
SMOOTHNESS OF EQUISINGULAR FAMILIES OF CURVESTHOMAS KEILENAbstra
t. Fran
es
o Severi (
f. [Sev21℄) showed that equisingular families ofplane nodal 
urves are T-smooth, i. e. smooth of the expe
ted dimension, wheneverthey are non-empty. For families with more 
ompli
ated singularities this is nolonger true. Given a divisorD on a smooth proje
tive surfa
e � it thus makes senseto look for 
onditions whi
h ensure that the family V irrjDj �S1; : : : ;Sr� of irredu
ible
urves in the linear system jDjl with pre
isely r singular points of types S1; : : : ;Sris T-smooth. Considering di�erent surfa
es in
luding the proje
tive plane, generalsurfa
es in P3C , produ
ts of 
urves and geometri
ally ruled surfa
es, we produ
e asuÆ
ient 
ondition of the typerXi=1 
�(Si) < 
 � (D �K�)2;where 
� is some invariant of the singularity type and 
 is some 
onstant. Thisgeneralises the results in [GLS01℄ for the plane 
ase, 
ombining their methods andthe method of Bogomolov instability, used in [ChS97℄ and [GLS97℄. For manysingularity types the 
�-invariant leads to essentially better 
onditions than theinvariants used in [GLS97℄, and for most 
lasses of geometri
ally ruled surfa
esour results are the �rst known for T-smoothness at all.
1. Introdu
tionThe varieties VjDj(rA1) (respe
tively the open subvarieties V irrjDj (rA1)) of redu
ed(respe
tively redu
ed and irredu
ible) nodal 
urves in a �xed linear system jDjl ona smooth proje
tive surfa
e � are also 
alled Severi varieties. When � = P2C Severishowed that these varieties are smooth of the expe
ted dimension, whenever theyare non-empty { that is, nodes always impose independent 
onditions. It seemsnatural to study this question on other surfa
es, but it is not surprising that thesituation be
omes harder.Tannenbaum showed in [Tan82℄ that also on K3-surfa
es VjDj(rA1) is always smooth,that, however, the dimension is larger than the expe
ted one and thus VjDj(rA1)is not T-smooth in this situation. If we restri
t our attention to the subvarietyV irrjDj (rA1) of irredu
ible 
urves with r nodes, then we gain T-smoothness again when-ever the variety is non-empty. That is, while on a K3-surfa
e the 
onditions whi
hnodes impose on irredu
ible 
urves are always independent, they impose dependent
onditions on redu
ible 
urves.Date: August, 2003.1991 Mathemati
s Subje
t Classi�
ation. Primary 14H10, 14H15, 14H20; Se
ondary 14J26,14J27, 14J28, 14J70.Key words and phrases. Algebrai
 geometry, singularity theory.1



2 THOMAS KEILENOn more 
ompli
ated surfa
es the situation be
omes even worse. Chiantini andSernesi study in [ChS97℄ Severi varieties on surfa
es in P3C . They show that on ageneri
 quinti
 � in P3C with hyperplane se
tion H the variety V irrjdHj�5d(d�2)4 � A1�has a non-smooth redu
ed 
omponent of the expe
ted dimension, if d is even. They
onstru
t their examples by interse
ting a general 
one over � in P4C with a general
omplete interse
tion surfa
e of type �2; d2� in P4C and proje
ting the resulting 
urveto � in P3C . Moreover, Chiantini and Ciliberto give in [ChC99℄ examples showingthat the Severi varieties V irrjdHj(rA1) on a surfa
e in P3C also may have 
omponents ofdimension larger than the expe
ted one.Hen
e, one 
an only ask for numeri
al 
onditions ensuring that V irrjdHj(rA1) is T-smooth, and Chiantini and Sernesi answer this question by showing that on a surfa
eof degree n � 5 the 
ondition r < d(d� 2n+ 8)n4 (1.1)implies that V irrjdHj(rA1) is T-smooth for d > 2n � 8. Note that the above exampleshows that this bound is even sharp. A
tually Chiantini and Sernesi prove a some-what more general result for surfa
es with ample 
anoni
al divisor K� and 
urveswhi
h are in jpK�jl for some p 2 Q. For their proof they suppose that for some
urve C 2 V irrjdHj(rA1) the 
ohomology group H1��;JX�(C)=�(D)� does not vanishand derive from this the existen
e of a Bogomolov unstable rank-two bundle E. Thisbundle in turn provides them with a 
urve � of small degree realising a large partof the zero-dimensional s
heme X�(C), whi
h leads to the desired 
ontradi
tion.This is basi
ally the same approa
h used in [GLS97℄. However, they allow arbitrarysingularities rather than only nodes, and get in the 
ase of a surfa
e in P3C of degreen rXi=1 �� �
i(Si) + 1�2 < d � �d� (n� 4) �max�� �
i(Si) + 1 �� i = 1; : : : ; r	� � nas main 
ondition for T-smoothness of V irrjdHj(S1; : : : ;Sr), whi
h for nodal 
urves
oin
ides with (1.1). Moreover, for families of plane 
urves of degree d their resultgives rXi=1 �� �
i(Si) + 1�2 < d2 + 6das suÆ
ient 
ondition for T-smoothness, whi
h is weaker than the suÆ
ient 
onditionrXi=1 
�1(Si) � (d+ 3)2 (1.2)derived in [GLS00℄ and [GLS01℄ using the Castelnuovo fun
tion in order to providea 
urve of small degree whi
h realises a large part of X�(C). The advantage of the
�1-invariant is that, while always bounded from above by (� �
i + 1)2, in many 
asesit is substantially smaller { e. g. for an ordinary m-fold point Mm, m � 3, we have
es1 (Mm) = 2m2, while �� es
i (Mm) + 1�2 � (m2 + 2m+ 4)216 :



