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Tropical geometry still is a rather young field
of mathematics which nevertheless over the past
couple of years has proved to be rather power-
ful for tackling questions in enumerative geom-
etry (see e.g. [Mik05], [GM08], [IKS04]). It also
has been used to provide alternative algorithmic
means to eliminate variables (see [StY08]). Peo-
ple from applied mathematics such as optimi-
sation or control theory are interested in it as a
kind of algebraic geometry over the max-plus al-
gebra (see e.g. [CGQ99]). Even though all these
people talk about tropical varieties in some way
or the other, their ideas of what a tropical vari-
ety should be differ quite a bit. For enumerative
questions it is most helpful to consider tropical
curves as parametrised objects, while for elimi-
nation one has to take an implicit point of view,
and for many other questions a purely combi-
natorial description seems best. In general the
classes of objects considered do not completely
coincide, but they share a sufficiently large over-
lap. For the purpose of this paper we will mainly
consider the implicit approach. We will explain
some of the combinatorial structure which is in-
herent in all the different approaches, and we
will focus on certain computational questions in
tropical geometry.
One could think of tropical geometry as being
a shadow of classical algebraic geometry, which
carries enough information to shed some light on
the classical objects but which at the same time
is light enough to be easier to deal with, or bet-
ter to allow the application of tools from other
areas of mathematics. The base field over which
the classical objects live should be algebraically
closed and carry a non-trivial nonarchimedean
valuation into the real numbers. The prototype
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of such a field are the Puiseux series

a = c0 · t
q0 + c1 · t

q1 + c2 · t
q2 + . . .

where the ci ∈ C are complex numbers and
q0 < q1 < q2 < . . . is a strictly ascending se-
quence of rational numbers whose denominators
are bounded for each series separately. t is just
an indeterminate, and the order of a Puiseux
series

ord(a) = q0

is a nonarchimedean valuation on the field K of
all Puiseux series. For later use we call

lc(a) = c0

the leading coefficient of the Puiseux series a.
The valuation is a map ord : K∗ −→ R which
naturally extends to a map

ord : (K∗)
n
−→ Rn

by

(a1, . . . , an) 7→ (ord(a1), . . . , ord(an)) ,

whose image being Qn is dense in Rn.
An ideal

0 6= I EK [

x±1
1 , . . . , x±1

n

]

in the ring of Laurent polynomials overK defines
a classical algebraic variety

V (I) =
{

a ∈
(K∗

)n ∣

∣ f(a) = 0 ∀ f ∈ I
}

in the torus (K∗)n, and its image under the val-
uation is basically what we call the tropical va-

riety associated to the ideal I. Unfortunately,
being a subset of Qn this would not be a closed
subset of Rn. One way around this is to pass
to the topological closure and define the tropical

variety associated to I as

Trop(I) = ord
(

V (I)
)

.

Another way around the problem would be to
enlarge the base field so as to get a surjective
valuation onto R (see e.g. [Mar07]), but for
computational reasons we prefer to stick with
the Puiseux series.
Let us have a look at the line in (K∗)2 given by

x + y + 1 = 0.
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If a point with coordinates

(c0 · t
ω1 + h.o.t. , d0 · t

ω2 + h.o.t.)

lies on this line, then in particular the lowest
terms of

(1) (c0 · t
ω1 + h.o.t.) + (d0 · t

ω2 + h.o.t.) + 1

have to vanish. This shows that one of the fol-
lowing cases occurs:

ω1 = ω2 ≤ 0, ω1 = 0 ≤ ω2 or ω2 = 0 ≤ ω1.

The tropical curve associated to 〈x+y+1〉 there-
fore is the following piecewise linear graph:

In general, the definition is not at all helpful
when it comes down to understanding the geo-
metric structure of a tropical variety or finally to
compute it in some way. But the example shows
an important feature which points ω ∈ Trop(I)
have to satisfy with respect to the polynomi-
als f ∈ I. If we consider the point (ω1, ω2) as
a weight vector on the monomials of f (e.g. the
monomial xi ·yj has weighted degree i·ω1+j·ω2),
then the lowest term of x+ y +1 with respect to
that weight vector will either be x + y or x + 1
or y + 1 or x + y + 1, but it will certainly not

be a monomial, since otherwise no cancellation
of the terms of lowest order in (1) would be pos-
sible. This, of course, generalises: given a point
ω = (ω1, . . . , ωn) ∈ Rn we define the t-initial

form

t-inω(f) =
∑

ord(aα)+〈α,ω〉

minimal

lc(aα) · xα

of

f =
∑

α

aα · xα,

using the usual multi-index notation, and we call

t-inω(I) =
〈

t-inω(f) | f ∈ I
〉

EC [

x±1
1 , . . . , x±1

n

]

the t-initial ideal of f . For a point ω to belong to
the tropical variety Trop(I) it is then obviously
necessary that no t-initial form of an element in
I is a monomial. However, the converse is true
as well, and this is known as the Lifting Lemma.

