
SMOOTHNESS OF EQUISINGULAR FAMILIES OF CURVESTHOMAS KEILENAbstrat. Franeso Severi (f. [Sev21℄) showed that equisingular families ofplane nodal urves are T-smooth, i. e. smooth of the expeted dimension, wheneverthey are non-empty. For families with more ompliated singularities this is nolonger true. Given a divisorD on a smooth projetive surfae � it thus makes senseto look for onditions whih ensure that the family V irrjDj �S1; : : : ;Sr� of irreduibleurves in the linear system jDjl with preisely r singular points of types S1; : : : ;Sris T-smooth. Considering di�erent surfaes inluding the projetive plane, generalsurfaes in P3C , produts of urves and geometrially ruled surfaes, we produe asuÆient ondition of the typerXi=1 �(Si) <  � (D �K�)2;where � is some invariant of the singularity type and  is some onstant. Thisgeneralises the results in [GLS01℄ for the plane ase, ombining their methods andthe method of Bogomolov instability, used in [ChS97℄ and [GLS97℄. For manysingularity types the �-invariant leads to essentially better onditions than theinvariants used in [GLS97℄, and for most lasses of geometrially ruled surfaesour results are the �rst known for T-smoothness at all.
1. IntrodutionThe varieties VjDj(rA1) (respetively the open subvarieties V irrjDj (rA1)) of redued(respetively redued and irreduible) nodal urves in a �xed linear system jDjl ona smooth projetive surfae � are also alled Severi varieties. When � = P2C Severishowed that these varieties are smooth of the expeted dimension, whenever theyare non-empty { that is, nodes always impose independent onditions. It seemsnatural to study this question on other surfaes, but it is not surprising that thesituation beomes harder.Tannenbaum showed in [Tan82℄ that also on K3-surfaes VjDj(rA1) is always smooth,that, however, the dimension is larger than the expeted one and thus VjDj(rA1)is not T-smooth in this situation. If we restrit our attention to the subvarietyV irrjDj (rA1) of irreduible urves with r nodes, then we gain T-smoothness again when-ever the variety is non-empty. That is, while on a K3-surfae the onditions whihnodes impose on irreduible urves are always independent, they impose dependentonditions on reduible urves.Date: August, 2003.1991 Mathematis Subjet Classi�ation. Primary 14H10, 14H15, 14H20; Seondary 14J26,14J27, 14J28, 14J70.Key words and phrases. Algebrai geometry, singularity theory.1



2 THOMAS KEILENOn more ompliated surfaes the situation beomes even worse. Chiantini andSernesi study in [ChS97℄ Severi varieties on surfaes in P3C . They show that on ageneri quinti � in P3C with hyperplane setion H the variety V irrjdHj�5d(d�2)4 � A1�has a non-smooth redued omponent of the expeted dimension, if d is even. Theyonstrut their examples by interseting a general one over � in P4C with a generalomplete intersetion surfae of type �2; d2� in P4C and projeting the resulting urveto � in P3C . Moreover, Chiantini and Ciliberto give in [ChC99℄ examples showingthat the Severi varieties V irrjdHj(rA1) on a surfae in P3C also may have omponents ofdimension larger than the expeted one.Hene, one an only ask for numerial onditions ensuring that V irrjdHj(rA1) is T-smooth, and Chiantini and Sernesi answer this question by showing that on a surfaeof degree n � 5 the ondition r < d(d� 2n+ 8)n4 (1.1)implies that V irrjdHj(rA1) is T-smooth for d > 2n � 8. Note that the above exampleshows that this bound is even sharp. Atually Chiantini and Sernesi prove a some-what more general result for surfaes with ample anonial divisor K� and urveswhih are in jpK�jl for some p 2 Q. For their proof they suppose that for someurve C 2 V irrjdHj(rA1) the ohomology group H1��;JX�(C)=�(D)� does not vanishand derive from this the existene of a Bogomolov unstable rank-two bundle