SMOOTHNESS 3In this paper we 
ombine the methods of [GLS00℄ and the method of Bogomolovinstability to reprodu
e the result (1.2) in the plane 
ase, and to derive a similarsuÆ
ient 
ondition, rXi=1 
�(Si) < 
 � (D �K�)2;for T-smoothness on other surfa
es { involving a generalisation 
�� of the 
�1 -invariantwhi
h is always bounded from above by the latter one.Note that a series of irredu
ible plane 
urves of degree d with r singularities of typeAk, k arbitrarily large, satisfyingr � k2 = rXi=1 � �(Ak)2 = 9d2 + terms of lower order
onstru
ted by Shustin (
f. [Shu97℄) shows that asymptoti
ally we 
annot expe
t todo essentially better in general. For a survey on other known results on � = P2C werefer to [GLS00℄ and [GLS01℄, and for results on Severi varieties on other surfa
essee [Tan80, GrK89, GLS98, FlM01, Fla01℄.In this se
tion we introdu
e the basi
 
on
epts and notations used throughout thepaper, and we state several important known fa
ts. Se
tion 2 
ontains the mainresults and Se
tion 3 their proofs.1.1. General Assumptions and Notations. Throughout this arti
le � will de-note a smooth proje
tive surfa
e over C.We will denote by Div(�) the group of divisors on � and by K� its 
anoni
al divisor.If D is any divisor on �, O�(D) shall be the 
orresponding invertible sheaf and wewill sometimes write H�(X;D) instead of H��X;OX(D)�. A 
urve C � � will bean e�e
tive (non-zero) divisor, that is a one-dimensional lo
ally prin
ipal s
heme,not ne
essarily redu
ed; however, an irredu
ible 
urve shall be redu
ed by de�nition.jDjl denotes the system of 
urves linearly equivalent to D. We will use the notationPi
(�) for the Pi
ard group of �, that is Div(�) modulo linear equivalen
e (denotedby �l), and NS(�) for the N�eron{Severi group, that is Div(�) modulo algebrai
equivalen
e (denoted by �a). Given a redu
ed 
urve C � � we will write g(C) forits geometri
 genus.Given any 
losed subs
heme X of a s
heme Y , we denote by JX = JX=Y the idealsheaf ofX inOY . IfX is zero-dimensional we denote by deg(X) =Pz2Y dimC(OY;z=JX=Y;z)its degree. If X � � is a zero-dimensional s
heme on � and D 2 Div(�), we denoteby ��JX=�(D)��l the linear system of 
urves C in jDjl with X � C.Given two 
urves C and D in � and a point z 2 �, and let f; g 2 O�;z be lo
alequations at z of C and D respe
tively, then we will denote by i(C;D; z) = i(f; g) =dimC(O�;z=hf; gi) the interse
tion multipli
ity of C and D at z.1.2. Singularity Types. The germ (C; z) � (�; z) of a redu
ed 
urve C � � ata point z 2 � is 
alled a plane 
urve singularity, and two plane 
urve singularities(C; z) and �C 0; z0� are said to be topologi
ally (respe
tively analyti
ally equivalent)if there is homeomorphism (respe
tively an analyti
al isomorphism) � : (�; z) !