Theorem 1 (Lifting Lemma).

Trop(I) =
{

ω | t-inω(I) is monomial-free
}

.

In the case that I is a principal ideal the proof
basically goes back to Newton and was formu-
lated for more general valuation fields in [EKL06].
A constructive proof can be found in [Tab05].
The general case was proven in [SpS04], but the
proof contained a gap which led to a series of pa-
pers repairing the proof using different methods
and applying to various types of nonarchimedean
valued fields – in [Dra08] affinoid algebras are
used, in [Kat06] flat deformations over valuation
rings are used, and recently in [Pay07] the gen-
eral problem is reduced to the hypersurface case
using intersections with and projections to tori
and the last proof works for any algebraically
closed nonarchimedean valued field.
In [JMM08] we give a constructive proof of the
Lifting Lemma over the Puiseux series field re-
ducing the general case to the zero dimensional
case and using a space curve version of the Newton-
Puiseux algorithm proposed in [Mau80]. “Con-
structive” here means that given a point ω in the
right hand side in Theorem 1 which has only ra-
tional entries, then we are able to construct a
point p in V (I) with ord(p) = ω. The algo-
rithms deduced from the proof are implemented
using the computer algebra system Singular

and the program gfan for computing tropical
varieties in the Singular library tropical.lib

(see [JMM07]). Of course, the input data for
Singular procedures have to be restricted to
polynomials in the ring Q(t)[x1, . . . , xn] instead
of K[x±1

1 , . . . , x±1
n ] and we can only construct p

up to a finite number of terms, but this is suf-
ficient for most purposes. Whenever it is neces-
sary, field extensions of Q will be computed.
The algorithm basically consists of two steps.
If dim(I) = d then in a first step we choose
d generic hyperplanes in Kn whose tropicalisa-
tion passes through ω and add the correspond-
ing linear forms to I thus reducing to the zero-
dimensional case. Then considering t as a vari-
able we have the germ at the origin of a space
curve and we can use a space curve version of
the Newton-Puiseux algorithm. For this second
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step one chooses a zero

u ∈ V
(

t-inω(I)
)

∩
(C∗

)n

and transforms the ideal I by

xi 7→ tωi · (ui + xi)

into an ideal I ′. Choosing a point in the tropical
variety of I ′ one can go on in the same way and
construct a solution of the form

(u1 · t
ω1 + h.o.t., . . . , un · tωn + h.o.t.) .

There are of course a couple of technical issues
one has to take care of.
As indicated in the above mentioned algorithm
it is necessary to compute again and again points
in the tropical varieties of the transformed ideals.
This is in general a difficult task. If the in-
put is polynomial in t as well as in x, then one
can simply work in the Laurent polynomial ringC[t±1, x±1] for a start and intersect the resulting
tropical variety with the affine plane t = 1. From
the analogous statement to the Lifting Lemma
in the case of polynomials in C[t±1, x±1] one im-
mediately deduces that the tropical variety is
contained in the codimension-one skeleton of the
Gröbner fan of the ideal, and it even inherits the
polyhedral structure.

Theorem 2 ([BiG84],[Stu02]). If I is a d-dimen-

sional prime ideal, then Trop(I) is a rational

polyhedral complex of pure dimension d which

is connected in codimension one.

A possible though rather stupid algorithm for
computing the tropical variety would thus be
to compute the Gröbner fan and to check all
its lower dimensional cones whether they belong
to the tropical variety or not. There are, how-
ever, better algorithms (see [BJS+07], [Jen07],
[HeT07]), and the main idea here is to find a
tropical basis, i.e. a generating system f1, . . . , fk

of I such that the tropical variety Trop(I) is the
intersection of the finite number of tropical hy-
persurfaces Trop(f1), . . . , Trop(fk). Those used
to algebraic geometry might be surprised to find
that this does not in general hold true for a gen-
erating system of I.
The knowledge of a tropical basis is so help-
ful since for a hypersurface V (f) the associated
tropical hypersurface Trop(f) can be read off the

polynomial f in a rather easy manner. Combi-
natorially Trop(f) is completely determined by
the subdivision of the Newton polytope of f in-
duced by f . Moreover, since the tropical hyper-
surface is just the locus of non-differentiability
of the piece wise linear function

trop(f) : Rn → R : x 7→ min{ord(aα) + 〈α, x〉}

the subdivision allows to recover the tropical hy-
persurface completely. Note that the function is
non-differentiable precisely if the minimum is at-
tained by at least two of the linear forms.
Let us explain in an example how the above con-
struction can be carried out:

f = x3 + y3 +
1

t
· xy + 1,

and hence

trop(f) = min{3x, 3y,−1 + x + y, 0}.