E. Thisbundle in turn provides them with a urve � of small degree realising a large partof the zero-dimensional sheme X�(C), whih leads to the desired ontradition.This is basially the same approah used in [GLS97℄. However, they allow arbitrarysingularities rather than only nodes, and get in the ase of a surfae in P3C of degreen rXi=1 �� �i(Si) + 1�2 < d � �d� (n� 4) �max�� �i(Si) + 1 �� i = 1; : : : ; r	� � nas main ondition for T-smoothness of V irrjdHj(S1; : : : ;Sr), whih for nodal urvesoinides with (1.1). Moreover, for families of plane urves of degree d their resultgives rXi=1 �� �i(Si) + 1�2 < d2 + 6das suÆient ondition for T-smoothness, whih is weaker than the suÆient onditionrXi=1 �1(Si) � (d+ 3)2 (1.2)derived in [GLS00℄ and [GLS01℄ using the Castelnuovo funtion in order to providea urve of small degree whih realises a large part of X�(C). The advantage of the�1-invariant is that, while always bounded from above by (� �i + 1)2, in many asesit is substantially smaller { e. g. for an ordinary m-fold point Mm, m � 3, we havees1 (Mm) = 2m2, while �� esi (Mm) + 1�2 � (m2 + 2m+ 4)216 :



SMOOTHNESS 3In this paper we ombine the methods of [GLS00℄ and the method of Bogomolovinstability to reprodue the result (1.2) in the plane ase, and to derive a similarsuÆient ondition, rXi=1 �(Si) <  � (D �K�)2;for T-smoothness on other surfaes { involving a generalisation �� of the �1 -invariantwhih is always bounded from above by the latter one.Note that a series of irreduible plane urves of degree d with r singularities of typeAk, k arbitrarily large, satisfyingr � k2 = rXi=1 � �(Ak)2 = 9d2 + terms of lower orderonstruted by Shustin (f. [Shu97℄) shows that asymptotially we annot expet todo essentially better in general. For a survey on other known results on � = P2C werefer to [GLS00℄ and [GLS01℄, and for results on Severi varieties on other surfaessee [Tan80, GrK89, GLS98, FlM01, Fla01℄.In this setion we introdue the basi onepts and notations used throughout thepaper, and we state several important known fats. Setion 2 ontains the mainresults and Setion 3 their proofs.1.1. General Assumptions and Notations. Throughout this artile � will de-note a smooth projetive surfae over C.We will denote by Div(�) the group of divisors on � and by K� its anonial divisor.If D is any divisor on �, O�(D) shall be the orresponding invertible sheaf and wewill sometimes write H�(X;D) instead of H��X;OX(D)�. A urve C � � will bean e�etive (non-zero) divisor, that is a one-dimensional loally prinipal sheme,not neessarily redued; however, an irreduible urve shall be redued by de�nition.jDjl denotes the system of urves linearly equivalent to D. We will use the notationPi(�) for the Piard group of �, that is Div(�) modulo linear equivalene (denotedby �l), and NS(�) for the N�eron{Severi group, that is Div(�) modulo algebraiequivalene (denoted by �a). Given a redued urve C � � we will write g(C) forits geometri genus.Given any losed subsheme X of a sheme Y , we denote by JX = JX=Y the idealsheaf ofX inOY . IfX is zero-dimensional we denote by deg(X) =Pz2Y dimC(OY;z=JX=Y;z)its degree. If X � � is a zero-dimensional sheme on � and D 2 Div(�), we denoteby ��JX=�(D)��l the linear system of urves C in jDjl with X � C.Given two urves C and D in � and a point z 2 �, and let f; g 2 O�;z be loalequations at z of C and D respetively, then we will denote by i(C;D; z) = i(f; g) =dimC(O�;z=hf; gi) the intersetion multipliity of C and D at z.1.2. Singularity Types. The germ (C; z) � (�; z) of a redued urve C � � ata point z 2 � is alled a plane urve singularity, and two plane urve singularities(C; z) and �C 0; z0� are said to be topologially (respetively analytially equivalent)if there is homeomorphism (respetively an analytial isomorphism) � : (�; z) !



