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Abstract. In this paper we study standard bases for submod-

ules of K[[t1, . . . , tm]][x1, . . . , xn]
s respectively of their localisation

with respect to a t-local monomial ordering. The main step is to

prove the existence of a division with remainder generalising and

combining the division theorems of Grauert–Hironaka and Mora.

Everything else then translates naturally. Setting either m = 0 or

n = 0 we get standard bases for polynomial rings respectively for

power series rings as a special case. We then apply this technique

to show that the t-initial ideal of an ideal over the Puiseux series

field can be read of from a standard basis of its generators. This

is an important step in the constructive proof that each point in

the tropical variety of such an ideal admits a lifting.

The paper follows the lines of [GrP02] and [DeS07] generalising the

results where necessary. Basically, the only original parts for the stan-

dard bases are the proofs of Theorem 2.1 and Theorem 3.3, but even

here they are easy generalisations of Grauert–Hironaka’s respectively

Mora’s Division Theorem (the latter in the form stated and proved

first by Greuel and Pfister, see [GGM+94], [GrP96]; see also [Mor82],

[Gra94]). The paper should therefore rather be seen as a unified ap-

proach for the existence of standard bases in polynomial and power

series rings, and it was written mostly due to the lack of a suitable ref-

erence for the existence of standard bases in K[[t]][x1, . . . , xn] which are

needed when dealing with tropical varieties. Namely, when we want to

show that every point in the tropical variety of an ideal J defined over
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the field of Puiseux series exhibits a lifting to the variety of J , then,

assuming that J is generated by elements in K
[[

t
1

N

]]

[x1, . . . , xn], we

need to know that we can compute the so-called t-initial ideal of J by

computing a standard basis of the ideal defined by the generators in

K
[[

t
1

N

]]

[x1, . . . , xn] (see Theorem 7.10 and [JMM07]).

An important point is that if the input data is polynomial in both t and

x then we can actually compute the standard basis since a standard

basis computed inK[t1, . . . , tm]〈t1,...,tm〉[x1, . . . , xn] will do (see Corollary

4.7). This was previously known for the case where there are no xi (see

[GrP96]).

In this paper we treat only formal power series, while Grauert (see

[Gra72]) and Hironaka (see [Hir64]) considered convergent power series

with respect to certain valuations which includes the formal case. It

should be rather straightforward how to adjust Theorem 2.1 accord-

ingly. Many authors contributed to the further development (see e.g.

[Bec90] for a standard basis criterion in the power series ring) and

to generalisations of the theory, e.g. to algebraic power series (see e.g.

[Hir77], [AMR77], [ACH]) or to differential operators (see e.g. [GaH05]).

This list is by no means complete.

In Section 1 we introduce the basic notions. Section 2 is devoted

to the proof of the existence of a determinate division with remain-

der for polynomials in K[[t1, . . . , tm]][x1, . . . , xn]
s which are homoge-

neous with respect to the xi. This result is then used in Section 3 to

show the existence of weak divisions with remainder for all elements of

K[[t1, . . . , tm]][x1, . . . , xn]
s. In Section 4 we introduce standard bases

and prove the basics for these, and we prove Schreyer’s Theorem and,

thus Buchberger’s Criterion in Section 5. In Section 6 we describe some

algorithms which rely on the standard basis algorithm, and if the in-

put is polynomial in t as well as in x then the algorithms terminate.

Finally, in Section 7 we apply standard bases to study t-initial ideals

of ideals over the Puiseux series field.
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1. Basic Notation

Throughout the paper K will be any field, R = K[[t1, . . . , tm]] will

denote the ring of formal power series over K and

R[x1, . . . , xn] = K[[t1, . . . , tm]][x1, . . . , xn]

denotes the ring of polynomials in the indeterminates x1, . . . , xn with

coefficients in the power series ring R. We will in general use the

shorthand notation x = (x1, . . . , xn) and t = (t1, . . . , tm), and the usual

multi-index notation

tα = tα1

1 · · · tαm

m and xβ = xβ1

1 · · · xβn

n ,

for α = (α1, . . . , αm) ∈ Nm and β = (β1, . . . , βn) ∈ Nn .

Definition 1.1

A monomial ordering on

Mon(t, x) =
{

tα · xβ
∣

∣ α ∈ Nm, β ∈ Nn
}

is a total ordering > on Mon(t, x) which is compatible with the semi-

group structure of Mon(t, x), i.e. such that for all α, α′, α′′ ∈ Nm and

β, β′, β′′ ∈ Nn

tα · xβ > tα
′

· xβ′

=⇒ tα+α′′

· xβ+β′′

> tα
′+α′′

· xβ′+β′′

.

We call a monomial ordering > on Mon(t, x) t-local if its restriction to

Mon(t) is local, i.e.

ti < 1 for all i = 1, . . . ,m.

We call a t-local monomial ordering on Mon(t, x) a t-local weighted

degree ordering if there is a w = (w1, . . . , wm+n) ∈ Rm
≤0 ×Rn such that

for all α, α′ ∈ Nm and β, β′ ∈ Nn

w · (α, β) > w · (α′, β′) =⇒ tα · xβ > tα
′

· xβ′

,

where w · (α, β) = w1 · α1 + . . . + wm · αm + wm+1 · β1 + . . . + wn · βn

denotes the standard scalar product. We call w a weight vector of >.

Example 1.2

The t-local lexicographical ordering >lex on Mon(t, x) is defined by

tα · xβ > tα
′

· xβ′
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if and only if

∃ j ∈ {1, . . . , n} : β1 = β′
1, . . . , βj−1 = β′

j−1, and βj > β′
j,

or
(

β = β′ and ∃ j ∈ {1, . . . ,m} : α1 = α′
1, . . . , αj−1 = α′

j−1, αj < α′
j

)

.

Example 1.3

Let > be any t-local ordering and w = (w1, . . . , wm+n) ∈ Rm
≤0 × Rn,

then

tα · xβ >w tα
′

· xβ′

if and only if

w · (α, β) > w · (α′, β′)

or
(

w · (α, β) = w · (α′, β′) and tα · xβ > tα
′

· xβ′)

defines a t-local weighted degree ordering >w on Mon(t, x) with weight

vector w.

Even if we are only interested in standard bases of ideals we have to

pass to submodules of free modules in order to have syzygies at hand

for the proof of Buchberger’s Criterion via Schreyer orderings.

Definition 1.4

We define

Mons(t, x) :=
{

tα · xβ · ei | α ∈ Nn, β ∈ Nm, i = 1, . . . , s
}

,

where ei = (δij)j=1,...,s is the vector with all entries zero except the i-th

one which is one. We call the elements of Mons(t, x) module monomials

or simply monomials.

For p, p′ ∈ Mons(t, x) ∪ {0} we define

p
∣

∣ p′

in words “p divides p′”, if and only if

∃ α ∈ Nm, β ∈ Nn : tα · xβ · p = p′.

If p 6= 0, then we define in this case

p

p′
:= tα

′′

· xβ′′

∈ Mon(t, x).
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Note that, this is well defined since β and α are uniquely determined

if p 6= 0, and note also that for p = tα · xβ · ei and p′ = tα
′
· xβ′

· ej the

condition p | p′ necessarily implies that i = j.

Moreover, given two monomials tα · xβ · ei, t
α′
· xβ′

· ej ∈ Mons(t, x) we

define the lowest common multiple of the two as

lcm
(

tα · xβ · ei, t
α′

· xβ′

· ej
)

:=

{

t
max(α1,α

′
1
)

1 · · · x
max(βn,β

′
n)

n , if i = j,

0 if i 6= j.

Thus the least common multiple of two monomials is somehow the

smallest monomial which is divisible by both monomials, in the sense

that it does divide every other monomial with this property.

Given a monomial ordering on Mon(t, x), a t-local monomial ordering

on Mons(t, x) with respect to > is a total ordering >m on Mons(t, x)

which is strongly compatible with the operation of the multiplicative

semigroup Mon(t, x) on Mons(t, x) in the sense that

tα ·xβ ·ei >m tα
′

·xβ′

·ej =⇒ tα+α′′

·xβ+β′′

·ei >m tα
′+α′′

·xβ′+β′′

·ej

and

tα · xβ > tα
′

· xβ′

⇐⇒ tα · xβ · ei >m tα
′

· xβ′

· ei

for all β, β′, β′′ ∈ Nn, α, α′, α′′ ∈ Nm, i, j ∈ {1, . . . , s}.

Note that due to the second condition the ordering >m on Mons(t, x)

determines the ordering > on Mon(t, x) uniquely, and we will therefore

usually not distinguish between them, i.e. we will use the same nota-

tion > also for >m, and we will not specify the monomial ordering on

Mon(t, x) in advance, but instead refer to it as the induced monomial

ordering on Mon(t, x).

We call a monomial ordering on Mons(t, x) t-local if the induced mono-

mial ordering on Mon(t, x) is so.

We call a t-local monomial ordering on Mons(t, x) a t-local weight or-

dering if there is a w = (w1, . . . , wm+n+s) ∈ Rm
≤0 × Rn × Rs such that

for all α, α′ ∈ Nm, β, β′ ∈ Nn and i, j ∈ {1, . . . , s}

w · (α, β, ei) > w · (α′, β′, ej) =⇒ tα · xβ · ei > tα
′

· xβ′

· ej,

and we call w a weight vector of >.
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Example 1.5

Let > be a t-local monomial ordering on Mon(t, x).

(a) We can extend > to a t-local monomial ordering on Mons(t, x)

in two straightforward ways by

tα · xβ · ei > tα
′

· xβ′

· ej

if and only if

i < j or (i = j and tα · xβ > tα
′

· xβ′

),

respectively by

tα · xβ · ei > tα
′

· xβ′

· ej

if and only if

tα · xβ > tα
′

· xβ′

or (tα · xβ = tα
′

· xβ′

and i < j),

the first ordering giving priority to the components, the second

one giving priority to the monomials.

(b) If w ∈ Rm
≤0 ×Rn and >w is the t-local weighted degree ordering

with respect to > and w from Example 1.3 then the correspond-

ing module monomial ordering giving priority to the monomials

is a t-local weight ordering on Mons(t, x) with weight vector

(w, 0, . . . , 0).

(c) The module monomial ordering corresponding to > and giv-

ing priority to the components is a t-local weight ordering with

respect to the weight vector (0, . . . , 0, s, s− 1, . . . , 1).

Example 1.6

Let w ∈ Rm
≤0 × Rn+s and let > be any t-local monomial ordering

on Mons(t, x) such that the induced t-local monomial ordering on

Mon(t, x) is a t-local weighted degree ordering with respect to the

weight vector (w1, . . . , wm+n). Then

tα · xβ · ei >w tα
′

· xβ′

· ej

if and only if

w · (α, β, ei) > w · (α′, β′, ej)
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or
(

w · (α, β, ei) = w · (α′, β′, ej) and tα · xβ · ei > tα
′

· xβ′

· ej
)

defines a t-local weight monomial ordering on Mons(t, x) with weight

vector w. In particular, there exists such a monomial ordering.

Remark 1.7

In the following we will mainly be concerned with monomial orderings

on Mons(t, x) and with submodules of free modules over R[x], but all

these results specialise to Mon(t, x) and ideals by just setting s = 1. ✷

The following lemma follows easily from the above definitions.

Lemma 1.8

The following conditions for a monomial ordering > on Mons(t, x) are

equivalent:

(a) > is t-local.

(b) tα < 1 for all 0 6= α ∈ Nm.

(c) tα+α′
· xβ < tα

′
· xβ for all α, α′ ∈ Nm, β ∈ Nn.

(d) tα+α′
·xβ ·ei < tα

′
·xβ ·ei for all α, α

′ ∈ Nm, β ∈ Nn, i = 1, . . . , s.

For a t-local monomial ordering we can introduce the notions of leading

monomial and leading term of elements in R[x].

Definition 1.9

Let > be a t-local monomial ordering on Mon(t, x). We call

0 6= f =
d
∑

|β|=0

∞
∑

|α|=0

aα,β · t
α · xβ ∈ R[x],

with aα,β ∈ K, |β| = β1 + . . . + βn and |α| = α1 + . . . + αm, the

distributive representation of f ,

Mf :=
{

tα · xβ | aα,β 6= 0
}

the set of monomials of f and

Tf :=
{

aα,β · t
α · xβ | aα,β 6= 0

}

the set of terms of f .

Moreover,

lm>(f) := max
{

tα · xβ | tα · xβ ∈ Mf

}
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is called the leading monomial of f . Note, that this maximum exists

since the number of β’s occurring in f is finite and the ordering is local

with respect to t.

If lm>(f) = tα · xβ then we call

lc>(f) := aα,β

the leading coefficient of f ,

lt>(f) := aα,β · t
α · xβ

its leading term, and

tail>(f) := f − lt>(f)

its tail.

For the sake of completeness we define

lm>(0) := 0, lt>(0) := 0, lc>(0) := 0, tail>(f) = 0,

and

0 < tα · xβ ∀ α ∈ Nm, β ∈ Nn.

Finally, for a subset G ⊆ R[x] we call the ideal

L>(G) = 〈lm>(f) | f ∈ G〉✁K[t, x]

in the polynomial ring K[t, x] generated by all the leading monomials

of elements in G the leading ideal of G.

Analogously we define the notions for elements in R[x]s.

