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Abstract

In [7] we gave sufficient conditions for the irre-
ducibility of the family V37 (S1,...,S;) of irreducible
curves in the linear system |D|; with precisely r sin-
gular points of topological respectively analytical types
S1,...,8r on several classes of smooth projective sur-

faces X. The conditions were of the form
r

S (7(8)+2)” <y (D - Kx)?,

i=1
where 7* is some invariant of singularity types, Ky is
the canonical divisor of 3 and < is some constant. In
the present paper we improve this condition, that is the
constant 7y, by a factor 9.
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I. Introduction

If we fix a linear system |D|; on a smooth projective surface ¥ over

the complex numbers C and singularity types Si,...,S, we denote
by VT = ‘iD’“"“ (81, . ,Sr) the variety of irreducible curves in |D|;

with precisely r singular points of the given types. We would like to
give numerical conditions, depending on the singularity types, the
linear system and the surface, which ensure that the family V" is
irreducible, once it is non-empty.

In order to keep the presentation as short as possible we refer the
reader to [7] for an introduction to the significance of the question
and for most of the notation we are going to use. Moreover, we will
apply many of the technical results shown there. The proof runs along
the same lines as the original one by showing that some irreducible
“regular” subscheme of V7" is dense in V. We do this again by
considering a morphism ® on a certain subscheme of V" and com-
paring dimensions. However, the subscheme which we consider and
the morphism are completely different.

In [7] the morphism associated to each curve C in V7 its singularity
scheme X (C), and the regular part V7" consisted of the curves
belonging to smooth fibres of expected dimension. Since V79 is
irreducible by default, only conditions were needed which ensured
the vanishing of h' (E, Ix(c) /E(C)) generically. In the present paper
we consider the morphism which associates to each curve C the set
of singular points, and again the regular part V"™/i% of V" consists
of the smooth fibres of expected dimension. Since V7"/% will not be
irreducible in general, we have to find conditions which ensure that it
is dense in V" and that it shares a dense subset with V779 The
first part is the hard part and comes down a generic h'-vanishing
for the ideal sheaves of the schemes X}iI(C). For this we use the
technique of Bogomolov unstable vector bundles first applied in [2].

The general ideas for this approach in the case of planar curves can
be found in [4], which has not been published since in the plane case
better conditions could be derived replacing the Bogomolov argu-
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ments by the Castelnuovo function (see [5]), which can not so easily
be generalised to other surfaces. We combine these ideas with the
technical lemmata developed for surfaces with Picard number one,
products of curves and geometrically ruled surfaces in [7].

The techniques applied in [7] and in this paper give conditions which
depend on the square of the local degree of the involved zero-dimen-
sional scheme, i. e. they depend on deg (X (C’),z)2 respectively on
deg (XJ*ZZ.‘,E(C’),z)2 = (%(C,2) + 2)2. The degree of X (C) at z is not
precisely known in general, so in [7] it is replaced by the best possible
general upper bound 3 - 7*(C, z) + 2. The conditions this way are
improved by a factor 9.

We now introduce the new objects. In Section IT we formulate the
main results, and they are proved in Section III. Lemma III.1 is the
most important technical adjustment which leads to the improved
coefficient.

A. The Deformation Determinacy

If S is a topological (respectively analytical) singularity type with
representative (C, z) then

V4 (S) =v*(C,2) =min{m >0 | m@T' C I°(C,2)}
respectively

v*(8) =v*(C,z) =min{m >0 | mpth C 1(C,2)},

where I°(C, 2) = Jxs(c)/s,. is the singularity ideal of the topological
singularity type (C,z) and I°(C,2) = Jxe(c)/x,. is the analytical
singularity ideal of (C, z) respectively (cf. [7] Section 1.3). These are
invariants of the topological (respectively analytical) singularity type
satisfying (cf. [5] Section 1.2 and 1.3)

v (8) < 7%(S) respectively v*(S) < 7(S),

and they are called topological deformation determinacy (respec-
tively analytical deformation determinacy)
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B. Singularity Schemes

For a reduced curve C C ¥ we recall the definition of the zero-
dimensional schemes X} (C) and X§{, (C) from [5] Section 1.1. They
are defined by the ideal sheaves les c)/s and ij C)/s respec-
tively, given by the following stalks

f +eg is equisingular over C[e]/(e2) }
?

along the trivial section

L4 jXES )Lz — I?fx(oa Z) = {g € OZ,Z
where f € Os; is a local equation of C' at z.