4 THOMAS KEILEN(�; z0) su
h that �(C) = C 0. We 
all an equivalen
e 
lass with respe
t to theseequivalen
e relations a topologi
al (respe
tively analyti
al) singularity type.When dealing with numeri
al 
onditions for T-smoothness some topologi
al (respe
-tively analyti
al) invariants of the singularities play an important role. We gathersome results on them here for the 
onvenien
e of the reader.Let (C; z) be the germ at z of a redu
ed 
urve C � � and let f 2 R = O�;z be arepresentative of (C; z) in lo
al 
oordinates x and y. For the analyti
al type of thesingularity the Tjurina ideal Iea(f) = ��f�x ; �f�y ; f�plays a very important role, as does the equisingularity idealIes(f) = �g 2 R �� f + "g is equisingular over C["℄=("2)	 � Iea(f)for the topologi
al type. They give rise to the following invariants of the topologi
al(respe
tively analyti
al) singularity type S of (C; z).(a) Analyti
al Invariants:(1) �(S) = dimC �R=Iea(f)� is the Tjurina number, i. e. the dimension ofthe base spa
e of the semiuniversal deformation of (C; z).(2) �
i(S) = max� dimC(R=I) �� Iea(f) � I a 
omplete interse
tion	.(3) 
ea� (S) = max�
�(f ; I) �� Iea(f) � I a 
omplete interse
tion	.(b) Topologi
al Invariants:(1) � es(S) = dimC �R=Ies(f)� is the 
odimension of the �-
onstant stratumin the semiuniversal deformation of (C; z).(2) � es
i (S) = max� dimC(R=I) �� Ies(C; z) � I a 
omplete interse
tion	.(3) 
es� (S) = max�
�(f ; I) �� Ies(C; z) � I a 
omplete interse
tion	.Here, for an ideal I 
ontaining Iea(f) and a rational number 0 � � � 1 we de�ne
�(f ; I) = max�(1 + �)2 � dimC(R=I); ��(f ; I; g) �� g 2 I; i(f; g) � 2 � dimC(R=I)	 ;where for g 2 I ��(f ; I; g) = �� � i(f; g)� (1� �) � dimC(R=I)�2i(f; g)� dimC(R=I) :Note that by Lemma 1.1 i(f; g) > dimC(R=I) for all g 2 I and 
�(f; g) is thus awell-de�ned positive rational number.Throughout this arti
le we will frequently treat topolog-i
al and analyti
al singularities at the same time. When-ever we do so, we will write � �(S) for � es(S) respe
tivelyfor �(S), and analogously we use the notation � �
i(S) and
��(S).One easily sees the following relations:(1 + �)2 � � �
i(S) � 
��(S) � �� �
i(S) + ��2 � �� �(S) + ��2: (1.3)



SMOOTHNESS 5In [LoK03℄ the 
��-invariant is 
al
ulated for the simple singularities,S 
ea� (S) = 
es� (S)Ak; k � 1 (k + �)2Dk; 4 � k � 4 +p2 � (2 + �) (k+2�)22Dk; k � 4 +p2 � (2 + �) (k � 2 + �)2Ek; k = 6; 7; 8 (k+2�)22and for the topologi
al singularity type Mm of an ordinary m-fold point
es� (Mm) = 2 � (m� 1 + �)2:Moreover, upper and lower bounds for the 
es0 -invariant and for the 
es1 -invariant ofa topologi
al singularity type given by a 
onvenient semi-quasihomogeneous powerseries 
an be found there. They also show that� es
i (Mm) = 8>>><>>>: (m+1)24 ; if m � 3 odd;m2+2m4 ; if m � 4 even;1; if m = 2:These results show in parti
ular that the upper bound for 
��(S) in (1.3) may beattained, while it may as well be far from the a
tual value.Lemma 1.1Let (C; z) be a redu
ed plane 
urve singularity given by f 2 O�;z and let I � m�;z �O�;z be an ideal 
ontaining the Tjurina ideal Iea(C; z). Then for any g 2 I we havedimC(O�;z=I) < dimC �O�;z=(f; g)� = i(f; g):Proof: Cf. [Shu97℄ Lemma 4.1. �1.3. Singularity S
hemes. For a redu
ed 
urve C � � we re
all the de�nitionof the zero-dimensional s
hemes Xes(C) and Xea(C) from [GLS00℄. They are de-�ned by the ideal sheaves JXes(C)=� and JXea(C)=� respe
tively, given by the stalksJXes(C)=�;z = Ies(f) and JXea(C)=�;z = Iea(f) respe
tively, where f 2 O�;z is a lo
alequation of C at z. We 
all Xes(C) the equisingularity s
heme of C and Xea(C) theequianalyti
al singularity s
heme of C.Throughout this arti
le we will frequently treat topo-logi
al and analyti
al singularities at the same time.Whenever we do so, we will write X�(C) for Xes(C)respe
tively for Xea(C).