Definition 1.10

Let > be a t-local monomial ordering on Mons(t, x). We call

0 6= f =
s
∑

i=1

d
∑

|β|=0

∞
∑

|α|=0

aα,β,i · t
α · xβ · ei ∈ R[x]s,

with aα,β,i ∈ K, |β| = β1 + . . . + βn and |α| = α1 + . . . + αm, the

distributive representation of f ,

Mf :=
{

tα · xβ · ei | aα,β,i 6= 0
}

the set of monomials of f and

Tf :=
{

aα,β,i · t
α · xβ · ei | aα,β,i 6= 0

}
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the set of terms of f .

Moreover,

lm>(f) := max{tα · xβ · ei | t
α · xβ · ei ∈ Mf}

is called the leading monomial of f . Note again, that this maximum

exists since the number of β’s occurring in f and the number of i’s is

finite and the ordering is local with respect to t.

If lm>(f) = tα · xβ · ei then we call

lc>(f) := aα,β,i

the leading coefficient of f ,

lt>(f) := aα,β,i · t
α · xβ · ei

its leading term, and

tail>(f) := f − lt>(f)

its tail.

For the sake of completeness we again define

lm>(0) := 0, lt>(0) := 0, lc>(0) := 0, tail>(f) = 0,

and

0 < tα · xβ · ei ∀ α ∈ Nm, β ∈ Nn, i ∈ N.

Finally, for a subset G ⊆ R[x]s we call the submodule

L>(G) = 〈lm>(f) | f ∈ G〉 ≤ K[t, x]s

of the free module K[t, x]s over the polynomial ring K[t, x] generated

by all the leading monomials of elements in G the leading submodule

of G.

Since the monomial ordering is compatible with the semigroup struc-

ture on Mon(t, x) respectively with the operation of the semigroup

Mon(t, x) on Mons(t, x) the statements in the following lemma are ob-

vious.

Lemma 1.11

Let f ∈ R[x] and g ∈ R[x]s.

(a) lm>(f · g) = lm>(f) · lm>(g),

(b) lc>(f · g) = lc>(f) · lc>(g),
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(c) lt>(f · g) = lt>(f) · lt>(g).

Proof: Since the statements are true when f or g is zero, we may

assume that neither of them is so. Note that for any terms aα,β · t
α · xβ

of f and bα′,β′,i · t
α′
· xβ′

· ei of g we have

lm>(f) · lm>(g) ≥ tα · xβ · tα
′

· xβ′

· ei

with equality if and only if lm>(f) = tα · xβ and lm>(g) = tα
′
· xβ′

· ei.

This proves the lemma. �

We know that in general a standard basis of an ideal respectively sub-

module I will not be a generating set of I itself, but only of the ideal

respectively submodule which I generates in the localisation with re-

spect to the monomial ordering. We therefore introduce this notion

here as well.

Definition 1.12

Let > be a t-local monomial ordering on Mon(t, x), then

S> = {u ∈ R[x] | lt>(u) = 1}

is the multiplicative set associated to >, and

R[x]> = S−1
> R[x] =

{

f

u

∣

∣

∣
f ∈ R[x], u ∈ S>

}

is the localisation of R[x] with respect to >.

Remark 1.13

If > is a t-local monomial ordering with xi > 1 for all i = 1, . . . , n (e.g.

>lex from Example 1.2), then S> ⊂ R∗, and therefore R[x]> = R[x].

It is straightforward to extend the notions of leading monomial, leading

term and leading coefficient to R[x]> and free modules over this ring.

Definition 1.14

Let > be a t-local monomial ordering on Mons(t, x), g = f

u
∈ R[x]s>

with u ∈ S>, and G ⊆ R[x]s>. We then define the leading monomial,

the leading coefficient respectively the leading term of g as

lm>(g) := lm>(f), lc>(g) := lc>(f), resp. lt>(g) := lt>(f),
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and the leading ideal (if s = 1) respectively leading submodule of G

L>(G) = 〈lm>(h) | h ∈ G〉 ≤ K[t, x]s.

These definitions are independent of the chosen representative, since if

g = f

u
= f ′

u′ then u′ · f = u · f ′, and hence

lt>(f) = lt>(u
′)·lt>(f) = lt>(u

′·f) = lt>(u·f
′) = lt>(u)·lt>(f

′) = lt>(f
′).

Remark 1.15

Note that the leading submodule of a submodule in R[x]s> is a sub-

module in a free module over the polynomial ring K[t, x] over the base

field, and note that for J ≤ R[x]s> we obviously have

L>(J) = L>(J ∩R[x]s),

and similarly for I ≤ R[x]s we have

L>(I) = L>

(

〈I〉R[x]>

)

,

since every element of 〈I〉R[x]> is of the form f

u
with f ∈ I and u ∈ S>.

✷

In order to be able to work either theoretically or even computation-

ally with standard bases it is vital to have a division with remainder

and possibly an algorithm to compute it. We will therefore generalise

Grauert–Hironaka’s and Mora’s Division with remainder. For this we

first would like to consider the different qualities a division with re-

mainder may satisfy.

Definition 1.16

Let > be a t-local monomial ordering on Mons(t, x), and let A = R[x]

or A = R[x]>, where we consider the latter as a subring of K[[t, x]] in

order to have the notion of terms of elements at hand.

Suppose we have f, g1, . . . , gk, r ∈ As and q1, . . . , qk ∈ A such that

f = q1 · g1 + . . .+ qk · gk + r. (1)

With the notation r =
∑s

j=1 rj · ej, r1, . . . , rs ∈ A, we say that (1)

satisfies with respect to > the condition

(ID1) iff lm>(f) ≥ lm>(qi · gi) for all i = 1, . . . , k,

(ID2) iff lm>(gi) 6 | lm>(r) for i = 1, . . . , k, unless r = 0,
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(DD1) iff for j < i no term of qi · lm>(gi) is divisible by lm>(gj),

(DD2) iff no term of r is divisible by lm>(gi) for i = 1, . . . , k.

(SID2) iff lm>(gi) 6 | lm>(rj · ej) unless rj = 0 for all i and j.

Here, “ID” stands for indeterminate division with remainder while

“DD” means determinate division with remainder and the “S” in (SID2)

represents strong. Accordingly, we call a representation of f as in (1) a

determinate division with remainder of f with respect to (g1, . . . , gk) if

it satisfies (DD1) and (DD2), while we call it an indeterminate division

with remainder of f with respect to (g1, . . . , gk) if it satisfies (ID1) and

(ID2). In any of these cases we call r a remainder or a normal form of

f with respect to (g1, . . . , gk).

If the remainder in a division with remainder of f with respect to

(g1, . . . , gk) is zero we call the representation of f a standard represen-

tation.

Finally, if A = R[x] then for u ∈ S> we call a division with remain-

der of u · f with respect to (g1, . . . , gk) also a weak division with re-

mainder of f with respect to (g1, . . . , gk), a remainder of u · f with

respect to (g1, . . . , gk) is called a weak normal form of f with respect

to (g1, . . . , gk), and a standard representation of u · f with respect to

(g1, . . . , gk) is called a weak standard representation of f with respect

to (g1, . . . , gk).

The following lemma should clarify the relations between the above

conditions, and it should explain the determinate versa the indetermi-

nate.

Lemma 1.17

Let > be a t-local monomial ordering on Mons(t, x), and suppose we

have f, g1, . . . , gk, r ∈ R[x]s and q1, . . . , qk ∈ R[x] such that

f = q1 · g1 + . . .+ qk · gk + r. (2)

Then the following holds true:

(a) If (2) satisfies (DD2) then it satisfies (SID2).

(b) If (2) satisfies (SID2) then it satisfies (ID2).

(c) If (2) satisfies (DD1) and (ID2) then it satisfies (ID1).
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(d) Suppose that gi 6= 0 for i = 1, . . . , k. If f = q′1 ·g1+ . . .+q′k ·qk+

r′ is a second such representation of f and both satisfy (DD1)

and (DD2), then q1 = q′1, . . . , qk = q′k and r = r′. That is, a

determinate division with remainder is uniquely determined, if

it exists.

Proof: (a) This is obvious, if we take into account that 0 has no

term and therefore, even if r = 0 it is true that no term of r is

divisible by any lm>(gi).

(b) This is obvious.

(c) Let lm>(qj · gj) = tα · xβ · eν be maximal in {lm>(qi · gi) | i =

1, . . . , k}, and suppose that lm>(qj · gj) > lm>(f). Since the

monomial tα · xβ · eν does not occur on the left hand side of

the equality in (2) it must occur at least in one of the other

summands on the right hand side in order to cancel. Suppose

it occurs in some qi · gi, i 6= j, then by our choice necessarily

lm>(qj) · lm>(gj) = lm>(qj · gj) = lm>(qi · gi) = lm>(qi) · lm>(gi),

in contradiction to (DD1). Thus tα · xβ · eν must be a term in

r, and again by the maximality in our choice necessarily

lm>(qj) · lm>(gj) = lm>(qj · gj) = lm>(r),

in contradiction to (ID2). This shows that (ID1) is satisfied.

(d) Obviously the representation

0 = f − f = (q1 − q′1) · g1 + . . .+ (qk − q′k) · gk + (r − r′)

still satisfies the conditions (DD1) and (DD2). But then by

(a) and (b) it satisfies (ID2) and by (c) it satisfies (ID1). This

implies

0 = lm>(0) ≥ lm>(qi − q′i) · lm>(gi) ≥ 0,

and since by our assumption gi 6= 0 this implies lm>(qi−q′i) = 0

and hence qi = q′i. And therefore, finally, also r = r′.

�
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We first want to generalise Grauert–Hironaka’s Division with Remain-

der to the case of elements in R[x] which are homogeneous with respect

to x. We therefore introduce this notion in the following definition.

Definition 1.18

Let f =
∑s

i=1

∑d

|β|=0

∑

α∈Nm aα,β,i · t
α · xβ · ei ∈ R[x]s.

(a) We call

degx(f) := max
{

|β|
∣

∣ aα,β,i 6= 0
}

the x-degree of f .

(b) f ∈ R[x]s is called x-homogeneous of x-degree d if for any

0 6= λ ∈ K we have

f(t, λ · x) = λd · f,

or, equivalently, if all terms of f have the same x-degree d. We

denote by R[x]sd the R-submodule of R[x]s of x-homogeneous

elements of x-degree d. Note that by this definition 0 is x-

homogeneous of degree d for all d ∈ N.

(c) If > is a t-local monomial ordering on Mons(t, x) then we call

ecart>(f) := degx(f)− degx
(

lm>(f)
)

≥ 0

the ecart of f . It in some sense measures the failure of the

homogeneity of f .

2. Determinate Division with Remainder in K[[t]][x]sd

We are now ready to show that for x-homogeneous elements in R[x]

there exists a determinate division with remainder. We follow mainly

the proof of Grauert–Hironaka’s Division Theorem as given in [DeS07].

Theorem 2.1 (HDDwR)

Let f, g1, . . . , gk ∈ R[x]s be x-homogeneous, then there exist uniquely

determined q1, . . . , qk ∈ R[x] and r ∈ R[x]s such that

f = q1 · g1 + . . .+ qk · gk + r

satisfying

(DD1) For j < i no term of qi · lm>(gi) is divisible by lm>(gj),

(DD2) no term of r is divisible by any lm>(gi), and
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(DDH) q1, . . . , qk, r are x-homogeneous of x-degrees degx(qi) = degx(f)−

degx
(

lm>(gi)
)

respectively degx(r) = degx(f).

We call such a representation of f a homogeneous determinate division

with remainder.

Proof: We first consider the case that g1, . . . , gk ∈ Mons(t, x) are

monomials. Then define recursively for i = 1, . . . , k

qi :=
hi

gi
∈ R[x],

where hi is the sum of all terms of f −
∑i−1

j=1 qj · gj which are divisible

by gi, i = 1, . . . , k. Thus with r := f −
∑k

i=1 qi · gi

f = q1 · g1 + . . .+ qk · gk + r

obviously satisfies the above conditions (DD1), (DD2) and (DDH).

This result generalises immediately to the case where the gi are terms,

i.e. constant multiples of monomials.

Let us now consider the general case. We set f0 = f and for ν > 0 we

define recursively

fν = fν−1 −
k
∑

i=1

qi,ν · gi − rν =
k
∑

i=1

qi,ν · (
(

− tail(gi)
)

,

where the qi,ν ∈ R[x] and rν ∈ R[x]s are such that

fν−1 = q1,ν · lt>(g1) + . . .+ qk,ν · lt>(gk) + rν (3)

satisfies (DD1), (DD2) and (DDH). Note that such a representation of

fν−1 exists since the lt>(gi) are terms.

We want to show that fν , qi,ν and rν all converge to zero in the

〈t1, . . . , tm〉-adic topology, that is, for each N ≥ 0 there exists a µN ≥ 0

such that for all ν ≥ µN

fν , rν ∈ 〈t1, . . . , tm〉
N ·R[x]s resp. qi,ν ∈ 〈t1, . . . , tm〉

N .

By Lemma 2.5 there is t-local weight ordering >w such that

lm>(gi) = lm>w
(gi) for all i = 1, . . . , k.

If we replace in the above construction > by >w, we still get the same

sequences (fν)
∞
ν=0, (qi,ν)

∞
ν=1 and (rν)

∞
ν=1, since for the construction of
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qi,ν and rν only the leading monomials of the gj are used. In particular,

(3) will satisfy (DD1), (DD2) and (DDH) with respect to >w. Due to

(DDH) fν is again x-homogeneous of x-degree equal to that of fν−1,

and since (DD1) and (DD2) imply (ID1) by Lemma 1.17 we have

lm>w
(fν−1) ≥ max{lm>w

(qi,ν) · lm>w
(gi) | i = 1, . . . , k}

> max
{

lm>w
(qi,ν) · lm>w

(

− tail(gi)
) ∣

∣ i = 1, . . . , k
}

≥ lm>w
(fν).

