
A NOTE ON EQUIMULTIPLE DEFORMATIONS

THOMAS MARKWIG

Abstract. While the tangent space to an equisingular family of

curves can be discribed by the sections of a twisted ideal sheaf,

this is no longer true if we only prescribe the multiplicity which a

singular point should have. However, it is still possible to compute

the dimension of the tangent space with the aid of the equimulit-

plicity ideal. In this note we consider families Lm = {(C, p) ∈

|L| × S | multp(C) = m} for some linear system |L| on a smooth

projective surface S and a fixed positive integer m, and we com-

pute the dimension of the tangent space to Lm at a point (C, p)

depending on whether p is a unitangential singular point of C or

not. We deduce that the expected dimension of Lm at (C, p) in

any case is just dim |L| − m·(m+1)
2 + 2. The result is used in the

study of triple-point defective surfaces in [ChM06a] and [ChM06b].

The paper is based on considerations about the Hilbert scheme of

curves in a projective surface (see e.g. [Mum66], Lecture 22) and about

local equimultiple deformations of plane curves (see [Wah74]).

Definition 1

Let T be a complex space. An embedded family of curves in S with

section over T is a commutative diagram of morphisms

C
� � //

ϕ

��

T × S

||xx
xx

xx
xx

x

T

σ

22

where codimT×S(C) = 1, ϕ is flat and proper, and σ is a section, i.e.

ϕ ◦ σ = idT . Thus we have a morphism OT → ϕ∗OC = ϕ∗

(

OT×S/JC

)

such that ϕ∗OC is a flat OT -module.
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The family is said to be equimultiple of multiplicity m along the section

σ if the ideal sheaf JC of C in OT×S satisfies

JC ⊆ Jm
σ(T ) and JC 6⊆ Jm+1

σ(T ) ,

where Jσ(T ) is the ideal sheaf of σ(T ) in OT×S.

Remark 2

Note that the above notion commutes with base change, i.e. if we have

an equimultiple embedded family of curves in S over T as above and if

α : T ′ → T is a morphism, then the fibre product diagram

T ′ × S //

��
44

44
44

44
44

44
44

44
T × S

����
��

��
��

��
��

��
��

C′
1 Q

ccGGGGGGGGG

ϕ′

��

// C
- 


<<yyyyyyyyy

ϕ

��

T ′

σ′

kk

α
// T

σ

22

gives rise to an embedded equimultiple family of curves over T ′ of the

same multiplicity, since locally it is defined via the tensor product.

Example 3

Let us denote by Tε = Spec(C[ε]) with ε2 = 0. Then a family of curves

in S over Tε is just a Cartier divisor of Tε × S, that is, it is given on a

suitable open covering S =
⋃

λ∈Λ Uλ by equations

fλ + ε · gλ ∈ C[ε] ⊗C Γ(Uλ,OS) = Γ(Uλ,OT×S),

which glue together to give a global section
{

gλ

fλ

}

λ∈Λ
in H0

(

C,OC(C)
)

,

where C is the curve defined locally by the fλ (see e.g. [Mum66], Lecture

22).

A section of the family through p is locally in p given as (x, y) 7→

(xa, yb) = (x+ ε · a, y + ε · b) for some a, b ∈ C{x, y} = OS,p.

Example 4

Let H be a connected component of the Hilbert scheme HilbS of curves

in S, then H comes with a universal family

π : H −→ H : (C, p) 7→ C. (1)
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Let us now fix a positive integer m and set

Hm = {(C, p) ∈ H × S | C ∈ H,multp(C) = m}.

Then Hm is a locally closed subvariety of H × S, and (1) induces via

base change a flat and proper family Fm = {(Cp, q) ∈ Hm × S | Cp =

(C, p) ∈ Hm, q ∈ C} which has a distinguished section σ

Fm
� � //

��

Hm × S

yyssssssssss

Hm

σ

88 (2)

sending Cp = (C, p) to (Cp, p) ∈ Fm. Moreover, this family is equimul-

tiple along σ of multiplicity m by construction.

Example 5

Similarly, if |L| is a linear system on S, then it induces a universal

family

π : L = {(C, p) ∈ |L| × S | p ∈ C} −→ |L| : (C, p) 7→ C. (3)

If we now fix a positive integer m and set

Lm = {(C, p) ∈ |L| × S | C ∈ |L|,multp(C) = m}.

Then Lm is a locally closed subvariety of |L| × S, and (3) induces via

base change a flat and proper family Gm = {(Cp, q) ∈ Lm × S | Cp =

(C, p) ∈ Lm, q ∈ C} which has a distinguished section σ

Gm
� � //

��

Lm × S

yytttttttttt

Lm

σ

77 (4)

sending Cp = (C, p) to (Cp, p) ∈ Gm. Moreover, this family is equimul-

tiple along σ of multiplicity m by construction.