6 THOMAS KEILEN1.4. Equisingular Families. Given a divisor D 2 Div(�) and topologi
al or an-alyti
al singularity types S1; : : : ;Sr, we denote by V = VjDj(S1; : : : ;Sr) the lo
ally
losed subspa
e of jDjl of redu
ed 
urves in the linear system jDjl having pre
iselyr singular points of types S1; : : : ;Sr. By V irr = V irrjDj (S1; : : : ;Sr) we denote the opensubset of V of irredu
ible 
urves. If a type S o

urs k > 1 times, we rather writekS than S; k: : :;S. We 
all these families of 
urves equisingular families of 
urves.We say that V is T-smooth at C 2 V if the germ (V; C) is smooth of the (ex-pe
ted) dimension dim jDjl � deg �X�(C)�. By [Los98℄ Proposition 2.1 (see also[GrK89℄, [GrL96℄, [GLS00℄) T-smoothness of V at C follows from the vanishingof H1��;JX�(C)=�(C)�, sin
e the tangent spa
e of V at C may be identi�ed withH0��;JX�(C)=�(C)�=H0(�;O�).2. The Main ResultsIn this se
tion we give suÆ
ient 
onditions for the T-smoothness of equisingularfamilies of 
urves on 
ertain surfa
es with Pi
ard number one, in
luding the proje
-tive plane, general surfa
es in P3C and general K3-surfa
es {, on general produ
ts of
urves, and on geometri
ally ruled surfa
es.2.1. Surfa
es with Pi
ard Number One.Theorem 2.1Let � be a surfa
e su
h that NS(�) = L �Z with L ample, let D = d �L 2 Div(�), letS1; : : : ;Sr be topologi
al or analyti
al singularity types, and let K� = � �L. Supposethat d � maxf�+ 1;��g andrXi=1 
��(Si) < � � (D �K�)2 = � � (d� �)2 � L2 with � = 1maxf1;1+�g : (2.1)Then either V irrjDj (S1; : : : ;Sr) is empty or it is T-smooth. 2Corollary 2.2Let d � 3, H � P2C be a line, and S1; : : : ;Sr be topologi
al or analyti
al singularitytypes. Suppose that rXi=1 
�1(Si) < (d+ 3)2: (2.2)Then either V irrjdHj(S1; : : : ;Sr) is empty or T-smooth. 2As soon as for one of the singularities we have 
�1(Si) > 4 � � �
i(Si), e. g. simplesingularities or ordinary multiple points whi
h are not simple double points, thenthe stri
t inequality in (2.2) 
an be repla
ed by \�", whi
h then is the same suÆ
ient
ondition as in [GLS01℄ Theorem 1 (see also (1.2)).In parti
ular, V irrjdHj(Mm1 ; : : : ;Mmr), mi � 3, is therefore T-smooth as soon asrXi=1 2 �m2i � (d+ 3)2:



SMOOTHNESS 7Moreover, this 
ondition has the right assymptoti
s, as the examples in [GLS01℄show. For further results in the plane 
ase see [Wah74, GrK89, Lue87a, Lue87b,Shu87, Vas90, Shu91, Shu94, GrL96, Shu96, Shu97, GLS98, Los98, GLS00, GLS01℄.A smooth 
omplete interse
tion surfa
e with Pi
ard number one satis�es the as-sumptions of Theorem 2.1. Thus by the Theorem of Noether the result applies inparti
ular to general surfa
es in P3C . Moreover, if in Theorem 2.1 we have � > 0,i. e. � < 1, then the stri
t inequality in Condition (2.1) may be repla
ed by \�",sin
e in (3.9) the se
ond inequality is stri
t, as is the se
ond inequality in (3.10).Corollary 2.3Let � � P3C be a smooth hypersurfa
e of degree n � 4, let H � � be a hyperplanese
tion, and suppose that the Pi
ard number of � is one. Let d � n � 3 and letS1; : : : ;Sr be topologi
al or analyti
al singularity types. Suppose thatrXi=1 
� 1n�3 (Si) � nn� 3 � (d� n+ 4)2:Then either V irrjDj (S1; : : : ;Sr) is empty or it is T-smooth. 2In parti
ular, V irrjdHj(Mm1 ; : : : ;Mmr), mi � 3, is therefore T-smooth as soon asrXi=1 2 � �mi � n� 2n� 3�2 < nn� 3 � (d� n + 4)2;whi
h is better than the 
onditions derived from [GLS97℄. The 
onditionr � n � (n� 3)(n� 2)2 � (d� n+ 4)2;whi
h gives the T-smoothness of VjdHj(rA1) is weaker than the 
ondition providedin [ChS97℄, but for n = 5 it reads r � 109 � (d� 1)2 and 
omes still 
lose to the sharpbound 54 � (d� 1)2 provided there for odd d.A general K3-surfa
e has also Pi
ard number one..Corollary 2.4Let � be a smooth K3-surfa
e with NS(�) = L � Z, L ample, and set n = L2. Letd � 1, and let S1; : : : ;Sr be topologi
al or analyti
al singularity types. Suppose thatrXi=1 
�1(Si) < d2n:Then either V irrjdLj(S1; : : : ;Sr) is empty or it is T-smooth. 2The best previously known 
ondition for T-smoothness on K3-surfa
esrXi=1 �� �
i(Si) + 1�2 < d2nis thus 
ompletely repla
ed.