It follows from Lemma 2.6 that fν converges to zero in the 〈t1, . . . , tm〉-

adic topology, i.e. for given N there is a µN such that

fν ∈ 〈t1, . . . , tm〉
N ·R[x]s for all ν ≥ µN .

But then, by construction for ν > µN

rν ∈ 〈t1, . . . , tm〉
N ·R[x]s

and

qi,ν ∈ 〈t1, . . . , tm〉
N−di ,

where di = deg
(

lm>(gi)
)

− degx
(

lm>(gi)
)

is independent of ν. Thus

both, rν and qi,ν , converge as well to zero in the 〈t1, . . . , tm〉-adic topol-

ogy.

But then

qi :=
∞
∑

ν=1

qi,ν ∈ R[x] and r :=
∞
∑

ν=1

rν ∈ R[x]s

are x-homogeneous of x-degrees degx(qi) = degx(f) − degx
(

lm>(gi)
)

respectively degx(r) = degx(f) unless they are zero, and

f = q1 · g1 + . . .+ qk · gk + r

satisfies (DD1), (DD2) and (DDH).

The uniqueness of the representation follows from Lemma 1.17. �

The following lemmata contain technical results used throughout the

proof of the previous theorem.

Lemma 2.2

Let Γ be a directed graph with vertex set V and edge set E ⊂ V ×V . If

for every vertex the number of outward pointing edges coincides with the

number of inward pointing edges, then F is a disjoint union of cycles.
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Proof: We do the proof by induction on the number #E of edges. If

there is no edge, then the statement holds by default, and we may thus

assume that #E > 0. Choose any vertex, say v0 ∈ V , which has an

outward pointing edge, say (v0, v1) ∈ E. By the assumption v1 also has

an outward pointing edge, say (v1, v2), and we can inductively proceed

to construct a sequence of vertices (vν)ν∈N with (vν , vν+1) ∈ E. Since

the number of vertices is finite, there is minimal µ ≥ 0 such that

vµ = vν for some 0 ≤ ν < µ.

But then

C =
(

(vν , vν+1), . . . , (vµ−1, vµ)
)

is a cycle, and if we remove C from E then the remaining graph still

satisfies that for each vertex the number of inward pointing and out-

ward pointing edges coincides. Thus by induction it is a disjoint union

of cycles and then so is Γ. �

Lemma 2.3

We use the notation z = (t, x) and Es = {e1, . . . , es}.

Let > be a monomial ordering on Mons(z) and consider the set

∆> :=
{

(γ, ei)− (γ′, ej) ∈ Zm+n+s | zγ · ei > zγ
′

· ej
}

.

Then:

(0, . . . , 0) 6∈

{

k
∑

i=1

ni · δi

∣

∣

∣

∣

δi ∈ ∆>, ni ∈ Z>0, k > 0

}

.

Proof: For the convenience of the reader we reproduce here the proof

given in Dave Bayer’s thesis [Bay82, (1.7)]. Suppose there exist, not

necessarily pairwise different,

δi = (γi,2, eji,2)− (γi,1, eji,1) ∈ ∆>, i = 1, . . . , k,

with γi,1, γi,2 ∈ Nm+n, ji,1, ji,2 ∈ {1, . . . , s} and

zγi,2 · eji,2 > zγi,1 · eji,1 ,

such that
(

k
∑

i=1

γi,2 − γi,1,
k
∑

i=1

eji,2 − eji,1

)

=
k
∑

i=1

δi = (0, . . . , 0).
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It is our first aim to show that we may assume that eji,1 = eji,2 for all

i = 1, . . . , k.

For this we define a directed graph Γ whose vertex set is Es and such

that for each i = 1, . . . , k there is an edge from eji,1 to eji,2 . Since by

assumption
∑k

i=1 eji,2 −eji,1 = (0, . . . , 0), for each vertex eν the number

of edges pointing towards eν is equal to the number of edges pointing

away from ei. Thus by Lemma 2.2 Γ is a disjoint union of cycles, each

given by a subset of {δ1, . . . , δk}. Let {δi1 , . . . , δiµ} represent such a

cycle with

ji1,2 = ji2,1, . . . , jiµ−1,2 = jiµ,1, jiµ,2 = ji1,1. (4)

Set γ = γi1,1 + . . .+ γiµ,1 ∈ Nm+n, ε0 := (γ, eji1,1) and recursively

εν := εν−1 + δiν =

(

ν
∑

κ=1

(γκ,2 − γκ,1) + γ, ejiν ,2

)

∈ Nm+n × Es

for ν = 1, . . . , µ. By assumption

zγiν ,2 · ejiν ,2
> zγiν ,1 · ejiν ,1

and multiplying both sides with z
∑ν−1

κ=1
(γiκ,2−γiκ,1)+γ−γiν ,1 ∈ Mon(z) we

get

z
∑ν

κ=1
(γiκ,2−γiκ,1)+γ · ejiν ,2

> z
∑ν−1

κ=1
(γiκ,2−γiκ,1)+γ · ejiν ,1

for ν = 1, . . . , µ. Transitivity of the monomial ordering and (4) imply

then

z
∑µ

κ=1
γiκ,2 · ejiµ,2

= z
∑µ

κ=1
(γiκ,2−γiκ,1)+γ · ejiµ,2

> zγ · eji1,1 = zγ · ejiµ,2
.

But then
µ
∑

ν=1

δiν = εµ − ε0 ∈ ∆>,

and we may replace {δi1 , . . . , δiµ} by its sum which is an element in

∆> such that the last s components are all zero. Doing this with each

of the cycles whose disjoint union is Γ we may assume that from the

beginning eji,1 = eji,2 for all i = 1, . . . , k.

If eji,1 = eji,2 then zγi,2 · eji,2 > zγi,1 · eji,1 implies

zγi,2 > zγi,1
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with respect to the monomial ordering which > induces on Mon(z).

The compatibility of > with respect to the semigroup structure of

Mon(z) then leads to

z
∑k

i=1
γi,2 > z

∑k
i=1

γi,1 ,

while
∑k

i=1 δi = 0 implies

k
∑

i=1

γi,2 =
k
∑

i=1

γi,1,

which gives the desired contradiction. �

Lemma 2.4

If > is a monomial ordering on Mons(z) with z = (t, x), and M ⊂

Mons(z) is finite, then there exists w ∈ Zm+n+s with

wi < 0, if zi < 1, and wi > 0, if zi > 1,

such that for zγ · ei, z
γ′
· ej ∈ M we have

zγ · ei > zγ
′

· ej ⇐⇒ w · (γ, ei) > w · (γ′, ej).

In particular, if > is t-local then every t-local weight ordering onMons(t, x)

with weight vector w coincides on M with >.

Proof: We set M ′ = M ∪ {e1, z1 · e1, . . . , zm+n · e1}, and we consider

the finite subset

∆M :=
{

(γ, ei)− (γ′, ej) | z
γ · ei, z

γ′

· ej ∈ M ′, zγ · ei > zγ
′

· ej
}

⊂ ∆>

of the set ∆> from Lemma 2.3.

Lemma 2.3 implies that the convex hull of ∆M over Q,

convQ(∆M) :=

{

∑

δ∈∆M

λδ · δ

∣

∣

∣

∣

λδ ∈ Q≥0,
∑

δ∈∆M

λδ = 1

}

,

does not contain the zero vector, since multiplying such a vanishing

convex combination with the greatest common denominator of the co-

efficients would lead to a positive integer combination as excluded in

Lemma 2.3.
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However, a convex set like convQ(∆M) which does not contain zero lies

in the positive half space defined by a linear form

lw : Qm+n+s −→ Q : v 7→ w · v =
m+n+s
∑

i=1

wi · vi (5)

given by w ∈ Qm+n+s (see e.g. [Val76, Thm 2.10]), i.e.

δ ∈ ∆M ⇐⇒ w · δ > 0.

Multiplying with the common denominator of its entries we may as-

sume that w ∈ Zm+n+s.

Moreover, if for i = 1, . . . ,m+ n we set δi := zi · e1 − e1, then by (5)

zi < 1 ⇐⇒ −δi ∈ ∆M ⇐⇒ wi = δi.wi < 0

and

zi > 1 ⇐⇒ δi ∈ ∆M ⇐⇒ wi = δi.wi > 0.

�

Lemma 2.5

Let > be a t-local ordering on Mons(t, x) and let g1, . . . , gk ∈ R[x]s

be x-homogeneous (not necessarily of the same degree), then there is a

w ∈ Zm
<0×Zn+s such that any t-local weight ordering with weight vector

w, say >w, induces the same leading monomials as > on g1, . . . , gk, i.e.

lm>(gi) = lm>w
(gi) for all i = 1, . . . , k.

Proof: Consider the monomial ideals Ii = 〈Mtail(gi)〉 in K[t, x] gener-

ated by all monomials of tail(gi), i = 1, . . . , k. By Dickson’s Lemma

(see e.g. [GrP02, Lemma 1.2.6]) Ii is generated by a finite subset, say

Bi ⊂ Mtail(gi), of the monomials of tail(gi). If we now set

M = B1 ∪ . . . ∪Bk ∪ {lm>(g1), . . . , lm>(gk)},

then by Lemma 2.4 there is w ∈ Zm
<0 × Zn+s such that any t-local

weight ordering, say >w, with weight vector w coincides on M with >.

Let now tα · xβ · eν be any monomial occurring in tail(gi). Then there

is a monomial tα
′
· xβ′

· eµ ∈ Bi such that

tα
′

· xβ′

· eµ
∣

∣ tα · xβ · eν ,
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which in particular implies that eν = eµ. Since gi is x-homogeneous it

follows first that |β| = |β′| and thus that β = β′. Moreover, since >w

is t-local it follows that tα
′
≥w tα and thus that

tα
′

· xβ′

· eµ ≥w tα · xβ · eν .

But since > and >w coincide on {lm>(gi)} ∪ Bi ⊂ M we necessarily

have that

lm>(gi) >w tα
′

· xβ′

· eµ ≥w tα · xβ · eν ,

and hence lm>w
(gi) = lm>(gi). �

Lemma 2.6

Let > be a t-local weight ordering on Mons(t, x) with weight vector

w ∈ Zm
<0 × Zn+s, and let (fν)ν∈N be a sequence of x-homogeneous

elements of fixed x-degree d in R[x]s such that

lm>(fν) > lm>(fν+1) for all ν ∈ N.

Then fν converges to zero in the 〈t1, . . . , tm〉-adic topology, i.e.

∀ N ≥ 0 ∃ µN ≥ 0 : ∀ ν ≥ µN we have fν ∈ 〈t1, . . . , tm〉
N · R[x]s.

In particular, the element
∑∞

ν=0 fν ∈ R[x]sd exists.

Proof: Since w1, . . . , wm < 0 the set of monomials

Mk =
{

tα · xβ · ei
∣

∣ w · (α, β, ei) > −k, |β| = d
}

.

is finite for a any fixed k ∈ N.

Let N ≥ 0 be fixed, set τ = max{|w1|, . . . , |wm+n+s|} and k := (N +

nd+ 1) · τ , then for any monomial tα · xβ · ej of x-degree d

tα · xβ · ej 6∈ Mk =⇒ tα · xβ · ej ∈ 〈t1, . . . , tm〉
N · R[x]s, (6)

since
m
∑

i=1

αi · wi ≤ −k −
n
∑

i=1

βi · wm+i − wm+n+j ≤ −k + (nd+ 1) · τ

and thus

|α| =
m
∑

i=1

αi ≥
m
∑

i=1

αi ·
−wi

τ
≥

k

τ
− nd− 1 = N.
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Moreover, sinceMk is finite and the lm>(fν) are pairwise different there

are only finitely many ν such that lm>(fν) ∈ Mk. Let µ be maximal

among those ν, then by (6)

lm>(fν) ∈ 〈t1, . . . , tm〉
N ·R[x]s for all ν > µ.

But since > is a t-local weight ordering we have that lm>(fν) 6∈ Mk

implies that no monomial of fν is in Mk, and thus fν ∈ 〈t1, . . . , tm〉
N ·

R[x]s for all ν > µ by (6). This shows that fν converges to zero in the

〈t1, . . . , tm〉-adic topology.

Since fν converges to zero in the 〈t1, . . . , tm〉-adic topology, for every

monomial tα · xβ · ej there is only a finite number of ν’s such that

tα · xβ · ej is a monomial occurring in fν . Thus the sum
∑∞

ν=0 fν exists

and is obviously x-homogeneous of degree d. �

From the proof of Theorem 2.1 we can deduce an algorithm for comput-

ing the determinate division with remainder up to arbitrary order, or if

we do not require termination then it will “compute” the determinate

division with remainder completely. Since for our purposes termina-

tion is not important, we will simply formulate the non-terminating

algorithm.

Algorithm 2.7 (HDDwR)

Input: (f,G) with G = {g1, . . . , gk} and f, g1, . . . , gk ∈ R[x]s x-

homogeneous, > a t-local monomial ordering

Output: (q1, . . . , qk, r) ∈ R[x]k ×R[x]s such that

f = q1 · g1 + . . .+ qk · gk + r

is a homogeneous determinate division with remainder of f

satisfying (DD1), (DD2) and (DDH).

