
A NEW INVARIANT FOR PLANE CURVE SINGULARITIESTHOMAS KEILEN AND CHRISTOPH LOSSENAbstra
t. In [GLS01℄ the authors gave a general suÆ
ient numeri
al 
onditionfor the T-smoothness (smoothness and expe
ted dimension) of equisingular fam-ilies of plane 
urves. This 
ondition involves a new invariant 
� for plane 
urvesingularities, and it is 
onje
tured to be asymptoti
ally proper. In [Kei04℄, similarsuÆ
ient numeri
al 
onditions are obtained for the T-smoothness of equisingularfamilies on various 
lasses surfa
es. These 
onditions involve a series of invariants
��, 0 � � � 1, with 
�1 = 
�. In the present paper we 
ompute (respe
tively givebounds for) these invariants for semiquasihomogeneous singularities.When studying numeri
al 
onditions for the T-smoothness of equisingular familiesof 
urves, new invariants of plane 
urve singularities V (f) � (C2; 0) turn up. Theseinvariants are de�ned as the maximum of a fun
tion depending on the 
odimensionof 
omplete interse
tion ideals 
ontaining the Tjurina ideal, respe
tively the equi-singularity ideal, of f , and on the interse
tion multipli
ity of f with elements of the
omplete interse
tion ideals. In Se
tion 1 we will de�ne these invariants, and wewill 
al
ulate them for several 
lasses of singularities, the main results being Propo-sition 11, Proposition 12 and Proposition 13. It is the upper bound in Lemma 8whi
h ensures that the 
onditions for T-smoothness with these new 
onditions (see[GLS00℄, [GLS01℄, [Kei04℄) improve than the previously known ones (see [GLS97℄).In the remaining se
tions we introdu
e some notation and we gather some ne
essary,though mainly well-known te
hni
al results used in the proofs of Se
tion 1.We should like to point out that the de�nition of the invariant 
�1 below is a modi�-
ation of the invariant \
�" de�ned in [GLS01℄, and it is always bound from aboveby the latter. Moreover, the latter 
an be repla
ed by it in the 
onditions of [GLS01℄Proposition 2.2.NotationThroughout this paper R = Cfx; yg will be the ring of 
onvergent power series inthe variables x and y, and m = hx; yi�R will be its maximal ideal.Contents1. The 
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2 THOMAS KEILEN AND CHRISTOPH LOSSEN1. The 
��-InvariantsFor the de�nition of the 
��-invariants the Tjurina ideal, respe
tively the equisingu-larity ideal in the sense of [Wah74℄, play an essential role. For the 
onvenien
e ofthe reader we re
all their de�nitions.De�nition 1Let f 2 m be a redu
ed power series. The Tjurina ideal of f is de�ned asIea(f) = ��f�x ; �f�y ; f� ;and the equisingularity ideal of f is de�ned asIes(f) = �g 2 R �� f + "g is equisingular over C["℄=("2)	 � Iea(f):Their 
odimensions �(f) = dimCR=Iea(f);respe
tively � es(f) = dimCR=Ies(f);are analyti
al, respe
tively topologi
al, invariants of the singularity type de�ned byf . Note that � es(f) is the 
odimension of the �-
onstant stratum in the equisingulardeformation of the plane 
urve singularity de�ned by f . It 
an be 
omputed in termsof multipli
ities of the stri
t transform of f at essential in�nitely near points in theresolution tree of �V (f); 0� (
f. [Shu91℄).De�nition 2Let f 2 m be a redu
ed power series, and let 0 � � � 1 be a rational number.If I is a zero-dimensional ideal in R with Iea(f) � I � m and g 2 I, we de�ne��(f ; I; g) := �� � i(f; g) + (1� �) � dimC(R=I)�2i(f; g)� dimC(R=I) ;and
�(f ; I) := max�(1 + �)2 � dimC(R=I); ��(f ; I; g) �� g 2 I; i(f; g) � 2 � dimC(R=I)	 ;where i(f; g) denotes the interse
tion multipli
ity of f and g. Note that, by Lemma3, i(f; g) > dimC(R=I) for all g 2 I. Thus 
�(f ; I) is a well-de�ned positive rationalnumber.We then set
ea� (f) := max�0; 
�(f ; I) �� I � Iea(f) is a 
omplete interse
tion ideal	and 
es� (f) := max�0; 
�(f ; I) �� I � Ies(f) is a 
omplete interse
tion ideal	Note that if f 2 m nm2, then Iea(f) = Ies(f) = R and there is no zero-dimensional
omplete interse
tion ideal 
ontaining any of those two, hen
e 
ea� (f) = 
es� (f) = 0.Lemma 3Let f 2 m2 be redu
ed, and let I be an ideal su
h that Iea(f) � I � m.Then, for any g 2 I, we havedimC(R=I) < dimC �R=hf; gi� = i(f; g):