8 THOMAS KEILEN2.2. Produ
ts of Curves. If � = C1�C2 is the produ
t of two smooth proje
tive
urves, then for a general 
hoi
e of C1 and C2 the N�eron{Severi group will be gen-erated by two �bres of the 
anoni
al proje
tions, by abuse of notation also denotedby C1 and C2. If both 
urves are ellipti
, then \general" just means that the two
urves are non-isogenous.Theorem 2.5Let C1 and C2 be two smooth proje
tive 
urves of genera g1 and g2 with g1 � g2,su
h that for � = C1 � C2 the N�eron{Severi group is NS(�) = C1Z� C2Z.Let D 2 Div(�) su
h that D �a aC1 + bC2 with a � max�2 � 2g2; 2g2 � 1	 andb � max�2 � 2g1; 2g1 � 1	, let S1; : : : ;Sr be topologi
al or analyti
al singularitytypes. Suppose that rXi=1 
�0(Si) < 
 � (D �K�)2; (2.3)where the 
onstant 
 may be read o� the following table with A = a�2g2+2b�2g1+2g1 g2 
0; 1 0; 1 14� 2 0; 1 minn 14g1 ; 14�(g1�1)�Ao� 2 � 2 minn 14g1+4g2�4 ; A4�(g2�1) ; 14�(g1�1)�AoThen either V irrjDj (S1; : : : ;Sr) is empty or it is T-smooth. 2In parti
ular, on a produ
t of non-isogenous ellipti
 
urves for nodal 
urves wereprodu
e the previous suÆ
ient 
onditionr < ab2 ;for T-smoothness of V irrjaC1+bC2j(rA1) from [GLS97℄, while the previous general 
on-dition �m2i + 2mi + 5�232 < abfor T-smoothness of V irrjaC1+bC2j(Mm1 ; : : : ;Mmr), mi � 3, has been repla
ed byrXi=1 4 � (mi � 1)2 < ab;whi
h is better from mi = 7 on.Note that the 
onstant 
 in Theorem 2.5 depends on the ratio of a and b unless bothg1 and g2 are at most one. This means that in general an asymptoti
al behaviour
an only be examined if the ratio remains un
hanged.2.3. Geometri
ally Ruled Surfa
es. Let � : � = PC(E)! C be a geometri
allyruled surfa
e with normalised bundle E (in the sense of [Har77℄ V.2.8.1). The N�eron{Severi group of � is NS(�) = C0Z � FZ with interse
tion matrix ( �e 11 0 ) whereF �= P1C is a �bre of �, C0 a se
tion of � with O�(C0) �= OP(E)(1), g = g(C) the



SMOOTHNESS 9genus of C, e = �2E and e = � deg(e) � �g. For the 
anoni
al divisor we haveK� �a �2C0 + (2g � 2� e) � F .Theorem 2.6Let � : �! C be a geometri
ally ruled surfa
e with g = g(C). Let D 2 Div(�) su
hthat D �a aC0+ bF with b > maxf2g� 2; 2� 2gg+ ae2 and a > 2, and let S1; : : : ;Srbe topologi
al or analyti
al singularity types. Suppose thatrXi=1 
�0(Si) < 
 � (D �K�)2; (2.4)where with A = a+2b+2�2g�ae2 the 
onstant 
 satis�es
 = 8<: 14 ; if g 2 f0; 1g;minn 14g ; 14�(g�1)�Ao ; if g � 2:Then either V irrjDj (S1; : : : ;Sr) is empty or it is T-smooth. 2The results of [GLS97℄ only applied to eight Hirzebru
h surfa
es and a few 
lassesof �brations over ellipti
 