* jXﬁ“ oy =155, (C,z) = (f) +m- <%, g—£> C Osx,,, where z,y
denote local coordinates of ¥ at z and f € Oy, is a local equa-
tion of C.

So by definition we have
deg (X§7,(C),z) =7%°(C,2z) + 2
and

deg (Xfm,(C) z) =7(C,z) +2

Throughout this article we will frequently treat topological
and analytical singularities at the same time. Whenever we
do so, we will write X%, (C) for Xj‘izsl,(C) respectively for
X§5.(C), we will write v*(S) for v°(S) respectively v%(S),
and we will write 7*(S) for 7%(S) respectively 7(S). For
the schemes borrowed from [7] we stick to the analogous

convention made there.

C. Equisingular Families

Given a divisor D € Div(X) and topological (respectively analytical)
singularity types S1,...,S;.
We denote by Virnfiz — WiDrr,fi:r(Sl, ...,8;) the open subscheme of

VYT given as

yirnfie _ {Ce ‘iD’"""(SI, ey S) ‘ hl(Z,Jx;iz(c)/z(D)) =0}.
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We define the map ® = &, (Sy,...,S,) by
P ‘iDr‘r(Sh ooy 8p) —— Sym’ (%) : C+—— Sing(C),

sending a curve C' to the unordered tuple of its singular points.

Note that H(%, JX}M(C) (D))/H®(Os) is the tangent space of the
fibre ® 1 (®(C)) at C € V", so that

dim (qu(@(o))) <B(S, Tx; (c)(D)) — 1. (L1)

Moreover, suppose that h' (E, jX}.I(C)/E(D)) = 0, then the germ of
the fibration at C

(®,C): (V,0) — (Sym" (%), Sing(C))

is smooth of fibre dimension A% (X, jX}iz(C) (D)) — 1, i. e. locally at
C the morphism @ is a projection of the product of the smooth base
space with the smooth fibre. This implies in particular, that close to
C there is a curve having its singularities in very general position.

(Cf. [9] Proposition 2.1 (e).)

II. The Main Results

In this section we give sufficient conditions for the irreducibility of
equisingular families of curves on certain surfaces with Picard num-
ber one — including the projective plane, general surfaces in P and
general K3-surfaces —, on products of curves, and on a subclass of
geometrically ruled surfaces.

A. Surfaces with Picard Number One

Theorem II.1
Let % be a surface such that

(i) NS(X) = L - Z with L ample, and
(ii) h'(2,C) = 0, whenever C is effective.
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Let D € Div(%), let S1,...,S, be topological (respectively analytical)
singularity types.

Suppose that
(I1.1) D — Ky is big and nef,
(IL.2) D + Ky, is nef,

(I1.3) Xr: (7%(S;) +2) < B+ (D — Kx)? for some 0 < B < 1, and
i=1
(I1.4) z (T*(S) + 2)2 <v-(D - Kx)?,

-
Il
—

(1+vi=15)" 12
where Y = 135 Tmax(0.2 Ko L1162

Then either V‘iD”"’(Sl, ..., Sr) is empty, or it is irreducible of the ex-
pected dimension. O

Remark I1.2

If we set
36 _ 4-x(0g) + max{0,2- Ks.L} +6- L?
7T Bataz U 12 ’

then a simple calculation shows that (II.3) becomes redundant. For
this we have to take into account that 7*(S) > 1 for any singularity
type S. The claim then follows with 8 = 5 -y < i. O

W=

We now apply the result in several special cases, combining the above
theorem with the existence results in [8] and the T-smoothness re-
sults in [3].

Corollary I1.3

Letd >3, L C P2 be a line, and S, . .., S, be topological or analytical
singularity types.