We may interpret Lm as the family of curves in |L| with m-fold points

together with a section which distinguishes the m-fold point. This is

important if the m-fold point is not isolated or if it splits in a neigh-

bourhood into several simpler m-fold points.

Of course, since (3) can be viewed as a subfamily of (1) we may view

(4) in the same way as a subfamily of (2).
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Definition 6

Let t0 ∈ T be a pointed complex space, C ⊂ S a curve, and p ∈ C a

point of multiplicity m. Then an embedded (equimultiple) deformation

of C in S over t0 ∈ T with section σ through p is a commutative

diagram of morphisms

S
� � //

��
��

��
��

����
��

��
��

T × S

����
��

��
��

��
��

��
��

p ∈ C
, �

::vvvvvvvvvv

��

� � // C
- 


<<yyyyyyyyy

ϕ

��

t0

σ

BB

� // T

σ

>>

where the right hand part of the diagram is an embedded (equimultiple)

family of curves in S over T with section σ. Sometimes we will simply

write (ϕ, σ) to denote a deformation as above.

Given two deformations, say (ϕ, σ) and (ϕ′, σ′), of C over t0 ∈ T as

above, a morphism of these deformations is a morphism ψ : C′ → C

which makes the obvious diagram commute:

T × S

��
))

))
))

))
))

))
))

))
))

))
))

))
))

))
))

)
T × S



��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

C′
1 Q

bbFFFFFFFFF

ϕ′

��

ψ
// C

- 


<<xxxxxxxxx

ϕ

��

C
/ O

__@@@@@@@ /�

??��������

��

t0
�

��?
??

??
??

>

��~~
~~

~~
~

T

σ′

YY

T

σ

EE

This gives rise to the deformation functor

Defsec,emp∈C/S : (pointed complex spaces) → (sets)

of embedded equimultiple deformations of C with section through p

from the category of pointed complex spaces into the category of sets,
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where for a pointed complex space t0 ∈ T

Defsec,emp∈C/S(t0 ∈ T ) = {isomorphism classes of embedded equimultiple

deformations (ϕ, σ) of C in S over t0 ∈ T

with section through p}.

Moreover, forgetting the section we have a natural transformation

Defsec,emp∈C/Σ −→ DefC/Σ, (5)

where the latter is the deformation functor

DefC/Σ : (pointed complex spaces) → (sets)

of embedded deformations of C in S given by

DefC/S(t0 ∈ T ) = {isomorphism classes of embedded deformations

of C in S over t0 ∈ T }.

Example 7

According to Example 3 a deformation of C in S over Tε along a section

through p is given by

• local equations f + ε · g such that f is a local equation for C

and the g
f

glue to a global section of OC(C),

• together with a section which in local coordinates in p is given as

σ : (x, y) 7→ (xa, yb) = (x+ε ·a, y+ε · b) for some a, b ∈ C{x, y}.
If we forget the section it is well known (see e.g. [Mum66], Lecture 22)

that two such deformations are isomorphic if and only if they induce

the same global section of OC(C) and this one-to-one correspondence

is functorial so that we have an isomorphism of vector spaces

DefC/S(Tε)
∼=

−→ H0
(

C,OC(C)
)

.

Considering the natural transformation from (5) we may now ask what

the image of Defsec,emp∈C/S(Tε) in H0
(

C,OC(C)
)

is. These are, of course,

the sections which allow a section σ through p along which the defor-

mation is equimultiple, and according to Lemma 8 we thus have an

epimorphism

Defsec,emp∈C/S(Tε) // // H0
(

C,JZ/C(C)
)

,
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where JZ/C is the restriction to C of the ideal sheaf JZ on S given by

JZ,q =







OS,q, if q 6= p,
〈

∂f
∂x
, ∂f
∂y

〉

+ 〈x, y〉m, if q = p,
(6)

here f is a local equation for C in local coordinates x and y in p.

It remains the question what the dimension of the kernel of this map

is, that is, how many different sections such an isomorphism class of

embedded deformations of C in S over Tε through p can admit.

J. Wahl showed in [Wah74], Proposition 1.9, that locally the equimul-

tiple deformation admits a unique section if and only if C in p is not

unitangential. If C is unitangential we may assume that locally in p it

is given by f = ym + h.o.t.. If we have an embedded deformation of C

in S which along some section is equimultiple of multiplicity m, then

locally it looks like

f + ε ·
(

a · ∂f
∂x

+ b · ∂f
∂y

+ h
)

with h ∈ 〈x, y〉m. However, since ∂f
∂x

∈ 〈x, y〉m the deformation is

equimultiple along the sections (x, y) 7→ (x+ ε · (c+ a), y+ ε · b) for all

c ∈ C. Thus in this case the kernel turns out to be one-dimensional,

i.e. there is a one-dimensional vector space K such that the following

sequence is exact:

0 → K → Defsec,emp∈C/S(Tε) → H0
(

C,JZ/C(C)
)

→ 0. (7)

Lemma 8

Let f + ε · g be a first-order infinitesimal deformation of f ∈ C{x, y},
m = ord(f), a, b ∈ C{x, y}, and xa = x+ ε · a, yb = y + ε · b.