4 THOMAS KEILEN(�; z0) suh that �(C) = C 0. We all an equivalene lass with respet to theseequivalene relations a topologial (respetively analytial) singularity type.When dealing with numerial onditions for T-smoothness some topologial (respe-tively analytial) invariants of the singularities play an important role. We gathersome results on them here for the onveniene of the reader.Let (C; z) be the germ at z of a redued urve C � � and let f 2 R = O�;z be arepresentative of (C; z) in loal oordinates x and y. For the analytial type of thesingularity the Tjurina ideal Iea(f) = ��f�x ; �f�y ; f�plays a very important role, as does the equisingularity idealIes(f) = �g 2 R �� f + "g is equisingular over C["℄=("2)	 � Iea(f)for the topologial type. They give rise to the following invariants of the topologial(respetively analytial) singularity type S of (C; z).(a) Analytial Invariants:(1) �(S) = dimC �R=Iea(f)� is the Tjurina number, i. e. the dimension ofthe base spae of the semiuniversal deformation of (C; z).(2) �i(S) = max� dimC(R=I) �� Iea(f) � I a omplete intersetion	.(3) ea� (S) = max��(f ; I) �� Iea(f) � I a omplete intersetion	.(b) Topologial Invariants:(1) � es(S) = dimC �R=Ies(f)� is the odimension of the �-onstant stratumin the semiuniversal deformation of (C; z).(2) � esi (S) = max� dimC(R=I) �� Ies(C; z) � I a omplete intersetion	.(3) es� (S) = max��(f ; I) �� Ies(C; z) � I a omplete intersetion	.Here, for an ideal I ontaining Iea(f) and a rational number 0 � � � 1 we de�ne�(f ; I) = max�(1 + �)2 � dimC(R=I); ��(f ; I; g) �� g 2 I; i(f; g) � 2 � dimC(R=I)	 ;where for g 2 I ��(f ; I; g) = �� � i(f; g)� (1� �) � dimC(R=I)�2i(f; g)� dimC(R=I) :Note that by Lemma 1.1 i(f; g) > dimC(R=I) for all g 2 I and �(f; g) is thus awell-de�ned positive rational number.Throughout this artile we will frequently treat topolog-ial and analytial singularities at the same time. When-ever we do so, we will write � �(S) for � es(S) respetivelyfor �(S), and analogously we use the notation � �i(S) and��(S).One easily sees the following relations:(1 + �)2 � � �i(S) � ��(S) � �� �i(S) + ��2 � �� �(S) + ��2: (1.3)



SMOOTHNESS 5In [LoK03℄ the ��-invariant is alulated for the simple singularities,S ea� (S) = es� (S)Ak; k � 1 (k + �)2Dk; 4 � k � 4 +p2 � (2 + �) (k+2�)22Dk; k � 4 +p2 � (2 + �) (k � 2 + �)2Ek; k = 6; 7; 8 (k+2�)22and for the topologial singularity type Mm of an ordinary m-fold pointes� (Mm) = 2 � (m� 1 + �)2:Moreover, upper and lower bounds for the es0 -invariant and for the es1 -invariant ofa topologial singularity type given by a onvenient semi-quasihomogeneous powerseries an be found there. They also show that� esi (Mm) = 8>>><>>>: (m+1)24 ; if m � 3 odd;m2+2m4 ; if m � 4 even;1; if m = 2:These results show in partiular that the upper bound for ��(S) in (1.3) may beattained, while it may as well be far from the atual value.Lemma 1.1Let (C; z) be a redued plane urve singularity given by f 2 O�;z and let I � m�;z �O�;z be an ideal ontaining the Tjurina ideal Iea(C; z). Then for any g 2 I we havedimC(O�;z=I) < dimC �O�;z=(f; g)� = i(f; g):Proof: Cf. [Shu97℄ Lemma 4.1. �1.3. Singularity Shemes. For a redued urve C � � we reall the de�nitionof the zero-dimensional shemes Xes(C) and Xea(C) from [GLS00℄. They are de-�ned by the ideal sheaves JXes(C)=� and JXea(C)=� respetively, given by the stalksJXes(C)=�;z = Ies(f) and JXea(C)=�;z = Iea(f) respetively, where f 2 O�;z is a loalequation of C at z. We all Xes(C) the equisingularity sheme of C and Xea(C) theequianalytial singularity sheme of C.Throughout this artile we will frequently treat topo-logial and analytial singularities at the same time.Whenever we do so, we will write X�(C) for Xes(C)respetively for Xea(C).