Suppose that

r

ST +2)7 < 2 (d+3)%
1=1

Then V\(ng\ (S1,...,8y) is non-empty, irreducible and T-smooth. O
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The best general results in this case can still be found in [5] (see also
[9] Corollary 6.1), where the coefficient on the right hand side is 5.

A smooth complete intersection surface with Picard number one sat-
isfies the assumptions of Theorem II.1. Thus by the Theorem of
Noether the result applies in particular to general surfaces in P?.

Corollary I1.4

Let X C P? be a smooth hypersurface of degree n >4, let H C %
be a hyperplane section, and suppose that the Picard number of %
is one. Let d >n+6 and let Sy,...,S, be topological (respectively
analytical) singularity types.

Suppose that

r

%[ Q. 2 6- (n3—3n2—|—8n—6)~n2 9
ZZ_; (T (SZ) * 2) < (7L373n2+1()7176)2 . (d + - n) ’

Then WZ’}%(&, ..., Sy) is non-empty and irreducible of the expected
dimension.

Moreover, if we assume additionally d > n - (T* (Si) + 1) for all i =
1,...,r, then ‘3}5'(81, ..., Sy) is also T-smooth.

A general K3-surface has Picard number one and in this situation,
by the Kodaira Vanishing Theorem 3 also satisfies the assumption
(ii) in Theorem II.1.

Corollary II.5

Let ¥ be a smooth K3-surface with NS(X) = L - Z with L ample and
setn = L% Letd >0, D ~, dL and let Sy,...,S, be topological (re-
spectively analytical) singularity types.

Suppose that

r

Z (T"(Si) + 2)2 < BAnliTon g2

(1in+12)2
i=1
Then V|iD’"i"(81,...,Sr) is irreducible and T-smooth, once it is non-
empty.
Moreover, if d > 19, then WZ’}%(&, ..., Sy) is non-empty. O
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B. Products of Curves

If 3 is the product of smooth projective curves, then for a general
choice of the curves the Néron—Severi group NS(3) will be generated
by two fibres of the canonical projections.If both curves are elliptic,
then “general” just means that the two curves are non-isogenous.

Theorem I1.6
Let C1 and Cy be smooth projective curves of genera g1 respectively gs
with g1 > go > 0, such that NS(X) = C17Z. & C37 for ¥ = Cy x Cs.

Let S1,...,8, be topological or analytical singularity types, and let
D € Div(X) such that D ~, aCy + bCy with

.S max{Z,u*(Si) ‘ i= 1,...,7"}, if g9 =0,

| 292 — 1, else,

and

B> max{2,1/*(8i)‘i=1,---,’f'}, if g1 =0,
| 291 — 1, else.

Suppose that

r

S () +2)° < - (D - Ky)?, (IL5)
=1
where v may be taken from the following table with o = % > 0.

g1 g2 Y

L
24

1
max{32,2a}
1
max{24+16g1,4g1a}
1

max {32,204,% }

>2|>1 : 7
max{24+1691+1692,491041%}

>

0 0
1 0
2 0
1 1

Then either V‘iD’"‘T(Sl, ..., Sy) is empty, or it is irreducible of the ex-

pected dimension. O
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C. Geometrically Ruled Surfaces

Let m: ¥ =T (€) - C be a geometrically ruled surface with nor-
malised bundle £ (in the sense of [6] V.2.8.1). The Néron-Severi
group of ¥ is NS(X) = CyZ ® FZ with intersection matrix (°})
where F = P! is a fibre of m, Cy a section of 7 with Ox(Cy) &
Opy(¢)(1), g = g(C) the genus of C, e = A%£ and e = — deg(e) > —g.
For the canonical divisor we have Ky, ~, —2Cy 4+ (2g — 2 —¢) - F.

Theorem II.7

Let 7t : 3% — C be a geometrically ruled surface with e < 0. Let Sy,...,S;
be topological or analytical singularity types, and let D € Div(X) such
that D ~4 aCy + bF with a > max {Z,U*(Si) ‘ i1=1,... ,7"}, and,

b max{l,y*(Si)—l‘izl,...,r}, if g =0,
29— 2+ %, if g > 0.