Instructions:

• f0 := f

• r := 0

• FOR i = 1, . . . , k DO qi := 0

• ν := 0

• WHILE fν 6= 0 DO

– q0,ν := 0
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– FOR i = 1, . . . , k DO

∗ hi,ν :=
∑

p∈Tfν : lm>(gi) | p
p

∗ qi,ν :=
hi,ν

lt>(gi)

∗ qi := qi + qi,ν

– rν := fν − q1,ν · lt>(g1)− . . .− qk,ν · lt>(gk)

– r := r + rν
– fν+1 := fν − q1,ν · g1 − . . .− qk,ν · gk − rν

– ν := ν + 1

Remark 2.8

If m = 0, i.e. if the input data f, g1, . . . , gk ∈ K[x]s, then Algorithm

2.7 terminates since for a given degree there are only finitely many

monomials of this degree and therefore there cannot exist an infinite

sequence of homogeneous polynomials (fν)ν∈N of the same degree with

lm>(f1) > lm>(f2) > lm>(f3) > . . . .

3. Division with Remainder in K[[t]][x]s

We will use the existence of homogeneous determinate divisions with

remainder to show that in R[x]s weak normal forms exist. In order to

be able to apply this existence result we have to homogenise, and we

need to extend our monomial ordering to the homogenised monomials.

Definition 3.1

Let xh = (x0, x) = (x0, . . . , xn).

(a) For 0 6= f ∈ R[x]s. We define the homogenisation fh of f to be

fh := x
degx(f)

0 · f

(

t,
x1

x0

, . . . ,
xn

x0

)

∈ R[xh]
s
degx(f)

and 0h := 0. If T ⊂ R[x]s then we set

T h :=
{

fh
∣

∣ f ∈ T
}

.

(b) We call the R[x]-linear map

d : R[xh]
s −→ R[x]s : g 7→ gd := g|x0=1 = g(t, 1, x)

the dehomogenisation with respect to x0.
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(c) Given a t-local monomial ordering > on Mons(t, x) we define a

t-local monomial ordering >h on Mons(t, xh) by

tα · xβ · xa
0 · ei >h tα

′

· xβ′

· xa′

0 · ej

if and only if

|β|+ a > |β′|+ a′

or
(

|β|+ a = |β′|+ a′ and tα · xβ · ei > tα
′

· xβ′

· ej
)

,

and we call it the homogenisation of >.

In the following remark we want to gather some straightforward prop-

erties of homogenisation and dehomogenisation.

Remark 3.2

Let f, g ∈ R[x]s and F ∈ R[xh]
s
k. Then:

(a) f = (fh)d.

(b) F = (F d)h · x
degxh

(F )−degx(F
d)

0 .

(c) lm>h
(fh) = x

ecart(f)
0 · lm>(f).

(d) lm>h
(gh)| lm>h

(fh) ⇐⇒ lm>(g)| lm>(f) ∧ ecart(g) ≤ ecart(f).

(e) lm>h
(F ) = x

ecart(F d)+degxh
(F )−degx(F

d)

0 · lm>(F
d).

Theorem 3.3 (Division with Remainder)

Let > be a t-local monomial ordering on Mons(t, x) and g1, . . . , gk ∈

R[x]s. Then any f ∈ R[x]s has a weak division with remainder with

respect to g1, . . . , gk, i.e. there exist q1, . . . , qk ∈ R[x], r ∈ R[x]s and

u ∈ S> such that

u · f = q1 · g1 + . . .+ qk · gk + r

satisfies

(ID1) lm>(f) ≥ lm>(qi · gi) for i = 1, . . . , k, and

(ID2) lm>(r) 6∈ 〈lm>(g1), . . . , lm>(gk)〉 unless r = 0.

Proof: The proof follows from the correctness and termination of Al-

gorithm 3.4, which assumes the existence of the homogeneous determi-

nate division with remainder from Theorem 2.1 respectively Algorithm

2.7. �
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The following algorithm relies on the HDDwR-Algorithm, and it only

terminates under the assumption that we are able to produce homo-

geneous determinate divisions with remainder, which implies that it is

not an algorithm that can be applied in practice.

Algorithm 3.4 (DwR - Mora’s Division with Remainder)

Input: (f,G) with G = {g1, . . . , gk} and f, g1, . . . , gk ∈ R[x]s, > a

t-local monomial ordering

Output: (u, q1, . . . , qk, r) ∈ S> ×R[x]k ×R[x]s such that

u · f = q1 · g1 + . . .+ qk · gk + r

is a weak division with remainder of f .

Instructions:

• T := (g1, . . . , gk)

• D := {gi ∈ T | lm>(gi) divides lm>(f)}

• IF f 6= 0 AND D 6= ∅ DO

– IF e := min{ecart>(gi) | gi ∈ D} − ecart>(f) > 0 THEN

∗ (Q′
1, . . . , Q

′
k, R

′) := HDDwR
(

xe
0·f

h, (lt>h
(gh1 ), . . . , lt>h

(ghk )
)

∗ f ′ :=
(

xe
0 · f

h −
∑k

i=1 Q
′
i · g

h
i

)d

∗ (u′′, q′′1 , . . . , q
′′
k+1, r) := DwR

(

f ′, (g1, . . . , gk, f)
)

∗ qi := q′′i + u′′ ·Q′
i
d, i = 1, . . . , k

∗ u := u′′ − q′′k+1

– ELSE

∗ (Q′
1, . . . , Q

′
k, R

′) := HDDwR
(

fh, (gh1 , . . . , g
h
k )
)

∗ (u, q′′1 , . . . , q
′′
k , r) := DwR

(

(R′)d, T
)

∗ qi := q′′i + u ·Q′
i
d, i = 1, . . . , k

• ELSE (u, q1, . . . , qk, r) = (1, 0, . . . , 0, f)

Proof: Let us first prove the termination. For this we denote the

numbers, ring elements and sets, which occur in the ν-th recursion

step by a subscript ν, e.g. eν , fν or Tν . Since

T h
1 ⊆ T h

2 ⊆ T h
3 ⊆ . . .

also their leading submodules in K[t, xh]
s form an ascending chain

L>h
(T h

1 ) ⊆ L>h
(T h

2 ) ⊆ L>h
(T h

3 ) ⊆ . . . ,
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and since the polynomial ring is noetherian there must be an N such

that

L>h
(T h

ν ) = L>h
(T h

N) ∀ ν ≥ N.

If gi,N ∈ TN such that lm>(gi,N) | lm>(fN) with ecart>(gi,N) ≤ ecart>(fN),

then

lm>h
(ghi,N)

∣

∣ lm>h
(fh

N).

We thus have either lm>h
(ghi,N) | lm>h

(fh
N) for some gi ∈ DN ⊆ TN+1

or fN ∈ TN+1, and hence

lm>h
(fh

N) ∈ L>h
(T h

N+1) = L>h
(T h

N).

This ensures the existence of a gi,N ∈ TN such that

lm>h
(ghi,N) | lm>h

(fh
N)

which in turn implies that

lm>(gi,N) | lm>(fN),

eN ≤ ecart>(gi,N)− ecart>(fN) ≤ 0 and TN = TN+1. By induction we

conclude

Tν = TN ∀ ν ≥ N,

and

eν ≤ 0 ∀ ν ≥ N. (7)

Since in the N -th recursion step we are in the first “ELSE” case we

have (R′
N)

d = fN+1, and by the properties of HDDwR we know that

for all g ∈ TN

x
ecart>(g)
0 · lm>(g) = lm>h

(gh) 6
∣

∣ lm>h
(R′

N)

and that

lm>h
(R′

N) = xa
0 · lm>h

(fh
N+1) = x

a+ecart>(fN+1)
0 · lm>(fN+1)

for some a ≥ 0. It follows that, whenever lm>(g) | lm>(fN+1), then

necessarily

ecart>(g) > a+ ecart>(fN+1) ≥ ecart>(fN+1). (8)
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Suppose now that fN+1 6= 0 and DN+1 6= ∅. Then we may choose

gi,N+1 ∈ DN+1 ⊆ TN+1 = TN such that

lm>(gi,N+1)
∣

∣ lm>(fN+1)

and

eN+1 = ecart>(gi,N+1)− ecart>(fN+1).

According to (7) eN+1 is non-positive, while according to (8) it must

be strictly positive. Thus we have derived a contradiction which shows

that either fN+1 = 0 or DN+1 = ∅, and in any case the algorithm stops.

Next we have to prove the correctness. We do this by induction on the

number of recursions, say N , of the algorithm.

If N = 1 then either f = 0 or D = ∅, and in both cases

1 · f = 0 · g1 + . . .+ 0 · gk + f

is a weak division with remainder of f satisfying (ID1) and (ID2). We

may thus assume that N > 1 and e = min{ecart>(g) | g ∈ D} −

ecart>(f).

If e ≤ 0 then by Theorem 2.1

fh = Q′
1 · g

h
1 + . . .+Q′

k · g
h
k +R′

satisfies (DD1), (DD2) and (DDH). (DD1) implies that for each i =

1, . . . , k we have

x
ecart>(f)
0 · lm>(f) = lm>h

(fh) ≥

lm>h
(Q′

i) · lm>h
(ghi ) = x

ai+ecart>(gi)
0 · lm>

(

Q′
i
d)

· lm>(gi)

for some ai ≥ 0, and since fh and Q′
i · g

h
i are xh-homogeneous of the

same xh-degree by (DDH) the definition of the homogenised ordering

implies that necessarily

lm>(f) ≥ lm>

(

Q′
i
d)

· lm>(gi) ∀ i = 1, . . . , k.

Note that

(R′)d =

(

fh −
k
∑

i=1

Q′
i · g

h
i

)d

= f −
k
∑

i=1

Q′
i
d
· gi,
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and thus

lm>

(

(R′)d
)

= lm>

(

f −
k
∑

i=1

Q′
i
d
· gi

)

≤ lm>(f).

Moreover, by induction

u · (R′)d = q′′1 · g1 + . . . q′′k · gk + r

satisfies (ID1) and (ID2). But (ID1) implies that

lm>(f) ≥ lm>

(

(R′)d
)

≥ lm>(q
′′
i · gi),

so that

u · f =
k
∑

i=1

(

q′′i + u ·Q′
i
d)

· gi + r

satisfies (ID1) and (ID2).

It remains to consider the case e > 0. Then by Theorem 2.1

xe
0 · f

h = Q′
1 · lt>h

(gh1 ) + . . .+Q′
k · lt>h

(ghk ) +R′ (9)

satisfies (DD1), (DD2) and (DDH). (DD1) and (DD2) imply (ID1) for

this representation, which means that for some ai ≥ 0

x
e+ecart>(f)
0 · lm>(f) = lm>h

(xe
0 · f

h) ≥

lm>h
(Q′

i) · lm>h

(

lt>h
(ghi )

)

= x
ai+ecart>(gi)
0 · lm>(Q

′
i
d
) · lm>(gi),

and since both sides are xh-homogeneous of the same xh-degree with

by (DDH) we again necessarily have

lm>(f) ≥ lm>

(

Q′
i
d)

· lm>(gi).

Moreover, by induction

u′′ ·

(

f −
k
∑

i=1

Q′
i
d
· gi

)

=
k
∑

i=1

q′′i · gi + q′′k+1 · f + r (10)

satisfies (ID1) and (ID2).

Since lt>(u
′′) = 1 we have

lm>(f) ≥ lm>

(

q′′i + u′′ ·Q′
i
d)

· lm>(gi),



STANDARD BASES 29

for i = 1, . . . , k and therefore

(u′′ − q′′k+1) · f =
k
∑

i=1

(

q′′i + u′′ ·Q′
i
d)

· gi + r

satisfies (ID1) and (ID2) as well. It remains to show that u = u′′ −

q′′k+1 ∈ S>, or equivalently that

lt>(u
′′ − q′′k+1) = 1.

By assumption there is a gi ∈ D such that lm>(gi) | lm>(f) and

ecart>(gi) − ecart>(f) = e. Therefore, lm>h
(ghi ) | xe

0 · lm>h
(fh) and

thus in the representation (9) the leading term of xe
0 · fh has been

cancelled by some Q′
j · lt>h

(ghj ), which implies that

lm>h
(fh) > lm>h

(

fh −
k
∑

i=1

Q′
i · g

h
i

)

,

and since both sides are xh-homogeneous of the same xh-degree, unless

the right-hand side is zero, we must have

lm>(f) > lm>

(

f −
k
∑

i=1

Q′
i
d
· gi

)

≥ lm>(q
′′
k+1 · f),

where the latter inequality follows from (ID1) for (10). Thus however

lm>(q
′′
k+1) < 1, and since lm>(u

′′) = 1 we conclude that

lt>(u
′′ − q′′k+1) = lt>(u

′′) = 1.

This finishes the proof. �

Remark 3.5

As we have pointed out our algorithms are not useful for computational

purposes since Algorithm 2.7 does not in general terminate after a finite

number of steps. If, however, the input data are in fact polynomials

in t and x, then we can replace the ti by xn+i and apply Algorithm

3.4 to K[x1, . . . , xn+m]
s, so that it terminates due to Remark 2.8. The

computed weak division with remainder

u · f = q1 · g1 + . . .+ qk · gk + r
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is then polynomial in the sense that u, q1, . . . , qk ∈ K[t, x] and r ∈

K[t, x]s. In fact, Algorithm 3.4 is then only a variant of the usual

Mora algorithm.

In the proof of Schreyer’s Theorem we will need the existence of weak

divisions with remainder satisfying (SID2).

Corollary 3.6

Let > be a t-local monomial ordering on Mons(t, x) and g1, . . . , gk ∈

R[x]s. Then any f ∈ R[x]s has a weak division with remainder with

respect to g1, . . . , gk satisfying (SID2).