6 THOMAS KEILEN1.4. Equisingular Families. Given a divisor D 2 Div(�) and topologial or an-alytial singularity types S1; : : : ;Sr, we denote by V = VjDj(S1; : : : ;Sr) the loallylosed subspae of jDjl of redued urves in the linear system jDjl having preiselyr singular points of types S1; : : : ;Sr. By V irr = V irrjDj (S1; : : : ;Sr) we denote the opensubset of V of irreduible urves. If a type S ours k > 1 times, we rather writekS than S; k: : :;S. We all these families of urves equisingular families of urves.We say that V is T-smooth at C 2 V if the germ (V; C) is smooth of the (ex-peted) dimension dim jDjl � deg �X�(C)�. By [Los98℄ Proposition 2.1 (see also[GrK89℄, [GrL96℄, [GLS00℄) T-smoothness of V at C follows from the vanishingof H1��;JX�(C)=�(C)�, sine the tangent spae of V at C may be identi�ed withH0��;JX�(C)=�(C)�=H0(�;O�).2. The Main ResultsIn this setion we give suÆient onditions for the T-smoothness of equisingularfamilies of urves on ertain surfaes with Piard number one, inluding the proje-tive plane, general surfaes in P3C and general K3-surfaes {, on general produts ofurves, and on geometrially ruled surfaes.2.1. Surfaes with Piard Number One.Theorem 2.1Let � be a surfae suh that NS(�) = L �Z with L ample, let D = d �L 2 Div(�), letS1; : : : ;Sr be topologial or analytial singularity types, and let K� = � �L. Supposethat d � maxf�+ 1;��g andrXi=1 ��(Si) < � � (D �K�)2 = � � (d� �)2 � L2 with � = 1maxf1;1+�g : (2.1)Then either V irrjDj (S1; : : : ;Sr) is empty or it is T-smooth. 2Corollary 2.2Let d � 3, H � P2C be a line, and S1; : : : ;Sr be topologial or analytial singularitytypes. Suppose that rXi=1 �1(Si) < (d+ 3)2: (2.2)Then either V irrjdHj(S1; : : : ;Sr) is empty or T-smooth. 2As soon as for one of the singularities we have �1(Si) > 4 � � �i(Si), e. g. simplesingularities or ordinary multiple points whih are not simple double points, thenthe strit inequality in (2.2) an be replaed by \�", whih then is the same suÆientondition as in [GLS01℄ Theorem 1 (see also (1.2)).In partiular, V irrjdHj(Mm1 ; : : : ;Mmr), mi � 3, is therefore T-smooth as soon asrXi=1 2 �m2i � (d+ 3)2:



SMOOTHNESS 7Moreover, this ondition has the right assymptotis, as the examples in [GLS01℄show. For further results in the plane ase see [Wah74, GrK89, Lue87a, Lue87b,Shu87, Vas90, Shu91, Shu94, GrL96, Shu96, Shu97, GLS98, Los98, GLS00, GLS01℄.A smooth omplete intersetion surfae with Piard number one satis�es the as-sumptions of Theorem 2.1. Thus by the Theorem of Noether the result applies inpartiular to general surfaes in P3C . Moreover, if in Theorem 2.1 we have � > 0,i. e. � < 1, then the strit inequality in Condition (2.1) may be replaed by \�",sine in (3.9) the seond inequality is strit, as is the seond inequality in (3.10).Corollary 2.3Let � � P3C be a smooth hypersurfae of degree n � 4, let H � � be a hyperplanesetion, and suppose that the Piard number of � is one. Let d � n � 3 and letS1; : : : ;Sr be topologial or analytial singularity types. Suppose thatrXi=1 � 1n�3 (Si) � nn� 3 � (d� n+ 4)2:Then either V irrjDj (S1; : : : ;Sr) is empty or it is T-smooth. 2In partiular, V irrjdHj(Mm1 ; : : : ;Mmr), mi � 3, is therefore T-smooth as soon asrXi=1 2 � �mi � n� 2n� 3�2 < nn� 3 � (d� n + 4)2;whih is better than the onditions derived from [GLS97℄. The onditionr � n � (n� 3)(n� 2)2 � (d� n+ 4)2;whih gives the T-smoothness of VjdHj(rA1) is weaker than the ondition providedin [ChS97℄, but for n = 5 it reads r � 109 � (d� 1)2 and omes still lose to the sharpbound 54 � (d� 1)2 provided there for odd d.A general K3-surfae has also Piard number one..Corollary 2.4Let � be a smooth K3-surfae with NS(�) = L � Z, L ample, and set n = L2. Letd � 1, and let S1; : : : ;Sr be topologial or analytial singularity types. Suppose thatrXi=1 �1(Si) < d2n:Then either V irrjdLj(S1; : : : ;Sr) is empty or it is T-smooth. 2The best previously known ondition for T-smoothness on K3-surfaesrXi=1 �� �i(Si) + 1�2 < d2nis thus ompletely replaed.