urves, while our results apply to all geometri
ally ruledsurfa
es. Moreover, the results are in general better, e. g. for the Hirzebru
h surfa
eP1C � P1C already the previous suÆ
ient 
ondition for T-smoothness of families of
urves with r 
usps and b = 3a the 
ondition9r < 2a2 + 8ahas been repla
ed by the slightly better 
ondition8r < 3a2 + 8a + 4:For ordinary multiple points the di�eren
e will be
ome more signi�
ant. Even forfamilies of nodal 
urves the new 
onditions would always be slightly better, but forthose families T-smoothness is guaranteed anyway by [Tan80℄.Note that, as for produ
ts of 
urves, the 
onstant 
 in Theorem 2.6 depends on theratio of a and b unless g is at most one.3. The ProofsThe following Lemma is the te
hni
al key to the above results. Using the method ofBogomolov unstable ve
tor bundles, it gives us a \small" 
urve whi
h passes througha \large" part of X�(C), provided that h1��;JX�(C)=�(D)� 6= 0. We will then showthat its existen
e 
ontradi
ts (2.1), (2.3), or (2.4) respe
tively.Lemma 3.1Let � a smooth proje
tive surfa
e, and let D 2 Div(�) and X � � be a zero-dimensional s
heme satisfying(0) D �K� is big and nef, and D +K� is nef,(1) 9 C 2 jDjl irredu
ible : X � X�(C),(2) h1��;JX=�(D)� > 0, and(3) 4 � deg(X0) < (D�K�)2 for all lo
al 
omplete interse
tion s
hemes X0 � X.



10 THOMAS KEILENThen there exists a 
urve � � � and a zero-dimensional lo
al 
omplete interse
tions
heme X0 � X\� su
h that with the notation supp(X0) = fz1; : : : ; zsg, Xi = X0;ziand1 "i = minfdeg(Xi); i(C;�; zi)� deg(Xi)g � 1 we have(a) D:� � deg(X0) +Psi=1 "i,(b) deg �X0� � �D �K� ���:�,(
) �D �K� � 2 ���2 > 0, and(d) �D �K� � 2 ���:H > 0 for all H 2 Div(�) ample.Moreover, it follows0 � 14 � (D �K�)2 � deg �X0� � �12 � (D �K�)���2 : (3.1)Proof: Choose X0 � X minimal su
h that still h1��;JX0=�(D)� > 0. By Assump-tion (0) the divisor D � K� is big and nef, and thus h1��;O�(D)� = 0 by theKawamata{Viehweg Vanishing Theorem. Hen
e X0 
annot be empty.Due to the Grothendie
k-Serre duality we have0 6= H1��;JX0=�(D)� �= Ext1 �JX0=�(D �K�);O��:That is, there is an extension0! O� ! E ! JX0=�(D �K�)! 0: (3.2)The minimality of X0 implies that E is lo
ally free and X0 is a lo
al 
ompleteinterse
tion s
heme (
f. [Laz97℄ Proposition 3.9). Moreover, we have
1(E) = D �K� and 
2(E) = deg(X0): (3.3)By Assumption (3) and (3.3) we have
1(E)2 � 4 � 
2(E) = (D �K�)2 � 4 � deg(X0) > 0;and thus E is Bogomolov unstable (
f. [Laz97℄ Theorem 4.2). This, however, impliesthat there exists a divisor �0 2 Div(�) and a zero-dimensional s
heme Z � � su
hthat 0! O�(�0)! E ! JZ=�(D �K� ��0)! 0 (3.4)is exa
t, and su
h that(2�0 �D +K�)2 � 
1(E)2 � 4 � 
2(E) > 0 (3.5)and (2�0 �D +K�):H > 0 for all ample H 2 Div(�): (3.6)Tensoring (3.4) with O�(��0) leads to the following exa
t sequen
e0! O� ! E(��0)! JZ=� (D �K� � 2�0)! 0; (3.7)and we dedu
e h0��; E(��0)� 6= 0.Now tensoring (3.2) with O�(��0) leads to0! O�(��0)! E(��0)! JX0=� (D �K� ��0)! 0: (3.8)1Sin
e X0 � X�(C) � Xea(C), Lemma 1.1 applies to the lo
al ideals of X0, that is for thepoints z 2 supp(X0) we have i(C;�; z) � deg(X0; z) + 1.



