d � n � �� �(Si) + 1� for all i =1; : : : ; r, then V irrjdHj(S1; : : : ;Sr) is also T-smooth.A general K3-surfae has Piard number one and in this situation,by the Kodaira Vanishing Theorem � also satis�es the assumption(ii) in Theorem II.1.Corollary II.5Let � be a smooth K3-surfae with NS(�) = L �Z with L ample andset n = L2. Let d > 0, D �a dL and let S1; : : : ;Sr be topologial (re-spetively analytial) singularity types.Suppose that rXi=1 �� �(Si) + 2�2 < 54n2+72n(11n+12)2 � d2 � n:Then V irrjDj (S1; : : : ;Sr) is irreduible and T-smooth, one it is non-empty.Moreover, if d � 19, then V irrjdHj(S1; : : : ;Sr) is non-empty. 2



8 KeilenB. Produts of CurvesIf � is the produt of smooth projetive urves, then for a generalhoie of the urves the N�eron{Severi group NS(�) will be generatedby two �bres of the anonial projetions.If both urves are ellipti,then \general" just means that the two urves are non-isogenous.Theorem II.6Let C1 and C2 be smooth projetive urves of genera g1 respetively g2with g1 � g2 � 0, suh that NS(�) = C1Z� C2Z for � = C1 � C2.Let S1; : : : ;Sr be topologial or analytial singularity types, and letD 2 Div(�) suh that D �a aC1 + bC2 witha � �max�2; ��(Si) �� i = 1; : : : ; r	; if g2 = 0;2g2 � 1; else;and b � �max�2; ��(Si) �� i = 1; : : : ; r	; if g1 = 0;2g1 � 1; else:Suppose that rXi=1 �� �(Si) + 2�2 <  � (D �K�)2; (II.5)where  may be taken from the following table with � = a�2g2+2b�2g1+2 > 0.g1 g2 0 0 1241 0 1maxf32;2�g� 2 0 1maxf24+16g1 ;4g1�g1 1 1max�32;2�; 2�	� 2 � 1 1max�24+16g1+16g2;4g1�;4g2� �Then either V irrjDj (S1; : : : ;Sr) is empty, or it is irreduible of the ex-peted dimension. 2



IRREDUCIBILITY 9C. Geometrially Ruled SurfaesLet � : � = PC(E)! C be a geometrially ruled surfae with nor-malised bundle E (in the sense of [6℄ V.2.8.1). The N�eron{Severigroup of � is NS(�) = C0Z� FZ with intersetion matrix ��e 11 0 �where F �= P1C is a �bre of �, C0 a setion of � with O�(C0) �=OPC(E)(1), g = g(C) the genus of C, e = �2E and e = �deg(e) � �g.For the anonial divisor we have K� �a �2C0 + (2g � 2� e) � F .Theorem II.7Let � : �! C be a geometrially ruled surfae with e � 0. Let S1; : : : ;Srbe topologial or analytial singularity types, and let D 2 Div(�) suhthat D �a aC0 + bF with a � max �2; ��(Si) �� i = 1; : : : ; r	, and,b > �max�1; ��(Si)� 1 �� i = 1; : : : ; r	; if g = 0;2g � 2 + ae2 ; if g > 0:Suppose that rXi=1 �� �(Si) + 2�2 <  � (D �K�)2; (II.6)where  may be taken from the table below with � = a+2b+2�2g�ae2 > 0.g e 0 0 1241 0 1maxf24;2�g1 �1 1maxnmin�30+16� +4�;40+9�	;132 �o� 2 0 1maxf24+16g;4g�g� 2 < 0 1maxnmin�24+16g�9e�;18+16g�9e�� 16e�	;4g��9e�oThen either V irrjDj (S1; : : : ;Sr) is empty, or it is irreduible of the ex-peted dimension. 2



10 KeilenFor geometrially ruled surfaes as well as for produts of urves, onlywhen � �= P1C �P1C , we are in the luky situation that the onstant does not at all depend on the hosen divisor D, whereas otherwisethe ratio of a and b is involved in . This means that an asymptotialbehaviour an only be examined if the ratio remains unhanged.If � is a produt C �P1C the onstant  derived here is the same asin Setion B. III. The ProofsOur approah to the problem proeeds along the lines of an unpub-lished result of Greuel, Lossen and Shustin (f. [4℄), whih is basedon ideas of Chiantini and Ciliberto (f. [1℄). It is a slight modi�ationof the proof given in [7℄. We takle the problem in three steps:Step 1: By [7℄ Theorem 3.1 we know that the open subvarietyV irr;reg of urves in V irr with h1��;JX(C)=�(D)� = 0 is always irre-duible, and hene so is its losure in V irr.Step 2: We �nd onditions whih ensure that the open subvarietyV irr;fix of urves in V irr with h1��;JX�fix(C)=�(D)� = 0 is dense inV irr.Step 3: And �nally, we ombine these onditions with onditionswhih guarantee that V irr;reg is dense in V irr;fix by showing thatthey share some open dense subset V genU of urves with singularitiesin very general position.More preisely, taking Lemma III.2 into aount, we dedue fromLemma III.3 onditions whih ensure that there exists a very gen-eral subset U � �r suh that the family V genU = V genjDj;U (S1; : : : ;Sr),as de�ned there, satis�es(a) V genU is dense in V irr;fix, and(b) V genU � V irr;reg.But then V irr;reg is dense in V irr, whih is irreduible by Step 1. 2