THE 
��-INVARIANT 3Proof: Cf. [Shu97℄ Lemma 4.1; the idea is mainly to show that not both derivativesof f 
an belong to hf; gi. �Up to embedded isomorphism the Tjurina ideal only depends on the analyti
al typeof the singularity. More pre
isely, if f 2 R any power series, u 2 R a unit and� : R ! R an isomorphism, then Iea(u � f Æ �) = fg Æ � j g 2 Iea(f)g. Thus thefollowing de�nition makes sense.De�nition 4Let S be an analyti
al, respe
tively topologi
al, singularity type, and let f 2 R bea representative of S. We then de�ne
ea� (S) := 
ea� (f);respe
tively 
es� (S) := maxf
es� (g) j g is a representative of Sg:Sin
e i(f; g) > dimC(R=I) in the above situation, we dedu
e the following lemma.Lemma 5Let f 2 m2 be redu
ed, Iea(f) � I � m be a zero-dimensional ideal, and 0 � � <� � 1, then 
�(f ; I) < 
�(f ; I).In parti
ular, for any analyti
al, respe
tively topologi
al, singularity type
ea� (S) < 
ea� (S) respe
tively 
es� (S) < 
es� (S):For reasons of 
omparison let us also re
all the de�nition of � ea
i , � es
i , � and Æ.De�nition 6For f 2 R we de�ne� ea
i (f) := maxf0; dimC(R=I) j I � Iea(f) a 
omplete interse
tiong;and � es
i (f) := maxf0; dimC(R=I) j I � Ies(f) a 
omplete interse
tiong:Again, for analyti
ally equivalent singularities the values 
oin
ide, so that for ananalyti
al singularity type S, 
hoosing some representative f 2 R, we may de�ne� ea
i (S) := �
i(f):For a topologi
al singularity type we set� es
i (S) := maxf� es
i (g) j g a representative of Sg:Note that obviously � ea
i (S) � �(S) and � es
i (S) � � es(S);where �(S) is the Tjurina number of S and � es(S) is as de�ned in De�nition 1.De�nition 7For f 2 R and O = R=hfi, we de�ne the Æ-invariantÆ(f) = dimC eO=Owhere O � eO is the normalisation of O, and the �-invariant�(f) = i�f; � � �f�x + � � �f�x� ;



4 THOMAS KEILEN AND CHRISTOPH LOSSENwhere (� : �) 2 P1C is generi
.Æ and � are topologi
al (thus also analyti
al) invariants of the singularity de�ned byf so that for the topologi
al, respe
tively analyti
al, singularity type S given by fwe 
an set Æ(S) = Æ(f) and �(S) = �(f):Throughout this arti
le we will sometimes treat topologi
al andanalyti
al singularities at the same time. Whenever we do so, wewill write I�(f) for Iea(f) respe
tively for Iea(f), and analogouslywe will use the notation 
��, � �
i and � �.The following lemma is again obvious from the de�nition of 
�(f ; I), on
e we takeinto a

ount that �(f) = i(f; g) for a generi
 element g 2 Iea(f) of f and that for a�xed value of d = dimC(R=I) the fun
tion i 7! (�i+(1��)�d)2i�d takes its maximum on[d+ 1; 2d℄ for the minimal possible value i = d+ 1.Lemma 8Let f 2 m2 be redu
ed, and let I be an ideal in R su
h that Iea(f) � I � m.Then (1 + �)2 � dimC(R=I) � 
�(f ; I) � �dimC(R=I) + ��2:Moreover, if �(f) � 2 � dimC(R=I), then
�(f ; I) � �� � �(f) + (1� �) � dimC(R=I)�2�(f)� dimC(R=I) :In parti
ular, for any analyti
al, respe
tively topologi
al, singularity type S(1 + �)2 � � �
i(S) � 
��(S) � �� �
i(S) + ��2;and if �(S) � 2 � � �
i(S), then
��(S) � �� � �(S) + (1� �) � � �
i(S)�2�(S)� � �
i(S) :In order to make the 
onditions for T-smoothness in [Kei04℄ as sharp as possible, itis useful to know under whi
h 
ir
umstan
es the term (1+�)2 �dimC(R=I) involvedin the de�nition of 
��(f) is a
tually ex
eeded.Lemma 9If S is a topologi
al or analyti
al singularity type su
h that �(S) < 2 � � �
i(S), then(1 + �)2 � � �
i(S) < 
��(S):This is in parti
ular the 
ase, if S 6= A1 and � �
i(S) = � �(S), i. e. if the Tjurinaideal, respe
tively the equisingularity ideal, of some representative is a 
omplete in-terse
tion.Proof: Lemma 8 gives
��(S) � �� � �(S) + (1� �) � � �
i(S)�2�(S)� � �
i(S) :