Suppose that

r

S (TS +2)" < v+ (D - Ky)?, (I1.6)
i=1
where v may be taken from the table below with o = ﬁ > 0.
4979
g € i
0| O o)
1
1 0 max{24,2a}
1] -1 !

max { min {30+1a—6+4o¢,40+9a} ,%a}

S U
= max{24+16g,4ga}

>2|<0 1
max { min {24+16g—96a,18+16g—96a—£ } ,4ga—96a}

Then either V‘iD’"‘T(Sl, ..., Sy) is empty, or it is irreducible of the ex-
pected dimension. O
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For geometrically ruled surfaces as well as for products of curves, only
when ¥ = P! x P!, we are in the lucky situation that the constant
~ does not at all depend on the chosen divisor D, whereas otherwise
the ratio of a and b is involved in 7. This means that an asymptotical
behaviour can only be examined if the ratio remains unchanged.

If ¥ is a product C' x P} the constant v derived here is the same as
in Section B.

III. The Proofs

Our approach to the problem proceeds along the lines of an unpub-
lished result of Greuel, Lossen and Shustin (cf. [4]), which is based
on ideas of Chiantini and Ciliberto (cf. [1]). It is a slight modification
of the proof given in [7]. We tackle the problem in three steps:

Step 1: By [7] Theorem 3.1 we know that the open subvariety
ViTred of curves in VI with h' (3, Tx(cy/n(D)) = 0 is always irre-
ducible, and hence so is its closure in V7.

Step 2: We find conditions which ensure that the open subvariety
Virnfit of curves in V7" with A (E, jx;iz(c)/g (D)) = () is dense in
Virr‘

Step 3: And finally, we combine these conditions with conditions
which guarantee that V7" is dense in V¥"/% by showing that

they share some open dense subset V™" of curves with singularities
in very general position.

More precisely, taking Lemma III.2 into account, we deduce from
Lemma, II1.3 conditions which ensure that there exists a very gen-
eral subset U C X" such that the family Vgen = V|gDe|7fU(31, o Sp),
as defined there, satisfies

(a) V" is dense in VI/i and
(b) Vgen C Virr,reg_

But then V7€ is dense in V", which is irreducible by Step 1. O
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The difficult part is Step 2. For this one we consider the restriction
of the morphism (cf. Subsection C)

$: VI Sym" (%) =: B
to an irreducible component V* of V7" not contained in the clo-
sure Virnfie in VT Knowing, that the dimension of V* is at least
the expected dimension dim (V"”’f ”) we deduce that the codimen-
sion of @(V*) in B is at most h' (2, jX;m(C)/E(D)), where C € V*
(cf. Lemma II1.1). It thus suffices to find conditions which contradict
this inequality, that is, we have to get our hands on codimpg (@(V*))

This is achieved by applying the results of [7] Lemma 4.1 to Lemma
4.6 to the zero-dimensional scheme Xo = X7, (C).

These considerations lead to the following proofs.

Proof of Theorem II.1: We may assume that the family V7" =
|iD’"|’"(81, ..., Sy) is non-empty. As indicated above it suffices to show
that:

Step 2: V" = Virnfiz where Virn/iv = IﬁiDrr’fiz(Sl, ...,S;), and
Step 3: the conditions of Lemma II1.3 are fulfilled.
For Step 3 we note that v*(S;) < 7%(S;). Thus (I1.4) implies that

Z (V" (Si) + 2)2 < Z (T*(Si) + 2)2
i=1 i=1
<y-(D-Kx)’<i-(D-Ky),

which gives the first condition in Lemma IIL.3. Since a surface with
Picard number one has no curves of selfintersection zero, the second
condition in Lemma IIIL.3 is void, while the last condition is satisfied
by (IL.1).