Proof: We do the proof by induction on s where for s = 1 the condition

(SID2) coincides with (ID2) and thus the result follows from Theorem

3.3. We may therefore assume that s > 1.

By Theorem 3.3 there exists a week division with remainder

u · f = q1 · g1 + . . .+ qk · gk + r, (11)

and obviously, there is a j ∈ {1, . . . , s} such that lm>(r) = lm>(rj · ej),

unless r = 0 – in which case we are done. In order to keep the notation

short we assume that j = s and we may assume that the gi are ordered

in such a way that for some 1 ≤ l ≤ k

lm>(gi) ∈ R[x] · es ⇐⇒ i > l,

i.e. only for the last k − l of the gi the leading monomial depends on

es.

Consider now the projection

π : R[x]s −→ R[x]s−1 : (p1, . . . , ps) 7→ (p1, . . . , ps−1),

the inclusion

ι : R[x]s−1 −→ R[x]s : (p1, . . . , ps−1) 7→ (p1, . . . , ps−1, 0),

and the restriction, say >∗, of > to Mons−1(t, x) defined by

p >∗ p′ :⇐⇒ ι(p) > ι(p′)

for p, p′ ∈ Mons−1(t, x) – which is again a t-local monomial ordering.

Note, also that for p ∈ R[x]s−1 we obviously have

lm>

(

ι(p)
)

= ι
(

lm>∗(p)
)

. (12)
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Moreover, due to the ordering of the gi we have for i = 1, . . . , l

lm>(gi) = lm>

(

ι
(

π(gi)
)

)

.

By induction hypothesis there exists a weak division with remainder of

π(r) = (r1, . . . , rs−1) with respect to >∗, say

u′ · π(r) = q′1 · π(g1) + . . .+ q′l · π(gl) + r′ (13)

with u′ ∈ S>∗ = S>, q
′
1, . . . , q

′
l ∈ R[x] and r′ = (r′1, . . . , r

′
s−1) ∈ R[x]s−1,

satisfying (ID1) and (SID2).

We want to show that

u · u′ · f =
l
∑

i=1

(u′ · qi + q′i) · gi +
k
∑

i=l+1

u′ · qi · gi + r′′, (14)

with r′′ = (r′1, . . . , r
′
s−1, rs), satisfies (ID1) and (SID2).

Since u, u′ ∈ S> have leading terms 1 leading terms do not change by

multiplication with u or u′. Moreover, since (11) and (13) both satisfy

(ID1) and taking (12) into account we have

lm>(f) ≥ lm>(r) > lm>

(

ι
(

π(r)
)

)

≥ lm>

(

q′i · ι
(

π(gi)
)

)

= lm>

(

q′i · gi
)

for i = 1, . . . , l. Thus by (ID1) for (11) we have

lm>(u · u′ · f) ≥ lm>

(

(u′ · qi + q′i) · gi
)

,

for i = 1, . . . , l and

lm>(u · u′ · f) ≥ lm>(u
′ · qi · gi

)

for i = l + 1, . . . , k, which shows that (14) satisfies (ID1).

Moreover, by (SID2) for (13) we know that, unless r′j = 0,

lm>∗

(

π(gi)
)

6
∣

∣ lm>∗

(

(0, . . . , r′j , . . . , 0)
)

for j = 1, . . . , s− 1 and i = 1, . . . , l, and hence unless r′j = 0,

lm>(gi) = lm>

(

ι
(

π(gi)
)

)

6
∣

∣ lm>(r
′
j · ej)

for j = 1, . . . , s− 1 and i = 1, . . . , l. And since lm>(gi) involves es for

i = l + 1, . . . , k but r′j · ej does not for j = 1, . . . , s− 1, we have

lm>(gi) 6
∣

∣ lm>(r
′
j · ej)
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for any i = 1, . . . , k and j = 1, . . . , s − 1. And since by (Id2) for (11)

we also have that

lm>(gi) 6
∣

∣ lm>(r) = lm>(rs · es)

for any i = 1, . . . , k, we are done, i.e. (14) satisfies (SID2). �

Corollary 3.7

Let > be a t-local monomial ordering on Mons(t, x) and g1, . . . , gk ∈

R[x]s>. Then any f ∈ R[x]s> has a division with remainder with respect

to g1, . . . , gk satisfying (SID2).

Proof: Let f = f ′

u
and gi =

g′i
ui
, i = 1, . . . , k, with f ′, g′1, . . . , g

′
k ∈ R[x]s

and u, u1, . . . , uk ∈ S>. Consider

v = u · u1 · . . . · uk ∈ S>

and

f ′′ = v · f, g′′1 = v · g1, . . . , g
′′
k = v · gk ∈ R[x].

By Corollary 3.6 there exists a weak division with remainder

u′′ · f ′′ = q′′1 · g
′′
1 + . . .+ q′′k · g

′′
k + r′′, (15)

satisfying (ID1) and (SID2) with u′′ ∈ S>, q
′′
1 , . . . , q

′′
k ∈ R[x] and r ∈

R[x]s. Setting

q1 =
q′′1
u′′

, . . . , qk =
q′′k
u′′

∈ R[x]>

and

r =
1

u′′ · v
· r′′ ∈ R[x]s>,

then

f = q1 · g1 + . . .+ qk · gk + r

and this representation satisfies (ID1) and (SID2) since by definition

the leading monomials of the elements (including those of the compo-

nents rν · eν) involved in this representation are the same as those in

(15). �
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4. Standard Bases in K[[t]][x]s

Definition 4.1

Let > be t-local monomial ordering on Mons(t, x), I ≤ R[x]s and J ≤

R[x]s> be submodules.

A standard basis of I is a finite subset G ⊂ I such that

L>(I) = L>(G).

A standard basis of J is a finite subset G ⊂ J such that

L>(J) = L>(G).

A finite subset G ⊆ R[x]s> is called a standard basis with respect to >

if G is a standard basis of 〈G〉 ≤ R[x]s>.

The existence of standard bases is immediate from Hilbert’s Basis The-

orem.

Proposition 4.2

If > is a t-local monomial ordering then every submodule of R[x]s and

of R[x]s> has a standard basis.

Proof: Follows since K[t, x]s is noetherian. �

Standard bases are so useful since they are generating sets for sub-

modules of R[x]s> and since submodule membership can be tested by

division with remainder.

Proposition 4.3

Let > be t-local monomial ordering on Mons(t, x), I, J ≤ R[x]s> sub-

modules, G = (g1, . . . , gk) ⊂ J a standard basis of J and f ∈ R[x]s>
with division with remainder

f = q1 · g1 + . . .+ qk · gk + r. (16)

Then:

(a) f ∈ J if and only if r = 0.

(b) J = 〈G〉.

(c) If I ⊆ J and L>(I) = L>(J), then I = J .
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Proof: (a) If r = 0 then obviously f ∈ 〈G〉 ⊆ J . If conversely

f ∈ J then

r = f − q1 · g1 − . . .− qk · gk ∈ J,

and therefore lm>(r) ∈ L>(J) = L>(G). But then (ID2) implies

r = 0.

(b) If f ∈ J then by Corollary 3.7 f has a division with remainder

as in (16), but by (a) r = 0 and thus f ∈ 〈G〉 since u is a unit.

(c) By Proposition 4.2 there exists a standard basis G′ ⊆ I ⊆ J of

I. But then G′ is a standard basis of J , since

L>(G
′) = L>(I) = L>(J),

and thus G′ generates both, I and J , by (b).

�

In order to work, even theoretically, with standard bases it is vital to

have a good criterion to decide whether a generating set is standard

basis or not. In order to formulate Buchberger’s Criterion it is helpful

to have the notion of an s-polynomial.

Definition 4.4

Let > be a t-local monomial ordering on R[x]s and f, g ∈ R[x]s. We

define the s-polynomial of f and g as

spoly(f, g) :=
lcm

(

lm>(f), lm>(g)
)

lt>(f)
· f −

lcm
(

lm>(f), lm>(g)
)

lt>(g)
· g.

Theorem 4.5 (Buchberger Criterion)

Let > be a t-local monomial ordering on Mons(t, x), J ≤ R[x]s> a

submodule and g1, . . . , gk ∈ J . The following statements are equivalent:

(a) G = (g1, . . . , gk) is a standard basis of J .

(b) Every normal form with respect to G of any element in J is

zero.

(c) Every element in J has a standard representation with respect

to G.

(d) J = 〈G〉 and spoly(gi, gj) has a standard representation for all

i < j.
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Proof: In Proposition 4.3 we have shown that (a) implies (b), and the

implication (b) to (c) is trivially true. And, finally, if f ∈ J has a

standard representation with respect to G, then lm>(f) ∈ L>(G), so

that (c) implies (a). Since spoly(gi, gj) ∈ J condition (d) follows from

(c), and the hard part is to show that (d) implies actually (c). This is

postponed to Theorem 5.3. �

Since for G ⊂ R[x]s we have L>

(

〈G〉R[x]

)

= L>

(

〈G〉R[x]>

)

we get the

following corollary.

Corollary 4.6 (Buchberger Criterion)

Let > be a t-local monomial ordering on Mons(t, x) and g1, . . . , gk ∈

I ≤ R[x]s. Then the following statements are equivalent:

(a) G = (g1, . . . , gk) is a standard basis of I.

(b) Every weak normal form with respect to G of any element in I

is zero.

(c) Every element in I has a weak standard representation with re-

spect to G.

(d) 〈I〉R[x]> = 〈G〉R[x]> and spoly(gi, gj) has a weak standard repre-

sentation for all i < j.

Proof: If G is a standard basis of I then it is a standard basis of

J = 〈I〉R[x]> , since L>(I) = L>(J) by Remark 1.15. Suppose now that

f ∈ I has a weak division with remainder

u · f = q1 · g1 + . . .+ qk · gk + r,

then

f =
q1
u

· g1 + . . .+
qk
u

· gk +
1

u
· r

is a division with remainder of f ∈ I ⊆ J , and thus r = 0 by Theorem

4.5. Therefore (a) implies (b), and it is obvious that (b) implies (c).

Moreover, if (c) holds and f = f ′

u′ ∈ J with f ′ ∈ I and u′ ∈ S> then by

assumption there exists a weak standard representation

u · f ′ = q1 · g1 + . . .+ qk · gk

with u ∈ S> and q1, . . . , qk ∈ R[x]. But then

f =
q1

u · u′
· g1 + . . .+

qk
u · u′

· gk



36 THOMAS MARKWIG

is a standard representation of f , and Theorem 4.5 implies that G

generates J and that for each i < j there is standard representation

spoly(gi, gj) =
q1
u1

· g1 + . . .+
qk
u1

· gk

with qi ∈ R[x] and u1, . . . , uk ∈ S>. Setting u = u1 · · · uk ∈ S> and

q′i =
qi·u
ui

∈ R[x] we get the weak standard representation

u · spoly(gi, gj) = q′1 · g1 + . . .+ q′k · gk,

which shows that (d) holds true.

Finally, if (d) holds true then every weak standard representation

u · spoly(gi, gj) = q1 · g1 + . . .+ qk · gk,

gives rise to a standard representation

spoly(gi, gj) =
q1
u

· g1 + . . .+
qk
u

· gk,

so that by Theorem 4.5 G is a standard basis of J . But by Remark

1.15 L>(I) = L>(J), so that G is also a standard basis of I. �

When working with polynomials in x as well as in t we can actually

compute divisions with remainder and standard bases (see Remark

3.5), and they are also standard bases of the corresponding submodules

considered over R[x] by the following corollary.

Corollary 4.7

Let > be a t-local monomial ordering on Mons(t, x) and let G ⊂ K[t, x]s

be finite. Then G is a standard basis of 〈G〉K[t,x] if and only if G is a

standard basis of 〈G〉R[x].

Proof: Let G = (g1, . . . , gk). By Theorem 3.3 and Remark 3.5 each

spoly(gi, gj) has a weak division with remainder with respect to G such

that the coefficients and remainders involved are polynomials in x as

well as in t. But by Corollary 4.6 G is a standard basis of either of

〈G〉K[t,x] and 〈G〉R[x] if and only if all these remainders are actually

zero. �

And thus it makes sense to formulate the classical standard basis algo-

rithm also for the case R[x].
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Algorithm 4.8 (STD – Standard Basis Algorithm)

Input: (f1, . . . , fk) ∈
(

R[x]s
)k

and > a t-local monomial ordering.

Output: (f1, . . . , fl) ∈
(

R[x]s
)l

a standard basis of 〈f1, . . . , fk〉R[x].

Instructions:

• G = (f1, . . . , fk)

• P =
(

(fi, fj)
∣

∣ 1 ≤ i < j ≤ k
)

• WHILE P 6= ∅ DO

– Choose some pair (f, g) ∈ P

– P = P \ {(f, g)}

– (u, q, r) = DwR
(

spoly(f, g), G)

– IF r 6= 0 THEN

∗ P = P ∪ {(f, r) | f ∈ G}

∗ G = G ∪ {r}

Proof: Since in each step when G is enlarged the leading module of G

is strictly enlarged and since K[t, x]s is noetherian the algorithm will

terminate. Moreover, by Buchberger’s Criterion G will be a standard

basis. �

Remark 4.9

If the input of STD are polynomials in K[t, x] then the algorithm works

in practice due to Remark 3.5, and it computes a standard basis G of

〈f1, . . . , fk〉K[t,x] which due to Corollary 4.7 is also a standard basis of

〈f1, . . . , fk〉R[x], since G still contains the generators f1, . . . , fk.

5. Schreyer’s Theorem for K[[t1, . . . , tm]][x1, . . . , xn]
s

In this section we want to prove Schreyer’s Theorem for R[x]s which

proves Buchberger’s Criterion and shows at the same time that a stan-

dard basis of a submodule gives rise to a standard basis of the syzygy

module defined by it with respect to a special ordering.