8 THOMAS KEILEN2.2. Produts of Curves. If � = C1�C2 is the produt of two smooth projetiveurves, then for a general hoie of C1 and C2 the N�eron{Severi group will be gen-erated by two �bres of the anonial projetions, by abuse of notation also denotedby C1 and C2. If both urves are ellipti, then \general" just means that the twourves are non-isogenous.Theorem 2.5Let C1 and C2 be two smooth projetive urves of genera g1 and g2 with g1 � g2,suh that for � = C1 � C2 the N�eron{Severi group is NS(�) = C1Z� C2Z.Let D 2 Div(�) suh that D �a aC1 + bC2 with a � max�2 � 2g2; 2g2 � 1	 andb � max�2 � 2g1; 2g1 � 1	, let S1; : : : ;Sr be topologial or analytial singularitytypes. Suppose that rXi=1 �0(Si) <  � (D �K�)2; (2.3)where the onstant  may be read o� the following table with A = a�2g2+2b�2g1+2g1 g2 0; 1 0; 1 14� 2 0; 1 minn 14g1 ; 14�(g1�1)�Ao� 2 � 2 minn 14g1+4g2�4 ; A4�(g2�1) ; 14�(g1�1)�AoThen either V irrjDj (S1; : : : ;Sr) is empty or it is T-smooth. 2In partiular, on a produt of non-isogenous ellipti urves for nodal urves wereprodue the previous suÆient onditionr < ab2 ;for T-smoothness of V irrjaC1+bC2j(rA1) from [GLS97℄, while the previous general on-dition �m2i + 2mi + 5�232 < abfor T-smoothness of V irrjaC1+bC2j(Mm1 ; : : : ;Mmr), mi � 3, has been replaed byrXi=1 4 � (mi � 1)2 < ab;whih is better from mi = 7 on.Note that the onstant  in Theorem 2.5 depends on the ratio of a and b unless bothg1 and g2 are at most one. This means that in general an asymptotial behaviouran only be examined if the ratio remains unhanged.2.3. Geometrially Ruled Surfaes. Let � : � = PC(E)! C be a geometriallyruled surfae with normalised bundle E (in the sense of [Har77℄ V.2.8.1). The N�eron{Severi group of � is NS(�) = C0Z � FZ with intersetion matrix ( �e 11 0 ) whereF �= P1C is a �bre of �, C0 a setion of � with O�(C0) �= OP(E)(1), g = g(C) the



SMOOTHNESS 9genus of C, e = �2E and e = � deg(e) � �g. For the anonial divisor we haveK� �a �2C0 + (2g � 2� e) � F .Theorem 2.6Let � : �! C be a geometrially ruled surfae with g = g(C). Let D 2 Div(�) suhthat D �a aC0+ bF with b > maxf2g� 2; 2� 2gg+ ae2 and a > 2, and let S1; : : : ;Srbe topologial or analytial singularity types. Suppose thatrXi=1 �0(Si) <  � (D �K�)2; (2.4)where with A = a+2b+2�2g�ae2 the onstant  satis�es = 8<: 14 ; if g 2 f0; 1g;minn 14g ; 14�(g�1)�Ao ; if g � 2:Then either V irrjDj (S1; : : : ;Sr) is empty or it is T-smooth. 2The results of [GLS97℄ only applied to eight Hirzebruh surfaes and a few lassesof �brations over ellipti urves, while our results apply to all geometrially ruledsurfaes. Moreover, the results are in general better, e. g. for the Hirzebruh surfaeP1C � P1C already the previous suÆient ondition for T-smoothness of families ofurves with r usps and b = 3a the ondition9r < 2a2 + 8ahas been replaed by the slightly better ondition8r < 3a2 + 8a + 4:For ordinary multiple points the di�erene will beome more signi�ant. Even forfamilies of nodal urves the new onditions would always be slightly better, but forthose families T-smoothness is guaranteed anyway by [Tan80℄.Note that, as for produts of urves, the onstant  in Theorem 2.6 depends on theratio of a and b unless g is at most one.3. The ProofsThe following Lemma is the tehnial key to the above results. Using the method ofBogomolov unstable vetor bundles, it gives us a \small" urve whih passes througha \large" part of X�(C), provided that h1��;JX�(C)=�(D)� 6= 0. We will then showthat its existene ontradits (2.1), (2.3), or (2.4) respetively.Lemma 3.1Let � a smooth projetive surfae, and let D 2 Div(�) and X � � be a zero-dimensional sheme satisfying(0) D �K� is big and nef, and D +K� is nef,(1) 9 C 2 jDjl irreduible : X � X�(C),(2) h1��;JX=�(D)� > 0, and(3) 4 � deg(X0) < (D�K�)2 for all loal omplete intersetion shemes X0 � X.