IRREDUCIBILITY 11The diÆult part is Step 2. For this one we onsider the restritionof the morphism (f. Subsetion C)� : V irr ! Symr(�) =: Bto an irreduible omponent V � of V irr not ontained in the lo-sure V irr;fix in V irr. Knowing, that the dimension of V � is at leastthe expeted dimension dim �V irr;fix� we dedue that the odimen-sion of ��V �� in B is at most h1��;JX�fix(C)=�(D)�, where C 2 V �(f. Lemma III.1). It thus suÆes to �nd onditions whih ontraditthis inequality, that is, we have to get our hands on odimB ��(V �)�.This is ahieved by applying the results of [7℄ Lemma 4.1 to Lemma4.6 to the zero-dimensional sheme X0 = X�fix(C).These onsiderations lead to the following proofs.Proof of Theorem II.1: We may assume that the family V irr =V irrjDj (S1; : : : ;Sr) is non-empty. As indiated above it suÆes to showthat:Step 2: V irr = V irr;fix, where V irr;fix = V irr;fixjDj (S1; : : : ;Sr), andStep 3: the onditions of Lemma III.3 are ful�lled.For Step 3 we note that ��(Si) � � �(Si). Thus (II.4) implies thatrXi=1 ���(Si) + 2�2 � rXi=1 �� �(Si) + 2�2�  � (D �K�)2 � 12 � (D �K�)2;whih gives the �rst ondition in Lemma III.3. Sine a surfae withPiard number one has no urves of sel�ntersetion zero, the seondondition in Lemma III.3 is void, while the last ondition is satis�edby (II.1).It remains to show Step 2, i. e. V irr = V irr;fix. Suppose the on-trary, that is, there is an irreduible urve C0 2 V irr n V irr;fix, inpartiular h1��;JX0=�(D)� > 0 forX0 = X�fix(C0). Sine deg(X0) =Pri=1 �� �(Si) + 2� andPz2� �deg(X0;z)�2 =Pri=1 �� �(Si) + 2�2 theassumptions (0)-(3) of [7℄ Lemma 4.1 and (4) of [7℄ Lemma 4.3 are ful-�lled. Thus [7℄ Lemma 4.3 implies that C0 satis�es Condition (III.1)



12 Keilenin Lemma III.1 below, whih it annot satisfy by the same Lemma.Thus we have derived a ontradition.Proof of Theorem II.6: The assumptions on a and b ensure thatD �K� is big and nef and that D +K� is nef. Thus, one we knowthat (II.5) implies Condition (3) in [7℄ Lemma 4.1 we an do thesame proof as in Theorem II.1, just replaing [7℄ Lemma 4.3 by [7℄Lemma 4.4.For Condition (3) we note thatrXi=1 deg �X�fix(Si)� � rXi=1 �� �(Si) + 2�2� 124 � (D �K�)2 < 14 � (D �K�)2:Proof of Theorem II.7: The proof is idential to that of Theo-rem II.6, just replaing [7℄ Lemma 4.4 by [7℄ Lemma 4.6.A. Some Tehnial LemmataWe have applied [7℄ Lemma 4.1 to Lemma 4.6 to the zero-dimensio-nal sheme X0 = X�fix(C), for a urve C 2 V irr n V irr;fix, in order to�nd with the aid of Bogomolov instability urves �i and subshemesX0i � Xi, where Xi = Xi�1 : �i, suh that for XS = Smi=1X0ih1��;JX0(D)�+ mXi=1 �h0��;O�(�i)�� 1� < #XS :And we are now going to show that this simply is not possible.Lemma III.1Let D 2 Div(�), S1; : : : ;Sr be pairwise distint topologial (respe-tively analytial) singularity types. Suppose that V irr;fixjDj (S1; : : : ;Sr)is non-empty.