Definition 5.1 (Schreyer Ordering)

Let > be a t-local monomial ordering on Mons(t, x) and g1, . . . , gk ∈

R[x]s>. We define a Schreyer ordering with respect to> and (g1, . . . , gk),

say >S, on Monk(t, x) by

tα · xβ · εi >S tα
′

· xβ′

· εj
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if and only if

tα · xβ · lm>(gi) > tα
′

· xβ′

· lm>(gj)

or

tα · xβ · lm>(gi) = tα
′

· xβ′

· lm>(gj) and i < j,

where εi = (δij)j=1,...,k is the canonical basis with i-th entry one and

the rest zero.

Moreover, we define the syzygy module of (g1, . . . , gk) to be

syz(g1, . . . , gk) := {(q1, . . . , qk) ∈ R[x]k> | q1 · g1 + . . .+ qk · gk = 0},

and we call the elements of syz(g1, . . . , gk) syzygies of g1, . . . , gk.

Remark 5.2

Let > be a t-local monomial ordering on Mons(t, x) and g1, . . . , gk ∈

R[x]s>. Let us fix for each i < j a division with remainder of spoly(gi, gj),

say

spoly(gi, gj) =
k
∑

ν=1

qi,j,ν · gν + rij , (17)

and define

mji :=
lcm

(

lm>(gi), lm>(gj)
)

lm>(gi)
,

so that

spoly(gi, gj) =
mji

lc>(gi)
· gi −

mij

lc>(gj)
· gj.

Then

sij :=
mji

lc>(gi)
· εi −

mij

lc>(gj)
· εj −

k
∑

ν=1

qi,j,ν · εν ∈ R[x]k>

has the property

sij ∈ syz(g1, . . . , gk) ⇐⇒ rij = 0.

Moreover, the leading monomial of sij with respect to the Schreyer

ordering on Monk(t, x) induced by > and (g1, . . . , gk) is

lm>S
(sij) = mji · εi, (18)

since lm>

( mji

lc>(gi)
·gi
)

= lm>

( mij

lc>(gj)
·gj
)

but i < j and since (17) satisfies

(ID1).
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Theorem 5.3 (Schreyer)

Let > be a t-local monomial ordering on Mons(t, x), g1, . . . , gk ∈ R[x]s>
and suppose that spoly(gi, gj) has a weak standard representation with

respect to G = (g1, . . . , gk) for each i < j.

Then G is a standard basis, and with the notation in Remark 5.2

{sij | i < j} is a standard basis of syz(g1, . . . , gk) with respect to >S.

Proof: Let I = 〈G〉R[x]> and consider the R[x]>-linear map

φ : R[x]k> −→ R[x]s> : (q1, . . . , qk) 7→ q1 · g1 + . . .+ qk · gk.

For f ∈ I there is a q := (q1, . . . , qk) ∈ R[x]k> such that f =
∑k

i=1 qi ·gi,

and by Corollary 3.7 there is a division with remainder of q with respect

to (sij | i < j) and >S, say

q =
∑

i<j

aij · sij + r (19)

with aij ∈ R[x]> and r =
∑k

ν=1 rν · εν ∈ R[x]k>, which satisfies (ID1)

and (SID2). By (SID2)

mji · εi = lm>S
(sij) 6

∣

∣ lm>S
(rν · εν)

whenever rν 6= 0, and hence

mjν 6
∣

∣ rν , (20)

whenever rν 6= 0.

Note that

f = φ(q) = φ(r) =
k
∑

ν=1

rν · gν , (21)

since sij ∈ ker(φ), and we claim that

lm>(f) ≥ lm>(rν · gν). (22)

For this it suffices to show that

lm>(rν) · lm>(gν) 6= lm>(rµ) · lm>(gµ)

for ν < µ, whenever rν 6= 0 6= rµ. Suppose the contrary, then

0 6= mµν · lm>(gν) = lcm
(

lm>(gν), lm>(gµ)
)

divides

lm>(rµ) · lm>(gµ) = lm>(rν) · lm>(gν),
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since both lm>(gν) and lm>(gµ) divide the latter. But this contradicts

(20).

It follows from (22) that (21) is a standard representation of f with

respect to (g1, . . . , gk) and >, and since f ∈ I was arbitrary it follows

from Theorem 4.5 “(c)=⇒(a)”, which we have already proved, that G

is actually a standard basis of 〈G〉R[x]> .

Moreover, q ∈ syz(g1, . . . , gk) if and only if φ(q) = f = 0, and by (21)

and (22) this is the case if and only if r = 0. Thus by (19) every

element in syz(g1, . . . , gk) has a standard representation with respect

to {sij | i < j} and >S, and therefore, as before, {sij | i < j} is a

standard basis of syz(g1, . . . , gk) with respect to >S by Theorem 4.5

“(c)=⇒(a)”. This finishes the proof. �

6. Algorithms Relying on Standard Bases

Having division with remainder, standard bases and Buchberger’s Cri-

terion at hand one can, from a theoretical point of view, basically derive

all the standard results from computer algebra also for free modules

over R[x] respectively R[x]>. We will gather here some of these re-

sults which are explicitly needed for the Lifting Algorithm for tropical

varieties.

The simplest algorithm is the one for testing submodule membership.

Algorithm 6.1 (MEMBERSHIP)

Input: f, f1, . . . , fk ∈ R[x]s and > a t-local monomial ordering.

Output: N , where N = 1 if f ∈ 〈f1, . . . , fk〉R[x]> , and N = 0 else.

Instructions:

• (u, q, r) = DwR
(

f, (f1, . . . , fk), >
)

• IF r = 0 THEN N = 1 ELSE N = 0

In order to do more complicated computations one needs elimination.

Recall that a monomial ordering on Mon(y1, . . . , yk) is said to be global

if yi > 1 for all i = 1, . . . , k.

Definition 6.2

Divide the variables x = (x1, . . . , xn) into two disjoint subsets x0 and

x1. We call a t-local monomial ordering > on Mons(t, x) an elimination
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ordering with respect to x1 if for f ∈ R[x]

lm>(f) ∈ K[t, x1]
s =⇒ f ∈ R[x1]

s.

Typical examples of elimination orderings are block orderings like the

one defined by

tα · x0
β · x1

γ · ei > tα
′

· x0
β′

· x1
γ′

· ej

if and only if

x0
β >0 x0

β′

or

x0
β = x0

β′

and tα · x1
γ · ei >1 tα

′

· x1
γ′

· ej,

where >0 is a global monomial ordering on Mon(x0) and >1 is a t-local

monomial ordering on Mons(t, x1). Denote > by (>0, >1).

Proposition 6.3

Let > be a t-local elimination ordering with respect to x0 on Mons(t, x),

I ≤ R[x]s>, and G be a standard basis of I with respect to >.

Then
(

g ∈ G
∣

∣ lm>(g) ∈ K[t, x \ x0]
s
)

is a standard basis of I ∩ R[x \

x0]
s
>.

Proof: G′ =
(

g ∈ G
∣

∣ lm>(g) ∈ K[t, x \ x0]
s
)

is contained in I ∩R[x \

x0]
s since > is an elimination ordering with respect to x0. Moreover,

if f ∈ I ∩ R[x \ x0]
s
> ⊆ I then there is there is a g ∈ G such that

lm>(g) | lm>(f) ∈ K[t, x \ x0]
s, since G is a standard basis of I.

However, this forces lm>(g) ∈ K[t, x \ x0]
s and thus g ∈ G′. This

shows that G′ is a standard basis of I ∩R[x \ x0]
s
>. �

This leads to the following elimination algorithm.

Algorithm 6.4 (ELIMINATE)

Input: f1, . . . , fk ∈ R[x]s>, x0 ⊆ x, and > a t-local elimination order-

ing with respect to x0.

Output: G ⊂ R[x\x0]
s a standard basis of 〈f1, . . . , fk〉R[x]>∩R[x\x0]>.

Instructions:

• G′ = STD(f1, . . . , fk, >)

• G =
(

g ∈ G
∣

∣ lm>(g) ∈ K[t, x \ x0]
s
)
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Proposition 6.5

Let > be a t-local monomial ordering on Mons(t, x), and let I = 〈f1, . . . , fk〉, J =

〈g1, . . . , gl〉 ≤ R[x]s>, then

I ∩ J = 〈τ · f1, . . . , τ · fk, (1− τ) · g1, . . . , (1− τ) · gl〉R[x]>[τ ] ∩R[x]s>.

Proof: If f =
∑k

i=1 ai · fi =
∑l

j=1 bj · gj with ai, bj ∈ R[x]> then

f = τ · f + (1− τ) · f =
k
∑

i=1

ai · τ · fi +
l
∑

j=1

bj · (1− τ) · gj

is in the right-hand side. Conversely, if

f =
k
∑

i=1

ai · τ · fi +
l
∑

j=1

bj · (1− τ) · gj

is in the right-hand side with ai, bj ∈ R[x]>[τ ], then

f = f|τ=0 =
k
∑

i=1

ai|τ=0 · fi ∈ I

and

f = f|τ=1 =
l
∑

j=1

bj|τ=1 · gj ∈ J,

so that f ∈ I ∩ J . �

This leads to the following algorithm for computing intersections of

submodules.

Algorithm 6.6 (INTERSECTION)

Input: f1, . . . , fk, g1, . . . , gl ∈ R[x]s and > a t-local ordering.

Output: G ⊂ R[x]s a standard basis of 〈f1, . . . , fk〉R[x]> ∩

〈g1, . . . , gl〉R[x]> .

Instructions:

• Let>′= (>0, >) be the block ordering with respect to the unique

global ordering >0 on Mon(τ)

• G =ELIMINATE
(

(

τf1, . . . , τfk, (1−τ)g1, . . . , (1−τ)gl
)

, τ, >′
)

Proposition 6.7

Let > be a t-local monomial ordering on Mons(t, x), let I = 〈f1, . . . , fk〉 ≤

R[x]s> and 0 6= f ∈ R[x]s>.
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If I ∩ 〈f〉 = 〈g1 · f, . . . , gl · f〉, then I : 〈f〉 = 〈g1, . . . , gl〉R[x]>.

Proof: It is clear that g1, . . . , gl ∈ I : 〈f〉, and we may thus suppose

that we have some h ∈ I : 〈f〉✂ R[x]>. By assumption h · f ∈ I ∩ 〈f〉

and thus there are a1, . . . , ak ∈ R[x]> such that

h · f =

(

k
∑

i=1

ai · gi

)

· f,

and since R[x]> has no zero divisors this implies h =
∑k

i=1 ai · gi. �

We thus get the following algorithm for computing the ideal quotient

with respect to a single element.

Algorithm 6.8 (QUOTIENT)

Input: f1, . . . , fk, f ∈ R[x]s and > a t-local monomial ordering.

Output: G ⊂ R[x] a standard basis of 〈f1, . . . , fk〉R[x]> : 〈f〉R[x]> .

Instructions:

• G′ = INTERSECTION
(

(f1, . . . , fk), (f)
)

• G =
(

g

f

∣

∣ g ∈ G
)

Finally, this leads to the following algorithm for computing the satu-

ration with respect to a single element.

Algorithm 6.9 (SATURATION)

Input: f1, . . . , fk, f ∈ R[x]s and > a t-local monomial ordering.

Output: G ⊂ R[x] a standard basis of 〈f1, . . . , fk〉R[x]> : 〈f〉∞R[x]>
.

Instructions:

• N = 0

• WHILE N = 0 DO

– G′ = QUOTIENT
(

G, f,>
)

– Test using MEMBERSHIP if G′ ⊂ 〈G〉.

– IF so THEN N = 1

Proof: The procedure constructs an ascending sequence of modules

generated by the sets G, and since R[x]> is noetherian the algorithm

must stop after a finite number of steps. Moreover, once the procedure

stops then

〈G〉 : 〈f〉 = 〈G′〉 = 〈G〉,
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which shows that 〈G〉 is actually saturated with respect to f . �

We will use the existence of these procedures at the end of the next

section to show that generators for 〈f1, . . . , fk〉R[x] : 〈t〉
∞
R[x] can be com-

puted over K[t, x] when the fi ∈ K[t, x] are polynomials.

7. Application to t-Initial Ideals

In this section we want to show that for an ideal J over the field of

Puiseux series which is generated by elements in K[[t
1

N ]][x] respectively

in K[t
1

N , x] the t-initial ideal (a notion we will introduce further down)

with respect to w ∈ Q<0 ×Qn can be computed from a standard basis

of the generators.

Definition 7.1

We consider for 0 6= N ∈ N the discrete valuation ring

RN = K
[[

t
1

N

]]

=

{

∞
∑

α=0

aα · t
α
N

∣

∣ aα ∈ K

}

of power series in the unknown t
1

N with discrete valuation

val

(

∞
∑

α=0

aα · t
α
N

)

= ordt

(

∞
∑

α=0

aα · t
α
N

)

= min
{ α

N

∣

∣

∣
aα 6= 0

}

∈
1

N
· Z,

and we denote by

LN = Quot(RN)

its quotient field. If N | M then in an obvious way we can think of RN

as a subring of RM , and thus of LN as a subfield of LM . We call the

direct limit of the corresponding direct system

L = K{{t}} = lim
−→

LN =
⋃

N≥0

LN

the field of (formal) Puiseux series over K.