10 THOMAS KEILENThen there exists a urve � � � and a zero-dimensional loal omplete intersetionsheme X0 � X\� suh that with the notation supp(X0) = fz1; : : : ; zsg, Xi = X0;ziand1 "i = minfdeg(Xi); i(C;�; zi)� deg(Xi)g � 1 we have(a) D:� � deg(X0) +Psi=1 "i,(b) deg �X0� � �D �K� ���:�,() �D �K� � 2 ���2 > 0, and(d) �D �K� � 2 ���:H > 0 for all H 2 Div(�) ample.Moreover, it follows0 � 14 � (D �K�)2 � deg �X0� � �12 � (D �K�)���2 : (3.1)Proof: Choose X0 � X minimal suh that still h1��;JX0=�(D)� > 0. By Assump-tion (0) the divisor D � K� is big and nef, and thus h1��;O�(D)� = 0 by theKawamata{Viehweg Vanishing Theorem. Hene X0 annot be empty.Due to the Grothendiek-Serre duality we have0 6= H1��;JX0=�(D)� �= Ext1 �JX0=�(D �K�);O��:That is, there is an extension0! O� ! E ! JX0=�(D �K�)! 0: (3.2)The minimality of X0 implies that E is loally free and X0 is a loal ompleteintersetion sheme (f. [Laz97℄ Proposition 3.9). Moreover, we have1(E) = D �K� and 2(E) = deg(X0): (3.3)By Assumption (3) and (3.3) we have1(E)2 � 4 � 2(E) = (D �K�)2 � 4 � deg(X0) > 0;and thus E is Bogomolov unstable (f. [Laz97℄ Theorem 4.2). This, however, impliesthat there exists a divisor �0 2 Div(�) and a zero-dimensional sheme Z � � suhthat 0! O�(�0)! E ! JZ=�(D �K� ��0)! 0 (3.4)is exat, and suh that(2�0 �D +K�)2 � 1(E)2 � 4 � 2(E) > 0 (3.5)and (2�0 �D +K�):H > 0 for all ample H 2 Div(�): (3.6)Tensoring (3.4) with O�(��0) leads to the following exat sequene0! O� ! E(��0)! JZ=� (D �K� � 2�0)! 0; (3.7)and we dedue h0��; E(��0)� 6= 0.Now tensoring (3.2) with O�(��0) leads to0! O�(��0)! E(��0)! JX0=� (D �K� ��0)! 0: (3.8)1Sine X0 � X�(C) � Xea(C), Lemma 1.1 applies to the loal ideals of X0, that is for thepoints z 2 supp(X0) we have i(C;�; z) � deg(X0; z) + 1.



SMOOTHNESS 11Let H be some ample divisor. By (3.6) and sine D �K� is nef by (0):��0:H < �12 � (D �K�):H � 0:Hene ��0 annot be e�etive, that is H0��;O�(��0)� = 0. But the long exatohomology sequene of (3.8) then implies0 6= H0��; E(��0)� ,! H0 ��;JX0=� (D �K� ��0)� :In partiular we may hoose a urve� 2 ��JX0=�(D �K� ��0)��l:Thus () and (d) follow from (3.5) and (3.6). It remains to show (a) and (b).We note that C 2 jDjl is irreduible and that � annot ontain C as an irreduibleomponent: otherwise applying (3.6) with some ample divisor H we would get thefollowing ontradition, sine D +K� is nef by (0),0 � (�� C):H < �12 � (D +K�):H � 0:Sine X0 � C \� the Theorem of B�ezout implies (a):D:� = C:� = Xz2C\� i(C;�; z) � sXi=1 �deg(Xi) + "i� = deg(X0) + sXi=1 "i:Finally, by (3.3) and (3.4) we get (b):deg(X0) = 2(E) = �0:(D �K� ��0) + deg(Z) � (D �K� ��):�:Equation (3.1) is just a reformulation of (b). �Using this result we an now prove the main theorems.Proof of Theorem 2.1: Let C 2 V irrjDj (S1; : : : ;Sr). It suÆes to show that theohomology group h1��;JX�(C)=�(D)� vanishes.Suppose this is not the ase. Sine for X0 � X�(C) any loal omplete intersetionsheme and z 2 supp(X0) we have4 � deg(Xz) � 4(1 + �)2 � ��(C; z) � 1� � ��(C; z) (3.9)Lemma 3.1 applies and there is urve � 2 jÆ � Ljl and a loal omplete