Then f + ε · g is equimultiple along the section (x, y) 7→ (xa, yb) if and

only if

g − a ·
∂f

∂x
− b ·

∂f

∂y
∈ 〈x, y〉m.

In particular, f + ε · g is equimultiple along some section if and only if

g ∈

〈

∂f

∂x
,
∂f

∂y

〉

+ 〈x, y〉m.
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Proof: If a, b ∈ C{x, y} and h ∈ 〈x, y〉m then by Taylor expansion and

since ε2 = 0 we have

f + ε ·
(

a · ∂f
∂x

+ b · ∂f
∂y

+ h
)

= f(xa, yb) + ε · h(xa, yb),

where f(xa, yb), h(xa, yb) ∈ 〈xa, yb〉
m, i.e. the infinitesimal deformation

f + ε ·
(

a · ∂f
∂x

+ b · ∂f
∂y

+ h
)

is equimultiple along (x, y) 7→ (xa, yb).

Conversely, if f + ε · g is equimultiple along (x, y) 7→ (xa, yb) then

f(x, y) + ε · g(x, y) = F (xa, yb) + ε ·G(xa, yb)

with F (xa, yb), G(xa, yb) ∈ 〈xa, yb〉
m. Again, by Taylor expansion and

since ε2 = 0 we have

f(x, y) = f(xa, yb) − ε ·
(

a · ∂f
∂x

(xa, yb) + b · ∂f
∂y

(xa, yb)
)

and

ε · g(x, y) = ε · g(xa, yb).

Thus

F (xa, yb) = f(xa, yb)

and

〈xa, yb〉
m ∋ G(xa, yb) = g(xa, yb) − a · ∂f

∂x
(xa, yb) − b · ∂f

∂y
(xa, yb).

�

Example 9

If we fix a curve C ⊂ S and a point p ∈ C such that multp(C) = m,

i.e. if using the notation of Example 4 we fix a point Cp = (C, p) ∈ Hm,

then the diagram

S
∼=

// {Cp} × S � � // Hm × S

����
��

��
��

��
��

��
��

��

C
∼=

//

��

?�

OO

{(Cp, q) | q ∈ C} � � //

��

?�

OO

Fm

, �

::uuuuuuuuuu

��

t0 Cp
� // Hm

σ

??

(8)

is an embedded equimultiple deformation of C in S along the section σ

through p. Moreover, any embedded equimultiple deformation of C in

S with section through p as a family is up to isomorphism induced via
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(1) in a unique way and thus factors obviously uniquely through (8).

This means that every equimultiple deformation of C in S through p

is induced up to isomorphism in a unique way from (8).

We now want to examine the tangent space to Hm at a point Cp =

(C, p), which is just

TCp
(Hm) = Homloc−K−Alg

(

OHm,Cp
,C[ε]

)

= Hom
(

Tε, (Hm, Cp)
)

,

where (Hm, Cp) denotes the germ of Hm at Cp. However, a morphism

ψ : Tε −→ (Hm, Cp)

gives rise to a commutative fibre product diagram

Tε ×Hm
Fm

//

ϕ′

��

Fm

��

Tε
ψ

//

σ′

CC

Hm

σ

ii

sending the closed point of Tε to C. Thus (ϕ′, σ′) ∈ Defsec,emp∈C/S(Tε) is an

embedded equimultiple deformation of C in S with section through p.

The universality of (8) then implies that up to isomorphism each one

is of this form for a unique ϕ′, and this construction is functorial. We

thus have

TCp
(Hm) ∼= Defsec,emp∈C/S(Tε),

and hence (7) gives the exact sequence

0 // K // TCp
(Hm) // H0

(

C,JZ/C(C)
)

// 0.

In particular,

dimC (

TCp
(Hm)

)

=







dimCH0
(

C,JZ/C(C)
)

− 2, if C is unitangential,

dimCH0
(

C,JZ/C(C)
)

− 1, else.

Example 10

If we do the same constructions replacing in (8) the family (2) by (4)

we get for the tangent space to Lm at Cp = (C, p) the diagram of exact
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sequences

0 // K // TCp
(Hm) // H0

(

C,JZ/C(C)
)

// 0

0 // K // TCp
(Lm) //
?�

OO

H0
(

S,JZ(C)
)

/H0(OS) //
?�

OO

0.