IRREDUCIBILITY 13Then there is no urve* C 2 V irrjDj (S1; : : : ;Sr) n V irr;fixjDj (S1; : : : ;Sr)suh that for the zero-dimensional sheme X0 = X�fix(C) there ex-ist urves �1; : : : ;�m � � and zero-dimensional loally omplete in-tersetions X0i � Xi�1 for i = 1; : : : ;m, where Xi = Xi�1 : �i fori = 1; : : : ;m suh that XS = Smi=1X0i satis�esh1��;JX0(D)�+ mXi=1 �h0��;O�(�i)�� 1� < #XS: (III.1)Proof: Throughout the proof we set V irr = V irrjDj (S1; : : : ;Sr) andV irr;fix = V irr;fixjDj (S1; : : : ;Sr).Suppose there exists a urve C 2 V irr n V irr;fix satisfying the as-sumption of the Lemma, and let V � be the irreduible omponent ofV irr ontaining C. Moreover, let C0 2 V irr;fix.We onsider in the following the morphism from Subsetion C� = �jDj(S1; : : : ;Sr) : VjDj(S1; : : : ;Sr)! Symr(�) =: B:Step 1: h0�JX�fix(C0)=�(D)� = h0�JX�fix(C)=�(D)�� h1�JX�fix(C)=�(D)�:By the hoie of C0 we have the exat sequeneH1��;JX�fix(C0)=�(D)�! H1(�;O�(D)�! H1(�;OX�fix(C0)(D)�where the groups on the left and right side vanish, and thus D isnon-speial, i. e. h1(�;O�(D)� = 0. But thenh0��;JX�fix(C0)=�(D)� = h0��;O�(D)�� deg �X�fix(C0)�= h0��;O�(D)�� deg �X�fix(C)�= h0��;JX�fix(C)=�(D)�� h1��;JX�fix(C)=�(D)�:Step 2: h1��;JX�fix(C)(D)� � odimB ���V ���.Suppose the ontrary, that isdim���V ��� < dim(B)� h1��;JX�fix(C)=�(D)�:*For a subset U � V of a topologial spae V we denote by U the losure of Uin V .



14 KeilenThe vanishing of h1��;JX�fix(C0)=�(D)� implies that V irr is smoothof the expeted dimension dim �V irr;fix� at C0. Therefore, and byStep 1 and Equation (I.1) we havedim �V �� � dim���V ���+ dim���1��(C)��< dim(B)� h1��;JX�fix(C)=�(D)�+ h0��;JX�fix(C)=�(D)�� 1= 2r + h0��;JX�fix(C0)=�(D)�� 1 = dim �V irr;fix�:However, any irreduible omponent of V irr has at least the expeteddimension dim �V irr;fix�, whih gives a ontradition.Step 3: odimB ���V ��� � #XS �Pmi=1 dim j�ijl.The existene of the subshemesX0i � X�fix(C) \�i imposes at least#X0i � dim j�ijl onditions on X�fix(C) and inreases thus the odi-mension of ��V �� by the same number.Step 4: Derive a ontradition.Colleting the results we derive the following ontradition:h1��;JX�fix(C)(D)� �Step 2 odimB ���V ����Step 3 #XS �Pmi=1 dim j�ijl >(III.1) h1��;JX�fix(C)(D)�:The next two lemmata provide onditions whih ensure that V irr;regand V irr;fix share some dense subset V genU , and thus that V irr;reg isdense in V irr;fix.Lemma III.2Let S1; : : : ;Sr be topologial (respetively analytial) singularity types,let D 2 Div(�) and let V irr = V irrjDj (S1; : : : ;Sr).There exists a very general subset U � �r suh that the family11Here � means either topologial equivalene �t or ontat equivalene �. { Bya very general subset of �r we mean the omplement of at most ountably manylosed subvarieties.



IRREDUCIBILITY 15V genU = V genjDj;U (S1; : : : ;Sr) = �C 2 V irr��z 2 U; (C; zi) � Si; 1 � i � rgis dense in V irr;fixjDj (S1; : : : ;Sr).Proof: This follows from the remark in Subsetion C.Lemma III.3With the notation of Lemma III.2 we assume that(a) (D �K�)2 � 2 �Pki=1 ���(Si) + 2�2,(b) (D �K�):B > max ���(Si) + 1 �� i = 1; : : : ; r	 for any irredu-ible urve B with B2 = 0 and dim jBja > 0, and() D �K� is nef.Then there exists a very general subset U � �r suh that V genU �V irr;regjDj (S1; : : : ;Sr).Proof: By [8℄ Theorem 2.1 we know that there is a very generalsubset U � �r suh that for z 2 U and � = ���(S1) + 1; : : : ; ��(Sr) +1� we have h1��;JX(�;z)=�(D)� = 0:However, if C 2 V irr and z 2 U with (C; zi) � Si, then by the de�-nition of ��(Si) we haveJX(�;z)=� ,! JX(C)=�;and hene the vanishing of H1��;JX(�;z)=�(D)� impliesh1��;JX(C)=�(D)� = 0;i. e. C 2 V irr;reg. Referenes1. Lua Chiantini and Ciro Ciliberto, On the Severi variety of sur-faes in P3C, J. Algebrai Geom. 8 (1999), 67{83.2. Lua Chiantini and Edoardo Sernesi, Nodal urves on surfaesof general type, Math. Ann. 307 (1997), 41{56.
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