intersetionsheme X0 � X�(C) satisfying the assumptions (a)-(d) there and Equation (3.1).That is, �xing the notation l = pL2, supp(X0) = fz1; : : : ; zsg, Xi = X0;zi and"i = minfdeg(Xi); i(C;�; zi)� deg(Xi)g � 1, we have(a) d � Æ � l2 � deg(X0) +Psi=1 "i,(b) deg(X0) � (d� �� Æ) � Æ � l2,andÆ � l � (d��)�l2 �q (d��)2�l24 � deg(X0) = 2 � deg(X0)(d� �) � l +p(d� �)2 � l2 � 4 � deg(X0) :But then together with (a) and (b) we deduesXi=1 "i � Æ � (Æ + �) � l2 � 1� � 2 � deg(X0)(d� �) � l +p(d� �)2 � l2 � 4 � deg(X0)!2 : (3.10)



12 THOMAS KEILENApplying the Cauhy inequality this leads tosXi=1 deg(Xi)2"i � deg(X0)2Psi=1 "i � � � (d� �)2 � l24 � �1 +q1� 4�deg(X0)(d��)2�l2�2 :Setting � = Psi=1 deg(Xi)2"i� � (d� �)2 � l2 ;  = Psi=1 deg(Xi)2"i� � deg(X0) ;we thus have � � 14 � �1 +q1� 4� �2 ;and hene, � � � +1�2. But then, applying the Cauhy inequality one more, we�nd � � (d� �)2 � l2 = � � � � deg(X0) � � � � + 2 + 1� � deg(X0)� sXi=1 �deg(Xi)2"i + 2� deg(Xi) + �2"i� � rXi=1 ��(Si);in ontradition to Equation (2.1). �Proof of Theorem 2.5: Let C 2 V irrjDj (S1; : : : ;Sr). It suÆes to show that theohomology group h1��;JX�(C)=�(D)� vanishes.Suppose this is not the ase. Sine for X0 � X�(C) any loal omplete intersetionsheme and z 2 supp(X) we havedeg(Xz) � �0(C; z);and sine  � 14 , Lemma 3.1 applies and there is urve � �a ��C1+� �C2 and a loalomplete intersetion sheme X0 � X�(C) satisfying the assumptions (a)-(d) thereand Equation (3.1). That is, �xing the notation supp(X0) = fz1; : : : ; zsg, Xi = X0;ziand "i = minfdeg(Xi); i(C;�; zi)� deg(Xi)g � 1, we have(a) a� + b� � deg(X0) +Psi=1 "i,(b) deg(X0) � (a� 2g2 + 2� �) � � + (b� 2g1 + 2� �) � �, and() 0 � � � a�2g2+22 and 0 � � � b�2g1+22 .The last inequalities follow from (d) in Lemma 3.1 replaing the ample divisor Hby the nef divisors C2 respetively C1.From (b) and () we deduedeg(X0) � a� 2g2 + 22 � � + b� 2g1 + 22 � �;and thusdeg(X0)2 � 4 � a� 2g2 + 22 � b� 2g1 + 22 � � � � = (D �K�)22 � � � �: (3.11)Considering now (a) and (b) we get0 < sXi=1 "i � �:(� +K�) = 2�� + (2g1 � 2) � � + (2g2 � 2) � � � ��2 ;



SMOOTHNESS 13where the last inequality holds only if � 6= 0 6= �. In partiular, we see � 6= 0 ifg2 � 1 and � 6= 0 if g1 � 1. But this together with (3.11) givessXi=1 "i � deg(X0)2 � (D �K�)2 :If � = 0, then from (a) and (b) we dedue again0 < sXi=1 "i � (2g2 � 2) � � � 4 � (g1 � 1)A � deg(X0)2(D �K�)2 � deg(X0)2 � (D �K�)2 ;and similarly, if � = 0,0 < sXi=1 "i � (2g1 � 2) � � � 4 � (g1 � 1) � A � deg(X0)2(D �K�)2 � deg(X0)2 � (D �K�)2 :Applying the Cauhy inequality, we �nally get � (D �K�)2 � deg(X0)2Psi=1 "i � sXi=1 deg(Xi)2"i � rXi=1 �0(Si);in ontradition to Assumption (2.3). �Proof of Theorem 2.6: Let C 2 V irrjDj (S1; : : : ;Sr). It suÆes to show that theohomology group h1��;JX�(C)=�(D)� vanishes.Suppose this is not the ase. Sine for X0 � X�(C) any loal omplete intersetionsheme and z 2 supp(X) we havedeg(Xz) � �0(C; z);and sine  � 14 , Lemma 3.1 applies and there is urve � �a � � C0 + � � F and aloal omplete intersetion sheme X0 � X�(C) satisfying the assumptions (a)-(d)there