Remark 7.2

If 0 6= N ∈ N then

SN =
{

1, t
1

N , t
2

N , t
2

N , . . .
}
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is a multiplicative subset of RN , and obviously

LN = S−1
N RN =

{

t
−α
N · f

∣

∣

∣

∣

f ∈ RN , α ∈ N

}

,

since

R∗
N =

{

∞
∑

α=0

aα · t
α
N

∣

∣

∣

∣

a0 6= 0

}

.

The valuations of RN extend to LN , and thus L, by

val

(

f

g

)

= val(f)− val(g)

for f, g ∈ RN with g 6= 0.

Definition 7.3

For 0 6= N ∈ N if we consider t
1

N as a variable, we get the set of

monomials

Mon
(

t
1

N , x
)

=
{

t
α
N · xβ

∣

∣ α ∈ N, β ∈ Nn
}

in t
1

N and x. If N | M then obviously

Mon
(

t
1

N , x
)

⊂ Mon
(

t
1

M , x
)

.

Remark and Definition 7.4

Let 0 6= N ∈ N, w = (w0, . . . , wn) ∈ R<0 ×Rn, and q ∈ R.

We may consider the direct product

Vq,w,N =
∏

(α, β) ∈ Nn+1

w · ( α
N
, β) = q

K · t
α
N · xβ

of K-vector spaces and its subspace

Wq,w,N =
⊕

(α, β) ∈ Nn+1

w · ( α
N
, β) = q

K · t
α
N · xβ.

As a K-vector space the formal power series ring K
[[

t
1

N , x
]]

is just

K
[[

t
1

N , x
]]

=
∏

q∈R

Vq,w,N ,
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and we can thus write any power series f ∈ K
[[

t
1

N , x
]]

in a unique

way as

f =
∑

q∈R

fq,w with fq,w ∈ Vq,w,N .

Note that this representation is independent of N in the sense that if

f ∈ K
[[

t
1

N′ , x
]]

for some other 0 6= N ′ ∈ N then we get the same

non-vanishing fq,w if we decompose f with respect to N ′.

Moreover, if 0 6= f ∈ RN [x] ⊂ K
[[

t
1

N , x
]]

, then there is a maximal

q̂ ∈ R such that fq̂,w 6= 0 and

fq,w ∈ Wq,w,N for all q ∈ R,

since the x-degree of the monomials involved in f is bounded. We call

the elements fq,w w-quasihomogeneous of w-degree degw(fq,w) = q ∈ R,

inw(f) = fq̂,w ∈ K
[

t
1

N , x
]

the w-initial form of f or the initial form of f w.r.t. w, and

ordw(f) = q̂ = max{degw(fq,w) | fq,w 6= 0}

the w-order of f .

For I ⊆ RN [x] we call

inw(I) =
〈

inw(f)
∣

∣ f ∈ I
〉

✂K
[

t
1

N , x
]

the w-initial ideal of I. Note that its definition depends on N !

Moreover, we call

t-inw(f) = inw(f)(1, x) = inw(f)|t=1 ∈ K[x]

the t-initial form of f w.r.t. w, and if f = t
−α
N ·g ∈ L[x] with g ∈ RN [x]

we set

t-inw(f) := t-inw(g).

This definition does not depend on the particular representation of f ,

since t
−α
N · g = t

−α′

N′ · g′ implies that t
α′

N′ · g = t
α
N · g′ in RN ·N ′ and thus

t
α′

N′ · inw(g) = inw

(

t
α′

N′ · g
)

= inw

(

t
α
N · g′

)

= t
α
N · inw(g

′),

which shows that t-inw(g) = t-inw(g
′).

If I ⊆ L[x] is an ideal, then

t-inw(I) = 〈t-inw(f) | f ∈ I〉✁K[x]
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is the t-initial ideal of I, which does not depend on any N .

Note also that the product of two w-quasihomogeneous elements

fq,w · fq′,w ∈ Vq+q′,w,N ,

and thus

Wq,w,N ·Wq,w,N ⊆ Wq+q′,w,N

and

Vq,w,N · Vq′,w,N ⊆ Vq+q′,w,N .

In particular,

inw(f · g) = inw(f) · inw(g)

for f, g ∈ RN [x], and for f, g ∈ L[x]

t-inw(f · g) = t-inw(f) · t-inw(g).

An immediate consequence of this is the following lemma.

Lemma 7.5

If 0 6= f =
∑k

i=1 gi ·hi with f, gi, hi ∈ RN [x] and ordw(f) ≥ ordw(gi ·hi)

for all i = 1, . . . , k, then

inw(f) ∈
〈

inw(g1), . . . , inw(gk)
〉

✁K
[

t
1

N , x
]

.

Proof: Due to the direct product decomposition we have that

inw(f) = fq̂,w =
k
∑

i=1

(gi · hi)q̂,w

where q̂ = ordw(f). By assumption ordw(gi)+ordw(hi) = ordw(gi·hi) ≤

ordw(f) = q̂ with equality if and only if (gi · hi)q̂,w 6= 0. In that case

necessarily

(gi · hi)q̂,w = inw(gi) · inw(hi),

which finishes the proof. �

In order to be able to apply standard bases techniques we need to fix

a t-local monomial ordering which refines a given weight vector w.

Definition 7.6

Fix any global monomial ordering, say >, on Mon(x), i.e. xi > 1 for all

i = 1, . . . , n, and let w = (w0, . . . , wn) ∈ R<0 ×Rn.
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We define a t-local monomial ordering, say >w, on Mon
(

t
1

N , x
)

by

t
α
N · xβ >w t

α′

N · xβ′

if and only if

w ·
( α

N
, β
)

> w ·

(

α′

N
, β′

)

or

w ·
( α

N
, β
)

= w ·

(

α′

N
, β′

)

and xβ > xβ′

.

Note that this ordering is indeed t-local since w0 < 0, and that it

depends on w and on >, but assuming that > is fixed we will refrain

from writing >w,> instead of >w.

Remark 7.7

If N | M then Mon
(

t
1

N , x
)

⊂ Mon
(

t
1

M , x
)

, as already mentioned.

For w ∈ R<0 × Rn we may thus consider the ordering >w on both

Mon
(

t
1

N , x
)

and on Mon
(

t
1

M , x
)

, and let us call them for a moment

>w,N respectively >w,M . It is important to note, that the restriction

of >w,M to Mon
(

t
1

N , x
)

coincides with >w,N . We therefore omit the

additional subscript in our notation.

We now fix some global monomial ordering > on Mon(x), and

given a vector w ∈ R<0×Rn we will throughout this section always

denote by >w the monomial ordering from Definition 7.6.

Proposition 7.8

If w ∈ R<0 ×Rn and f ∈ RN [x] with lt>w
(f) = 1, then inw(f) = 1.

Proof: Suppose this is not the case then there exists a monomial of f ,

say 1 6= tα · xβ ∈ Mf , such that

w · (α, β) ≥ w · (0, . . . , 0) = 0,

and since lm>w
(f) = 1 we must necessarily have equality. But since >

is global xβ > 1, which implies that also tα · xβ >w 1, in contradiction

to lm>w
(f) = 1. �
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Proposition 7.9

Let w ∈ R<0 ×Rn, I ✂ RN [x] be an ideal, and let G = {g1, . . . , gk} be

a standard basis of I with respect to >w then

inw(I) =
〈

inw(g1), . . . , inw(gk)
〉

✂K
[

t
1

N , x
]

,

and in particular,

t-inw(I) =
〈

t-inw(g1), . . . , t-inw(gk)
〉

✂K[x].

Proof: If G is standard basis of I then by Corollary 4.6 every element

f ∈ I has a weak standard representation of the form

u · f = q1 · g1 + . . .+ qk · gk,

where lt>w
(u) = 1 and

lm>w
(u · f) ≥ lm>w

(qi · gi).

The latter in particular implies that

ordw(u · f) = degw
(

lm>w
(u · f)

)

≥ degw
(

lm>w
(qi · gi)

)

= ordw(qi · gi).

We conclude therefore by Lemma 7.5 and Proposition 7.8 that

inw(f) = inw(u · f) ∈
〈

inw(g1), . . . , inw(gk)
〉

.

For the part on the t-initial ideals just note that if f ∈ I then by the

above

inw(f) =
k
∑

i=1

hi · inw(gi)

for some hi ∈ K
[

t
1

N , x
]

, and thus

t-inw(f) =
k
∑

i=1

hi(1, x) · t-inw(gi) ∈ 〈t-inw(g1), . . . , t-inw(gk)〉K[x].

�

Theorem 7.10

Let J✂L[x] and I✂RN [x] be ideals with J = 〈I〉L[x], let w ∈ R<0×Rn,

and let G be a standard basis of I with respect to >w.

Then

t-inw(J) = t-inw(I) =
〈

t-inw(G)
〉

✁K[x].
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Proof: Since RN [x] is noetherian, we may add a finite number of el-

ements of I to G so as to assume that G = (g1, . . . , gk) generates I.

Since by Proposition 7.9 we already know that the t-initial forms of

any standard basis of I with respect to >w generate t-inw(I) this does

not change the right-hand side. But then by assumption

J = 〈G〉L[x],

and given an element f ∈ J we can write it as

f =
k
∑

i=1

t
−α
N·M · ai · gi

for some M >> 0, ai ∈ RN ·M and α ∈ N. It follows that

t
α

N·M · f =
k
∑

i=1

ai · gi ∈ 〈G〉RN·M [x].

SinceG is a standard basis overRN [x] with respect to>w on Mon
(

t
1

N , x
)

by Buchberger’s Criterion 4.6 spoly(gi, gj), i < j, has a weak standard

representation

uij · spoly(gi, gj) =
k
∑

ν=1

qijν · gν

with uij, qijν ∈ RN [x] ⊆ RN ·M [x] and lt>w
(uij) = 1. Taking Remark

7.7 into account these are also weak standard representations with re-

spect to the corresponding monomial ordering >w on Mon(t
1

N·M , x),

and again by Buchberger’s Criterion 4.6 there exists a weak standard

representation

u · t
α

N·M · f =
k
∑

i=1

qi · gi.

By Lemma 7.5 and Proposition 7.8 this implies that

t
α

N·M · inw(f) = inw

(

u · t
α

N·M · f
)

∈
〈

inw(G)
〉

.

Setting t = 1 we get

t-inw(f) =
(

t
k

N·M · inw(f)
)

|t=1
∈
〈

t-inw(G)
〉

.

�



STANDARD BASES 51

Corollary 7.11

Let J = 〈I ′〉L[x] with I ′✂K
[

t
1

N , x
]

, w ∈ R<0×Rn and G is a standard

basis of I ′ with respect to >w on Mon
(

t
1

N , x
)

, then

t-inw(J) = t-inw(I
′) =

〈

t-inw(G)
〉

✂K[x].

Proof: Enlarge G to a finite generating set G′ of I ′, then G′ is still a

standard basis of I ′. By Corollary 4.7 G′ is then also a standard basis

of

I := 〈G′〉RN [x] = 〈f1, . . . , fk〉RN [x],

and Theorem 7.10 applied to I thus shows that

t-in(J) =
〈

t-inw(G
′)
〉

.

However, if f ∈ G′ ⊂ I ′ is one of the additional elements then it has a

weak standard representation

u · f =
∑

g∈G

qg · g

with respect to G and >w, since G is a standard basis of I ′. Applying

Propositions 7.5 and 7.8 then shows that inw(f) ∈ 〈inw(G)〉, which

finishes the proof. �

Remark 7.12

Note that if I ✂RN [x] and J = 〈I〉L[x], then

J ∩RN [x] = I :
〈

t
1

N

〉∞
,

but the saturation is in general necessary.

Since LN ⊂ L is a field extension Corollary 7.15 implies

J ∩ LN [x] = 〈I〉LN [x],

and it suffices to see that

〈I〉LN [x] ∩RN [x] = I :
〈

t
1

N

〉∞
.

If I ∩ SN 6= ∅ then both sides of the equation coincide with RN [x], so

that we may assume that I ∩ SN is empty. Recall that LN = S−1
N RN ,

so that if f ∈ RN [x] with t
α
N · f ∈ I for some α, then

f =
t

α
N · f

t
α
N

∈ 〈I〉LN [x] ∩RN [x].
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Conversely, if

f =
g

t
k
N

∈ 〈I〉LN [x] ∩RN [x]

with g ∈ I, then g = t
α
N · f ∈ I and thus f is in the right-hand side.

Lemma 7.13

Let F ⊂ F ′ be a field extension, and I = 〈xα1 , . . . , xαk〉 ✂ F [x] be a

monomial ideal. Then I = 〈I〉F ′[x] ∩ F [x].

Proof: It suffices to show that 〈I〉F ′[x]∩F [x] ⊆ I. For this we consider

an f ∈ 〈I〉F ′[x] ∩F [x]. Since 〈I〉F ′[x] = 〈xα1 , . . . , xαk〉F ′[x] is a monomial

ideal, for every term, say fj, of f there is some i such that xαi | fj, i.e.

fj = xαi · f ′
j with f ′

j ∈ F ′[x]. However, since all coefficients of f are in

F so must be all coefficients of f ′
j, and thus fj = xαi · f ′

j ∈ I, which

implies f ∈ I. �

Lemma 7.14

Let F ⊂ F ′ be a field extension, f1, . . . , fk ∈ F [x], and > a global mono-

mial ordering on Mon(x). Then every Gröbner basis G of 〈f1, . . . , fk〉F [x]

with respect to > is also a Gröbner basis of 〈f1, . . . , fk〉F ′[x].

Proof: If G = {g1, . . . , gl} then gi ∈ 〈f1, . . . , fk〉F [x] ⊆ 〈f1, . . . , fk〉F ′[x],

and

〈f1, . . . , fk〉F [x] = 〈G〉F [x]

shows that

〈f1, . . . , fk〉F ′[x] = 〈G〉F ′[x].