SMOOTHNESS 11Let H be some ample divisor. By (3.6) and sin
e D �K� is nef by (0):��0:H < �12 � (D �K�):H � 0:Hen
e ��0 
annot be e�e
tive, that is H0��;O�(��0)� = 0. But the long exa
t
ohomology sequen
e of (3.8) then implies0 6= H0��; E(��0)� ,! H0 ��;JX0=� (D �K� ��0)� :In parti
ular we may 
hoose a 
urve� 2 ��JX0=�(D �K� ��0)��l:Thus (
) and (d) follow from (3.5) and (3.6). It remains to show (a) and (b).We note that C 2 jDjl is irredu
ible and that � 
annot 
ontain C as an irredu
ible
omponent: otherwise applying (3.6) with some ample divisor H we would get thefollowing 
ontradi
tion, sin
e D +K� is nef by (0),0 � (�� C):H < �12 � (D +K�):H � 0:Sin
e X0 � C \� the Theorem of B�ezout implies (a):D:� = C:� = Xz2C\� i(C;�; z) � sXi=1 �deg(Xi) + "i� = deg(X0) + sXi=1 "i:Finally, by (3.3) and (3.4) we get (b):deg(X0) = 
2(E) = �0:(D �K� ��0) + deg(Z) � (D �K� ��):�:Equation (3.1) is just a reformulation of (b). �Using this result we 
an now prove the main theorems.Proof of Theorem 2.1: Let C 2 V irrjDj (S1; : : : ;Sr). It suÆ
es to show that the
ohomology group h1��;JX�(C)=�(D)� vanishes.Suppose this is not the 
ase. Sin
e for X0 � X�(C) any lo
al 
omplete interse
tions
heme and z 2 supp(X0) we have4 � deg(Xz) � 4(1 + �)2 � 
��(C; z) � 1� � 
��(C; z) (3.9)Lemma 3.1 applies and there is 
urve � 2 jÆ � Ljl and a lo
al 
omplete interse
tions
heme X0 � X�(C) satisfying the assumptions (a)-(d) there and Equation (3.1).That is, �xing the notation l = pL2, supp(X0) = fz1; : : : ; zsg, Xi = X0;zi and"i = minfdeg(Xi); i(C;�; zi)� deg(Xi)g � 1, we have(a) d � Æ � l2 � deg(X0) +Psi=1 "i,(b) deg(X0) � (d� �� Æ) � Æ � l2,andÆ � l � (d��)�l2 �q (d��)2�l24 � deg(X0) = 2 � deg(X0)(d� �) � l +p(d� �)2 � l2 � 4 � deg(X0) :But then together with (a) and (b) we dedu
esXi=1 "i � Æ � (Æ + �) � l2 � 1� � 2 � deg(X0)(d� �) � l +p(d� �)2 � l2 � 4 � deg(X0)!2 : (3.10)



12 THOMAS KEILENApplying the Cau
hy inequality this leads tosXi=1 deg(Xi)2"i � deg(X0)2Psi=1 "i � � � (d� �)2 � l24 � �1 +q1� 4�deg(X0)(d��)2�l2�2 :Setting � = Psi=1 deg(Xi)2"i� � (d� �)2 � l2 ; 
 = Psi=1 deg(Xi)2"i� � deg(X0) ;we thus have � � 14 � �1 +q1� 4�
 �2 ;and hen
e, � � � 

+1�2. But then, applying the Cau
hy inequality on
e more, we�nd � � (d� �)2 � l2 = � � 
� � deg(X0) � � � �
 + 2 + 1
� � deg(X0)� sXi=1 �deg(Xi)2"i + 2� deg(Xi) + �2"i� � rXi=1 
��(Si);in 
ontradi
tion to Equation (2.1). �Proof of Theorem 2.5: Let C 2 V irrjDj (S1; : : : ;Sr). It suÆ
es to show that the
ohomology group h1��;JX�(C)=�(D)� vanishes.Suppose this is not the 
ase. Sin
e for X0 � X�(C) any lo
al 
omplete interse
tions
heme and z 2 supp(X) we havedeg(Xz) � 
�0(C; z);and sin
e 
 � 14 , Lemma 3.1 applies and there is 
urve � �a ��C1+� �C2 and a lo
al
omplete interse
tion s
heme X0 � X�(C) satisfying the assumptions (a)-(d) thereand Equation (3.1). That is, �xing the notation supp(X0) = fz1; : : : ; zsg, Xi = X0;ziand "i = minfdeg(Xi); i(C;�; zi)� deg(Xi)g � 1, we have(a) a� + b� � deg(X0) +Psi=1 "i,(b) deg(X0) � (a� 2g2 + 2� �) � � + (b� 2g1 + 2� �) � �, and(
) 0 � � � a�2g2+22 and 0 � � � b�2g1+22 .The last inequalities follow from (d) in Lemma 3.1 repla
ing the ample divisor Hby the nef divisors C2 respe
tively C1.From (b) and (
) we dedu
edeg(X0) � a� 2g2 + 22 � � + b� 2g1 + 22 � �;and thusdeg(X0)2 � 4 � a� 2g2 + 22 � b� 2g1 + 22 � � � � = (D �K�)22 � � � �: (3.11)Considering now (a) and (b) we get0 < sXi=1 "i � �:(� +K�) = 2�� + (2g1 � 2) � � + (2g2 � 2) � � � ��2
 ;