and Equation (3.1).Remember that the N�eron{Severi group of � is generated by a setion C0 of � and a�bre F with intersetion pairing given by ( �e 11 0 ). Then K� �a �2C0+(2g�2�e)�F .Note that � � 0 and � 0 := � � e2� � 0:If we set b0 = b� ae2 , �1 = a+ 2 and �2 = b + 2� 2g � ae2 = b0 + 2� 2g, we get(D �K�)2 = �e � (a+ 2)2 + 2 � (a+ 2) � (b+ 2 + e� 2g) = 2 � �1 � �2: (3.12)Fixing the notation supp(X0) = fz1; : : : ; zsg,Xi = X0;zi, and "i = minfdeg(Xi); i(C;�; zi)�deg(Xi)g � 1, the onditions on � and deg(X0) take the form(a) a� 0 + b0� � deg(X0) +Psi=1 "i,(b) deg(X0) � �1 � � 0 + �2 � �� 2�� 0, and() 0 � � � �12 and 0 � � 0 � �22 .The last inequalities follow from (d) in Lemma 3.1 replaing the ample divisor Hby the nef divisors F respetively C0 + e2 � F .From (b) and () we deduedeg(X0) � �12 � � 0 + �22 � �;



14 THOMAS KEILENand thus, taking (3.12) into aount,deg(X0)2 � 4 � �12 � �22 � � � � 0 = (D �K�)22 � � � � 0: (3.13)Considering now (a) and (b) we get0 < sXi=1 "i � �:(� +K�) = 2�� 0 + (2g � 2) � �� 2� 0 � �� 02 ;where the last inequality holds if � 0 6= 0. We see, in partiular, that � 0 6= 0 if g � 1.But this together with (3.13) gives for � 0 6= 0sXi=1 "i � deg(X0)2 � (D �K�)2 :If � 0 = 0, then we dedue from (a) and (b)0 < sXi=1 "i � (2g � 2) � � � 4 � (g � 1) � A � deg(X0)2(D �K�)2 � deg(X0)2 � (D �K�)2 :Applying the Cauhy inequality, we �nally get � (D �K�)2 � deg(X0)2Psi=1 "i � sXi=1 deg(Xi)2"i � rXi=1 �0(Si);in ontradition to Assumption (2.4). �Referenes[ChC99℄ Lua Chiantini and Ciro Ciliberto, On the Severi variety of surfaes in P3C, J. AlgebraiGeom. 8 (1999), 67{83.[ChS97℄ Lua Chiantini and Edoardo Sernesi, Nodal urves on surfaes of general type, Math.Ann. 307 (1997), 41{56.[Fla01℄ Flaminio Flamini, Moduli of nodal urves on smooth surfaes of general type, J. AlgebraiGeom. 11 (2001), no. 4, 725{760.[FlM01℄ Flaminio Flamini and C. Madonna, Geometri linear normality for nodal urves on someprojetive surfaes, no. 1, 269{283.[GLS97℄ Gert-Martin Greuel, Christoph Lossen, and Eugenii Shustin, New asymptotis in thegeometry of equisingular families of urves, Internat. Math. Res. Noties 13 (1997), 595{611.[GLS98℄ Gert-Martin Greuel, Christoph Lossen, and Eugenii Shustin, Geometry of families ofnodal urves on the blown-up projetive plane, Trans. Amer. Math. So. 350 (1998),251{274.[GLS00℄ Gert-Martin Greuel, Christoph Lossen, and Eugenii Shustin, Castelnuovo funtion, zero-dimensional shemes, and singular plane urves, J. Algebrai Geom. 9 (2000), no. 4,663{710.[GLS01℄ Gert-Martin Greuel, Christoph Lossen, and Eugenii Shustin, The variety of plane urveswith ordinary singularities is not irreduible, Intern. Math. Res. Notes 11 (2001), 542{550.[GrK89℄ Gert-Martin Greuel and Ulrih Karras, Families of varieties with presribed singularities,Comp. math. 69 (1989), 83{110.[GrL96℄ Gert-Martin Greuel and Christoph Lossen, Equianalyti and equisingular families ofurves on surfaes, Manusripta Math. 91 (1996), 323{342.[Har77℄ Robin Hartshorne, Algebrai geometry, Springer, 1977.
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