If si,j denotes the S-polynomial of gi and gj, then by Buchberger’s

Criterion 4.5 there exists a standard representation

si,j = q1,i,j · g1 + . . .+ ql,i,j · gl

with qs,i,j ∈ F [x] ⊆ F ′[x]. But then these same representations to-

gether with Buchberger’s Criterion imply that G is a Gröbner basis of

〈f1, . . . , fk〉F ′[x]. �

Corollary 7.15

Let F ⊂ F ′ be a field extension and I ✂F [x]. Then I = 〈I〉F ′[x] ∩F [x].
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Proof: Fix any global monomial ordering > on Mon(x) and set Ie =

〈I〉F ′[x]. Since I ⊆ Ie ∩ F [x] ⊆ Ie we also have

L>(I) ⊆ L>

(

Ie ∩ F [x]
)

⊆ L>(I
e) ∩ F [x]. (23)

If we choose a standard basis G = (g1, . . . , gk) of I, then by Lemma

7.14 G is also a Gröbner basis of Ie and thus

L>(I) = 〈lm>(gi) | i = 1, . . . , k〉F [x]

and

L>(I
e) = 〈lm>(gi) | i = 1, . . . , k〉F ′[x] =

〈

L>(I)
〉

F ′[x]
.

Since the latter is a monomial ideal, by Lemma 7.13 we have

L>(I
e) ∩ F [x] = L>(I).

In view of (23) this shows that

L>(I) = L>

(

Ie ∩ F [x]
)

,

and since I ⊆ Ie ∩ F [x] this finishes the proof by Proposition 4.3. �

We can actually show more, namely, that for each I ✂RN [x] and each

M > 0 (see Corollary 7.16)

〈I〉RM·N [x] ∩RN [x] = I,

and if I is saturated with respect to t
1

N then (see Corollary 7.19)

inw

(

〈I〉RM·N [x]

)

=
〈

inw(G)
〉

,

if G is a standard basis of I with respect to >w. This requires, however,

some extra work which is partly outsourced to Section 8.

Corollary 7.16

If I ✂RN [x] then 〈I〉RN·M [x] ∩RN [x] = I.

Proof: If f = g · h ∈ 〈I〉RN·M [x] ∩ RN [x] with g ∈ I and h ∈ RN ·M [x]

then by Corollary 8.2 there are uniquely determined hi ∈ RN such that

h =
M−1
∑

i=0

hi · t
i

N·M ,

and hence

f =
M−1
∑

i=0

(g · hi) · t
i

N·M
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with g · hi ∈ RN [x]. By assumption f ∈ RN [x] = RN ·M [x] ∩ 〈1〉RN [x]

and by Corollary 8.2 we thus have

g · hi = 0 for all i = 1, . . . ,M − 1.

But then f = g · h0 ∈ I. �

Lemma 7.17

Let I✂RN [x] be an ideal such that I = I :
〈

t
1

N

〉∞
, then for any M ≥ 1

〈I〉RN·M [x] = 〈I〉RN·M [x] :
〈

t
1

N·M

〉∞
.

Proof: Let f, h ∈ RN ·M [x], α ∈ N, g ∈ I such that

t
α

N·M · f = g · h. (24)

We have to show that f ∈ 〈I〉RN·M [x]. For this purpose do division with

remainder in order to get

α = a ·M + b with 0 ≤ b < M.

By Corollary 8.2 there are hi, fi ∈ RN [x] such that f =
∑M−1

i=0 fi · t
i

N·M

and h =
∑M−1

i=0 hi · t
i

N·M . (24) then translates into

M−1−b
∑

i=0

t
b+i
N·M · t

a
N · fi +

M−1
∑

i=M−b

t
b+i−M
N·M · t

a+1

N · fi =
M−1
∑

i=0

g · hi · t
i

N·M ,

and since
{

1, t
1

N·M , . . . , t
M−1

N·M

}

is RN [x]-linearly independent we can

compare coefficients to find

t
a
N · fi = g · hb+i ∈ I

for i = 0, . . . ,M − b− 1, and

t
a+1

N · fi = g · hb+i−M ∈ I

for i = M − b, . . . ,M −1. In any case, since I is saturated with respect

to t
1

N by assumption we conclude that fi ∈ I for all i = 0, . . . ,M − 1,

and therefore f ∈ 〈I〉RN·M [x]. �

Corollary 7.18

Let J✂L[x] be an ideal such that J = 〈J∩RN [x]〉L[x], let w ∈ R<0×Rn,

and let G be a standard basis of J ∩RN [x] with respect to >w.
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Then for all M ≥ 1

inw

(

J ∩RN ·M [x]
)

=
〈

inw(G)
〉

✁K
[

t
1

N·M , x
]

and

t-inw

(

J ∩RN ·M [x]
)

=
〈

t-inw(G)
〉

= t-inw

(

J ∩RN [x]
)

✁K[x].

Proof: Enlarge G to a generating set G′ of I = J ∩ RN [x] over RN [x]

by adding a finite number of elements of I. Then

〈

L>w
(G′)

〉

⊆
〈

L>w
(I)
〉

=
〈

L>w
(G)
〉

⊆
〈

L>w
(G′)

〉

shows that G′ is still a standard basis of I with respect to >w. So we

can assume that G = G′.

By Proposition 7.9 it suffices to show that G is also a standard basis

of J ∩RN ·M [x]. Since by assumption

J = 〈I〉L[x] = 〈G〉L[x],

Corollary 7.15 implies that

J ∩ LN ·M [x] = 〈G〉LN·M [x] = S−1
N ·M〈G〉RN·M [x].

Moreover, by Remark 7.12 the ideal I = 〈G〉RN [x] is saturated with

respect to t
1

N and by Lemma 7.17 therefore also 〈G〉RN·M [x] is saturated

with respect to t
1

N·M , which implies that

J ∩RN ·M [x] = S−1
N ·M〈G〉RN·M [x] ∩RN ·M [x] = 〈G〉RN·M [x].

Since G = (g1, . . . , gk) is a standard basis of I every spoly(gi, gj), i < j,

has a weak standard representation with respect to G and >w over

RN [x] by Buchberger’s Criterion 4.6, and these are of course also weak

standard representations over RN ·M [x], so that again by Buchberger’s

Criterion G is a standard basis of 〈G〉RN·M [x] = J ∩RN ·M [x]. �

Corollary 7.19

Let I ✂ RN [x] be an ideal such that I = I :
〈

t
1

N

〉∞
, let w ∈ R<0 ×Rn,

and let G be a standard basis of I with respect to >w.

Then for all M ≥ 1

inw

(

〈I〉RN·M [x]

)

=
〈

inw(G)
〉

✁K
[

t
1

N·M , x
]



56 THOMAS MARKWIG

and

t-inw

(

〈I〉RN·M [x]

)

=
〈

t-inw(G)
〉

= t-inw(I)✁K[x]

Proof: If we consider J = 〈I〉L[x] then by Remark 7.12 J ∩RN [x] = I,

and moreover, by Lemma 7.17 also 〈I〉RN·M [x] is saturated with respect

to t
1

N·M , so that applying Remark 7.12 once again we also find J ∩

RN ·M [x] = 〈I〉RN·M [x]. The result therefore follows from Corollary 7.18.

�

Corollary 7.20

Let J ✂ L[x] be an ideal such that J = 〈J ∩ RN [x]〉L[x], let w =

(−1, 0, . . . , 0) and let M ≥ 1. Then

1 ∈ inω

(

J ∩RN [x]
)

⇐⇒ 1 ∈ inω

(

J ∩RN ·M [x]
)

.

Proof: Suppose that f ∈ J ∩ RN ·M [x] with inω(f) = 1, and let G =

(g1, . . . , gk) be standard basis of J ∩ RN [x] with respect to >w. By

Corollary 7.18

1 = inω(f) ∈
〈

inω(g1), . . . , inω(gk)
〉

✁K
[

t
1

N·M , x
]

,

and since this ideal and 1 are w-quasihomogeneous, there exist w-

quasihomogeneous elements h1, . . . , hk ∈ K
[

t
1

N·M , x
]

such that

1 =
k
∑

i=1

hi · inω(gi),

where each summand on the right-hand side (possibly zero) is w-

quasihomogeneous of w-degree zero. Since w = (−1, 0, . . . , 0) this

forces hi ∈ K[x] for all i = 1, . . . , k and thus 1 ∈ inω(J ∩ RN [x]).

The converse is clear anyhow. �

We want to conclude the section by a remark on the saturation.

Proposition 7.21

If f1, . . . , fk ∈ K[t, x] and I = 〈f1, . . . , fk〉✂K[t]〈t〉[x] then

〈I〉R1[x] : 〈t〉
∞ =

〈

I : 〈t〉∞
〉

R1[x]
.

Proof: Let >1 be any global monomial ordering on Mon(x) and define

a t-local monomial ordering on Mon
(

t, x) by

tα · xβ > tα
′

· xβ′
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if and only if

xα >1 xα′

or
(

xα = xα′

and α < α′
)

.

Then

{f ∈ R1[x] | lt>(f) = 1} = {1 + t · p | p ∈ K[t]},

and thus

R1[x]> = R1[x] and K[t, x]> = K[t]〈t〉[x].

Using Algorithm 6.9 we can compute at the same time a standard

basis of 〈I〉R1[x] : 〈t〉
∞ and of 〈I〉K[t]〈t〉[x] : 〈t〉

∞ with respect to >. Since

a standard basis is a generating set in the localised ring the result

follows. �

8. Some Properties of RN [x], LN [x], and L[x]

In this section we gather some straightforward but useful properties of

the rings we are working with and their relations among each other.

Lemma 8.1

RN ·M is a finite free RN -module with basis
{

1, t
1

N·M , . . . , t
M−1

N·M

}

.

In particular, RN ·M is integral over RN .

Proof: Note that f =
∑∞

i=0 ai · t
i

N·M ∈ RN ·M can be written as

f =
M−1
∑

j=0

t
j

N·M ·
∞
∑

i=0

aj+i·M · t
i
N ∈

〈

1, t
1

N·M , . . . , t
M−1

N·M

〉

RN

.

Moreover, since no terms can cancel f = 0 if and only if

∞
∑

i=0

aj+i·M · t
i
N = 0

for all j = 0, . . . ,M − 1. Thus RN ·M is free over RN with basis
{

1, t
1

N·M , . . . , t
M−1

N·M

}

. �

Corollary 8.2

RN ·M [x] is a free RN [x]-module with basis
{

1, t
1

N·M , . . . , t
M−1

N·M

}

.
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Proof: If f =
∑d

|α|=0 aα · xα ∈ RN ·M [x] with aα ∈ RN ·M is given, then

by Lemma 8.1 there exist aα,i ∈ RN such that

aα =
M−1
∑

i=0

aα,i · t
i

N·M ,

and thus

f =
M−1
∑

i=0

t
i

N·M ·
d
∑

|α|=0

aα,i · x
α ∈

〈

1, t
1

N·M , . . . , t
M−1

N·M

〉

RN [x]
.

Suppose now that
M−1
∑

i=0

t
i

N·M · fi = 0

with

fi =
d
∑

|α|=0

aα,i · x
α ∈ RN [x].

Then

0 =
d
∑

|α|=0

xα ·
M−1
∑

i=0

t
i

N·M · aα,i,

and since the xα are linearly independent over RN it follows that

M−1
∑

i=0

t
i

N·M · aα,i = 0

for all |α| ≤ d. But then by Lemma 8.1 we have aα,i = 0 for all i and

and all α, which implies that fi = 0 for i = 0, . . . ,M − 1. �

Corollary 8.3

L is algebraic over LN .

Proof: If A ⊂ B is an integral extension of integral domains, then

Quot(A) ⊂ Quot(B) is algebraic. For this consider 0 6= b ∈ B and the

integral relation bk + a1 · b
k−1 + . . .+ ak = 0 with ai ∈ A which it fulfils

by assumption. Then

ak ·
1

bk
+ . . .+ a1 ·

1

b
+ 1 = 0

is an algebraic relation of 1
b
over Quot(A). This shows that Quot(B)

is algebraic over Quot(A), since every element of the former is of the
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form b′

b
. In particular, LN ·M = Quot(RN ·M) is algebraic over LN =

Quot(RN).

If a ∈ L, then there is an M such that a ∈ LM ⊆ LN ·M , and therefore

a is algebraic over LN . This shows that L is algebraic over LN . �

Corollary 8.4

L[x] is integral over LN [x].

Proof: If A ⊂ B is an integral ring extension, then so is A[x] ⊂ B[x].

To see this let f =
∑k

i=0 bi · x
i ∈ B[x] be given. Then bi is integral,

over A and thus it is integral over A[x]. But since xi ∈ A[x] we have

that

f =
k
∑

i=0

bix
i ∈ A[x][b0, . . . , bk]

is an element of the integral ring extension A[x] ⊂ A[x][b0, . . . , bk].

This shows that B[x] is integral over A[x]. The result follows thus

from Corollary 8.3. �

Corollary 8.5

The ring extension LN [x] ⊂ L[x] satisfies the lying-over, going-up and

the going-down property.

Proof: See [AtM69, Prop. 5.10, Thm. 5.11 and Thm. 5.16]. �

Corollary 8.6

Let I ✂ L[x] be an ideal then L[x]/I is integral over LN [x]/I ∩ LN [x].

In particular, dim(I) = dim(I ∩ LN [x]).

Proof: See [AtM69, Prop. 5.6] and [Eis96, Prop. 9.2]. �
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