SMOOTHNESS 13where the last inequality holds only if � 6= 0 6= �. In parti
ular, we see � 6= 0 ifg2 � 1 and � 6= 0 if g1 � 1. But this together with (3.11) givessXi=1 "i � deg(X0)2
 � (D �K�)2 :If � = 0, then from (a) and (b) we dedu
e again0 < sXi=1 "i � (2g2 � 2) � � � 4 � (g1 � 1)A � deg(X0)2(D �K�)2 � deg(X0)2
 � (D �K�)2 ;and similarly, if � = 0,0 < sXi=1 "i � (2g1 � 2) � � � 4 � (g1 � 1) � A � deg(X0)2(D �K�)2 � deg(X0)2
 � (D �K�)2 :Applying the Cau
hy inequality, we �nally get
 � (D �K�)2 � deg(X0)2Psi=1 "i � sXi=1 deg(Xi)2"i � rXi=1 
�0(Si);in 
ontradi
tion to Assumption (2.3). �Proof of Theorem 2.6: Let C 2 V irrjDj (S1; : : : ;Sr). It suÆ
es to show that the
ohomology group h1��;JX�(C)=�(D)� vanishes.Suppose this is not the 
ase. Sin
e for X0 � X�(C) any lo
al 
omplete interse
tions
heme and z 2 supp(X) we havedeg(Xz) � 
�0(C; z);and sin
e 
 � 14 , Lemma 3.1 applies and there is 
urve � �a � � C0 + � � F and alo
al 
omplete interse
tion s
heme X0 � X�(C) satisfying the assumptions (a)-(d)there and Equation (3.1).Remember that the N�eron{Severi group of � is generated by a se
tion C0 of � and a�bre F with interse
tion pairing given by ( �e 11 0 ). Then K� �a �2C0+(2g�2�e)�F .Note that � � 0 and � 0 := � � e2� � 0:If we set b0 = b� ae2 , �1 = a+ 2 and �2 = b + 2� 2g � ae2 = b0 + 2� 2g, we get(D �K�)2 = �e � (a+ 2)2 + 2 � (a+ 2) � (b+ 2 + e� 2g) = 2 � �1 � �2: (3.12)Fixing the notation supp(X0) = fz1; : : : ; zsg,Xi = X0;zi, and "i = minfdeg(Xi); i(C;�; zi)�deg(Xi)g � 1, the 
onditions on � and deg(X0) take the form(a) a� 0 + b0� � deg(X0) +Psi=1 "i,(b) deg(X0) � �1 � � 0 + �2 � �� 2�� 0, and(
) 0 � � � �12 and 0 � � 0 � �22 .The last inequalities follow from (d) in Lemma 3.1 repla
ing the ample divisor Hby the nef divisors F respe
tively C0 + e2 � F .From (b) and (
) we dedu
edeg(X0) � �12 � � 0 + �22 � �;



14 THOMAS KEILENand thus, taking (3.12) into a

ount,deg(X0)2 � 4 � �12 � �22 � � � � 0 = (D �K�)22 � � � � 0: (3.13)Considering now (a) and (b) we get0 < sXi=1 "i � �:(� +K�) = 2�� 0 + (2g � 2) � �� 2� 0 � �� 02
 ;where the last inequality holds if � 0 6= 0. We see, in parti
ular, that � 0 6= 0 if g � 1.But this together with (3.13) gives for � 0 6= 0sXi=1 "i � deg(X0)2
 � (D �K�)2 :If � 0 = 0, then we dedu
e from (a) and (b)0 < sXi=1 "i � (2g � 2) � � � 4 � (g � 1) � A � deg(X0)2(D �K�)2 � deg(X0)2
 � (D �K�)2 :Applying the Cau
hy inequality, we �nally get
 � (D �K�)2 � deg(X0)2Psi=1 "i � sXi=1 deg(Xi)2"i � rXi=1 
�0(Si);in 
ontradi
tion to Assumption (2.4). �Referen
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