In order to see this consider the exact sequence

0 → OS → OS(C) → OC(C) → 0

induced from the structure sequence of C. This sequence shows that

the tangent space to |L| at C considered as a subspace of the tangent

space H0
(

C,OC(C)
)

of H at C is just H0
(

S,OS(C)
)

/H0(S,OS) – that

is, a global section of OC(C) gives rise to an embedded deformation

of C in S which is actually a deformation in the linear system |L| if

and only if it comes from a global section of OS(C), and the constant

sections induce the trivial deformations. This construction carries over

to the families (2) and (4).

In particular we get the following proposition.

Proposition 11

Using the notation from above let C be a curve in the linear system |L|

on S and suppose that p ∈ C such that multp(C) = m.

Then the tangent space of Lm at Cp = (C, p) satisfies

dimC (

TCp
(Lm)

)

=







dimCH0
(

S,JZ(C)
)

− 2, if C is unitangential,

dimCH0
(

S,JZ(C)
)

− 1, else.

Moreover, the expected dimension of TCp
(Lm) and thus of Lm at Cp is

just

expdimCp
(Lm) = expdimC (

TCp
(Lm)

)

= dim |L| −
(m+ 1) ·m

2
+ 2.

For the last statement on the expected dimension just consider the

exact sequence

0 → H0
(

S,JZ(C)
)

→ H0
(

S,OS(L)
)

→ H0(S,OZ)

and note that the dimension of H0
(

S,JZ(C)
)

, and hence of TCp
(C),

attains the minimal possible value if the last map is surjective. The
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expected dimension of H0
(

S,JZ(C)
)

hence is

expdimCH0
(

S,JZ(C)
)

= dim |L| + 1 − deg(Z),

and it suffices to calculate deg(Z). If C is unitangential we may assume

that C locally in p is given by f = ym + h.o.t., so that

OZ,p = C{x, y}/〈ym−1〉 + 〈x, y〉m,

and hence deg(Z) = (m+1)·m
2

− 1. If C is not unitangential, then we

may assume that it locally in p is given by an equation f such that

fm = jetm(f) = xµ · yν · g, where x and y do not divide g, but µ and

ν are at least one. Suppose now that the partial derivatives of fm are

not linearly independent, then we may assume ∂fm

∂x
≡ α · ∂fm

∂y
and thus

µyg ≡ ανxg + αxy ·
∂g

∂y
− xy ·

∂g

∂x
,

which would imply that y divides g in contradiction to our assumption.

Thus the partial derivatives of fm are linearly independent, which shows

that

deg(Z) = dimC (C{x, y}/〈∂f
∂x
, ∂f
∂y
〉 + 〈x, y〉m

)

=
(m+ 1) ·m

2
− 2.

Example 12

Let us consider the Example 5 in the case where S = P
2 and L =

OP2(d). We will show that Lm is then smooth of the expected dimension.

Note that π(Lm) will only be smooth at C if C has an ordinary m-fold

point, that is, if all tangents are different.

Given Cp = (C, p) ∈ Lm we may pass to a suitable affine chart con-

taining p as origin and assume that H0
(

P
2,OP2(d)

)

is parametrised by

polynomials

Fa = f +
d

∑

i+j=0

ai,j · x
iyj,

where f is the equation of C in this chart. The closure of π(Lm) in

|L| locally at C is then given by several equations, say F1, . . . , Fk ∈C[ai,j |i+ j = 0, . . . , d], in the coefficients ai,j. We get these equations

by eliminating the variables x and y from the ideal defined by
〈

∂i+jFa
∂xiyj

∣

∣

∣
i+ j = 0, . . . , m− 1

〉

.
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And Lm is locally in Cp described by the equations

F1 = 0, . . . , Fk = 0,
∂i+jFa
∂xiyj

= 0, i+ j = 0, . . . , m− 1.

However, the Jacoby matrix of these equations with respect to the

variables x, y, ai,j contains a diagonal submatrix of size m·(m+1)
2

with

ones on the diagonal, so that its rank is at least m·(m+1)
2

, which – taking

into account that |L| = P
(

H0
(

P
2,OP2(d)

))

– implies that the tangent

space to Lm at Cp has codimension at least m·(m+1)
2

− 1 in the tangent

space of L. By Proposition 11 we thus have

dimCp
(Lm) ≤ dimC TCp

(Lm) ≤ dimC TCp
(L) −

m · (m+ 1)

2
+ 1

= dim(L) −
m · (m+ 1)

2
+ 1

= dim |L| −
m · (m+ 1)

2
+ 2

= expdimCp
(Lm) ≤ dimCp

(Lm),

which shows that Lm is smooth at Cp of the expected dimension.
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