The Newton polygon is the convex hull of the
support of f (see Figure 1, left hand side). One
extends the Newton polygon from two to three
dimensions by adding to the lattice point α the
valuation of aα as third coordinate. Taking the
convex hull of the resulting points we get a con-
vex polytope in R3 (see Figure 2). Projecting
the lower faces into the α-plane we get the sub-
division of the Newton polygon in Figure 1 on
the right hand side. The tropical curve Trop(f)

QF QF

Figure 1. Newton Polygon of f

α1

ord(aα) α2

Figure 2. Extended Newton Polytope

is now dual to this subdivision in the sense that
each two-dimensional polygon in the subdivision
corresponds to a vertex in the tropical curve;
two vertices are connected by a bounded edge
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if and only if the corresponding polygons in the
subdivision share an edge; the direction vector
of the bounded edge in the tropical curve will
be perpendicular to the corresponding edge in
the Newton subdivision; each edge of a polygon
on the boundary corresponds to an unbounded
edge of the curve whose direction again is per-
pendicular to the edge of the polygon. Finally,
the vertex of the tropical curve corresponding
to the polygon with vertices (0, 0), (1, 1), (3, 0)
is determined by

0 = −1 + x + y = 3x ≤ 3y,

and similar for the others. We thus get the trop-
ical curve:

This, of course, leads to a straight forward algo-
rithm for computing tropical hypersurfaces, and
for drawing them in the case of plane curves and
surfaces in three space. An algorithm for plane
curves which produces latex output is imple-
mented in the Singular library tropical.lib

(see [JMM07], Figure 3 has been created us-
ing this package). The problem of displaying

Figure 3. A Tropical Cubic

surfaces in three space in a suitable manner is
a more subtle problem. TropicalSurfaces by
Lars Allermann offers an implementation for this

(see [All08]). Figures 4–6 have been created us-
ing his package. The algebraic equation for Fig-
ure 6 is

t2 +
1

t8
x + t3y + t14xy +

1

16
yz + t10xz

+
1

t10
x2 + t2y2 +

1

t12
z2 +

1

t16
xyz + t3x2y

+
1

t7
xy2 + y2z +

1

t14
yz2 + x2z

+
1

t9
xz2 + t8x3 + t7y3 +

1

t4
z3 = 0

Figure 4. A Tropical Plane

Figure 5. A Tropical Quadric Surface

Above we have described what tropical varieties
are and how computer algebra can be used to
compute them respectively to visualise them. We
want to end this presentation with an example
of how computer algebra can be used to prove
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Figure 6. A Tropical Cubic Surface

results on the connection between classical alge-
braic varieties and their tropicalisation.
We have already seen above that tropical vari-
eties carry an interesting geometrical and com-
binatorial structure, and we have also seen that
this structure reflects certain properties of the
classical varieties, e.g. the dimension (see The-
orem 2). But there are more geometric features
which are preserved under sufficiently good cir-
cumstances. E.g. if a polynomial f defines a
plane curve of genus g, then the tropical curve
will be a graph of genus at most g. In the case
g = 1 the classical curve is an elliptic curve,
which up to isomorphism is determined by its
j-invariant, an element of the base field K. It so
happens that the valuation of the j-invariant is
reflected in the geometry of the tropical curve if
it has a cycle.

Theorem 3 ([KMM07]). If f is a plane cubic

such that Trop(f) is a three-valent graph with

a cycle, then the valuation of the j-invariant of

V (f) is the negative of the lattice length of the

cycle.

An example is given in Figure 3, where the left
part displays the tropical cubic curve and the
right part is the correponding Newton subdivi-
sion. The equation of the cubic is

f = t7 ·
(

x3 + y3
)

+ t3x2 + t2 ·
(

xy2 + y2
)

+ t ·
(

x2y + x + y + 1
)

+ xy = 0,

and from the equation we can compute the j-
invariant which is a quotient of a polynomial in

t of degree 48 by a polynomial of degree 60:

j(f) =
1 − 24 · t2 + . . . + 2985984 · t48

t8 − 5 · t9 + . . . − 19683 · t60
.

However, more interesting than the degree of the
polynomials is their order, since the difference of
those is the valuation of the j-invariant. In the
example we have

ord
(

j(f)
)

= −8.

The tropical curve defined by f is a three-valent
graph with a cycle. The cycle length in this ex-
ample can be computed by counting the lattice
points on the the cycle and turns out to be 8.
Formally the lattice length of the cycle is defined
as the sum of the lattice lengths of its edges,
and the lattice length of an edge is its Euclidean
length normalised by the Euclidean length of its
dual edge in the Newton subdivision.
The result of Theorem 3 was proved using the
computer algebra systems polymake, topcom and
Singular ([GaJ97], [Ram02], [GPS05]).
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