It remains to show Step 2, i. e. V" = Virnfiz Suppose the con-
trary, that is, there is an irreducible curve Cy € V" \ Virnfiz  in
particular ' (E, jXO/E(D)) > 0 for Xy = X}ix(Cg). Since deg(Xy) =
Sy (7180 +2) and ey (deg(Xo,2))" = XLy (7(8) +2)” the
assumptions (0)-(3) of [7] Lemma 4.1 and (4) of [7] Lemma 4.3 are ful-
filled. Thus [7] Lemma 4.3 implies that Cj satisfies Condition (III.1)
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in Lemma, II1.1 below, which it cannot satisfy by the same Lemma.
Thus we have derived a contradiction. O

Proof of Theorem II.6: The assumptions on a and b ensure that
D — Ky is big and nef and that D + Ky is nef. Thus, once we know
that (I1.5) implies Condition (3) in [7] Lemma 4.1 we can do the
same proof as in Theorem II.1, just replacing [7] Lemma 4.3 by [7]
Lemma 4.4.

For Condition (3) we note that

Zdeg (X;zx(sz)) < Z (T*(SZ') + 2)2
i=1 i=1

<31 (D-Kyx)’ <

& (D — Kx)*.

1
1

O

Proof of Theorem II.7: The proof is identical to that of Theo-
rem I1.6, just replacing [7] Lemma 4.4 by [7] Lemma 4.6. O

A. Some Technical Lemmata

We have applied [7] Lemma 4.1 to Lemma 4.6 to the zero-dimensio-
nal scheme X, = X7, (C), for a curve C € Ve \ virnfir in order to
find with the aid of Bogomolov instability curves A; and subschemes
X? C X;, where X; = X; ;1 : A;, such that for Xg = J, X?

RS, Txo (D) + 30 (0(3,05(49) — 1) < #Xs.
=1

And we are now going to show that this simply is not possible.

Lemma III.1
Let D € Div(¥), Si1,...,8, be pairwise distinct topological (respec-
tively analytical) singularity types. Suppose that V|gr’fw(81, ooy Sp)
18 non-empty.
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Then there is no curve’ C € V‘g"’(&,..., )\VW fe8y, ..., 8)
such that for the zero-dimensional scheme Xg = X}m(C) there ez-
ist curves Aq,. .., Ay, C X and zero-dimensional locally complete in-
tersections XZ0 CX;—q fori=1,....,m, where X; = X;_1:A; for
i=1,...,m such that Xg = J", X0 satisfies

B (2, Txo (D)) + Z (h°(2,05(80) = 1) < #Xs.  (UIL1)

=1

Proof: Throughout the proof we set V" = Virr(S;,...,S,) and

. . |D|
VlT'T',fzx — ‘/‘g"f‘,fﬂf(sl’ . 781")'

Suppose there exists a curve C € V7" \ Virnfir satisfying the as-

sumption of the Lemma, and let V* be the irreducible component of
V" containing C. Moreover, let Cy € Virnfiz,

We consider in the following the morphism from Subsection C
Q=@ p(S1,..-,8r) : Vp|(S1,- -, Sp) = Sym" (X) =: B.
Step 1: A° (JX* (Coys(D)) = ho(jX;;iz(C)/ (D)) — hl(jX* cys(D)).
By the choice of Cjy we have the exact sequence
Hl(z,jx;m(co)/g(p)) — H'(Z,05(D)) - Hl(z,ox;m(co)(p))

where the groups on the left and right side vanish, and thus D is
non-special, i. e. h*(Z, Ox;(D)) = 0. But then

(%, Txs,.(Coy/s(D)) = h’ (%, 05 (D)) — deg (X};,(Co))

(2,05(D)) ~ deg( X},,(0))

(z,jx;m( D)) — k' (%, Txs ( ys(D)).
)

Suppose the contrary, that is
dim <<I>(V*)) < dim(B) — b (3, Tx;,_(c/n(D))-

h°
=h0

Step 2: h' (E,JX}M(C) (D)) > cod1m3< (V*

“For a subset U C V of a topological space V we denote by U the closure of U
inV.



14 Keilen

The vanishing of h' (Z jX* (Co y/s(D )) implies that V" is smooth
of the expected dimensmn dlm (V“"’" o ”) at Cy. Therefore, and by

Step 1 and Equation (I.1) we have
dim (V*) < dim (@(V*)) + dim (q>—1(<1>(0)))
< dim(B) — h! (Z,jX*_ «cys(D)) +h0 (5, T cys(D)) —1
=2r + 1°(3, T, (co)/n(D)) — 1 = dim (V7"/),

However, any irreducible component of V" has at least the expected
dimension dim (V"’"’f i"’“’), which gives a contradiction.

Step 3: codimg (@(v*)) > #Xg — Y7, dim |A]).

The existence of the subschemes X? C X 1iz(C) N A; imposes at least
#X? — dim |A;|; conditions on X%;,(C) and increases thus the codi-
mension of {)(V*) by the same number.

Step 4: Derive a contradiction.

Collecting the results we derive the following contradiction:

B, Txs,0)(D)) >, , codim ((V7))

#XS — Z:n:l dim|Ai|l > by jx*

fzz

o)(D)).
O

_Step 3 (TT1.1) (

The next two lemmata provide conditions which ensure that Ve
and V™/i share some dense subset V7", and thus that V"e9 is
dense in Virmfiz,

Lemma III.2
Let Sy, ..., S, be topological (respectively analytical) singularity types,

let D € Div(X) and let V' = V|“"|’"(81, o S).

There exists a very general subset U C X" such that the family'

Here ~ means either topological equivalence ~; or contact equivalence ~,. — By
a very general subset of ¥" we mean the complement of at most countably many
closed subvarieties.
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VI = Vg,j’fUl(sl,.. L, 8)={CeVT|zeU,(C,z)~S;,1 <i<r}
is dense in V"T’fw(Sl, ey Sr).

|D|
Proof: This follows from the remark in Subsection C. O
Lemma II1.3

With the notation of Lemma III.2 we assume that

(a) (D—Ky)?>2- 5L, ((S)+2)",

(b) (D—Kyx).B>max{v*(S;)+1|i=1,...,r} for any irredu-
cible curve B with B?> =0 and dim |B|, > 0, and

(¢) D — Kx is nef.

Then there exists a very general subset U C X" such that Vgen C

V(S )

Proof: By [8] Theorem 2.1 we know that there is a very general
subset U C X7 such that for z € U and v = (v*(S1) + 1,...,0%(S;) +
1) we have

h* (27 jX(z;z)/E(D)) = 0.
However, if C € V" and z € U with (C, z;) ~ S;, then by the defi-
nition of v*(S;) we have

Tx(wz)/s = Ix (o))

and hence the vanishing of H' (Z, Ix (vi2) /5 (D)) implies

W' (S, Txc)s(D)) =0,
i.e. C e Virmres, ]

References

1. Luca Chiantini and Ciro Ciliberto, On the Severi variety of sur-
faces in P2, J. Algebraic Geom. 8 (1999), 67-83.

2. Luca Chiantini and Edoardo Sernesi, Nodal curves on surfaces
of general type, Math. Ann. 307 (1997), 41-56.



16

Keilen

Gert-Martin Greuel, Christoph Lossen, and Eugenii Shustin, New
asymptotics in the geometry of equisingular families of curves,
Internat. Math. Res. Notices 13 (1997), 595-611.

, On the irreducibility of families of curves, Unpulished
Manuscript, 1998.

, Castelnuovo function, zero-dimensional schemes, and
singular plane curves, J. Algebraic Geom. 9 (2000), no. 4, 663—
710.

Robin Hartshorne, Algebraic geometry, Springer, 1977.

Thomas Keilen, Irreducibility of equsingular families of curves,
Trans. Amer. Math. Soc. (2003), http://www.mathematik.uni-kI.
de/ keilen/download/Keilen001/Keilen001.ps.gz.

Thomas Keilen and Ilya Tyomkin, Ezistence of curves with pre-
scribed singularities, Trans. Amer. Math. Soc. 354 (2002), no. 5,
1837-1860, http://www.mathematik.uni-kl.de/ keilen /download/
KeilenTyomkin001/KeilenTyomkin001.ps.gz.

Christoph Lossen, The geometry of equisingular and equianalytic
families of curves on a surface, Phd thesis, FB Mathematik, Uni-
versitit Kaiserslautern, Aug. 1998, http://www.mathematik.uni-
kl.de/"lossen/download/Lossen002/Lossen002.ps.gz.