THE 
��-INVARIANT 5If we 
onsider the right-hand side as a fun
tion in �(S), it is stri
tly de
reasing onthe interval [0; 2 � � �
i(S)℄ and takes its minimum thus at 2�� �
i(S). By the assumptionon �(S) we, therefore, get 
��(S) > (1 + �)2 � � �
i(S):Suppose now that � �
i(S) = � �(S) and S 6= A1. By Lemma 10 we know Æ(S) <� es(S) � �(S). On the other hand we have �(S) � 2 �Æ(S) (see [GLS05℄). Therefore,�(S) < 2 � � �
i(S). �Lemma 10If S 6= A1 is any analyti
al or topologi
al singularity type, then Æ(S) < � es(S).Proof: If (C; z) is a representative of S and if T �(C; z) is the essential subtree ofthe 
omplete embedded resolution tree of (C; z), thenÆ(S) = Xp2T �(C;z) multp(C) � (multp(C)� 1)2and� es(S) = Xp2T �(C;z) multp(C) � (multp(C) + 1)2 �# free points in T �(C; z)� 1;where multp(C) denotes the multipli
ity of the stri
t transform of C at p (see[GLS05℄). Setting "p = 0 if p is satellite, "p = 1 if p 6= z is free, and "z = 2,then multp(C) � "p and therefore� es(S) = Æ(S) + Xp2T �(C;z) �multp(C)� "p� � Æ(S):Moreover, we have equality if and only if multz(C) = 2, multp(C) = 1 for all p 6= zand there is no satellite point, but this implies that S = A1. �For some 
lasses of singularities we 
an 
al
ulate the 
��-invariant 
on
retely, and forsome others we 
an at least give an upper bound, whi
h in general is mu
h betterthan the one derived from Lemma 8. We restri
t our attention to singularitieshaving a 
onvenient semi-quasihomogeneous representative f 2 R (see De�nition31). Throughout the following proofs we will frequently make use of monomialorderings, see Se
tion 2.Proposition 11 ((Simple Singularities))Let � be a rational number with 0 � � � 1. Then we obtain the following values for
es� (S) = 
ea� (S), where S is a simple singularity type.S 
ea� (S) = 
es� (S)Ak; k � 1 (k + �)2Dk; 4 � k � 4 +p2 � (2 + �) (k+2�)22Dk; k � 4 +p2 � (2 + �) (k � 2 + �)2Ek; k = 6; 7; 8 (k+2�)22



6 THOMAS KEILEN AND CHRISTOPH LOSSENProof: Let Sk be one of the simple singularity types Ak, Dk or Ek, and let f 2 Rbe a representative of Sk. Note that the Tjurina ideal Iea(f) and the equisingularityideal Ies(f) 
oin
ide, and hen
e so do the 
��-invariants, i. e.
ea� (Sk) = 
es� (Sk):Moreover, in the 
onsidered 
ases the Tjurina ideal is indeed a 
omplete interse
tionideal with dimC �R=Iea(f)� = k, so that in parti
ular the given values are upperbounds for (1+�)2 �dimC(R=I) for any 
omplete interse
tion ideal I 
ontaining theTjurina ideal. By Lemma 8 we know(� � �(Sk) + (1� �) � k)2�(Sk)� k � 
�(Sk) � (k + �)2:Note that �(Ak) = k + 1, �(Dk) = k + 2 and �(Ek) = k + 2, whi
h in parti
ulargives the result for Sk = Ak. Moreover, it shows that for Sk = Dk or Sk = Ek wehave 
�(Sk) � (k + 2�)22 :If we �x a 
omplete interse
tion ideal I with Iea(f) � I, then��(f ; I; g) = �� � i(f; g) + (1� �) � dimC(R=I)�2i(f; g)� dimC(R=I) ;with g 2 I su
h that i(f; g) � 2 � dimC(R=I), 
onsidered as a fun
tion in i(f; g) ismaximal, when i(f; g) is minimal. If i(f; g)� dimC(R=I) � 2, then��(f ; I; g) � (k + 2�)22 :It therefore remains to 
onsider the 
ase wherei(f; g)� dimC(R=I) = 1 (1.1)for some I and some g 2 I, and to maximise the possible dimC(R=I).We 
laim that for Sk = Dk with f = x2y�yk�1 as representative, dimC(R=I) � k�2,and thus I = hx; yk�2i and g = x are suitable with��(f ; I; x) = (k � 2 + �)2;whi
h is greater than (k+2�)22 if and only if k � 4 + p2 � (2 + �). Suppose, there-fore, dimC(R=I) = k � 1. Then yk�1; x3 2 Iea(f) = hxy; x2 � (k � 1) � yk�2i � I,the leading ideal L<ls�Iea(f)� = hx3; xy; yk�2i � L<ls(I), and sin
e by Proposi-tion 18 dimC(R=I) = dimC �R=L<ls(I)�, either L<ls(I) = hx3; xy; yk�3i or L<ls(I) =hx2; xy; yk�2i. In the �rst 
ase there is a power series g 2 I su
h that g �yk�3 + ax + bx2 (mod I), and hen
e I 3 yg � yk�2 (mod I), i. e. yk�2 2 I. Butthen x2 2 I and x2 2 L<ls(I), in 
ontradi
tion to the assumption. In the se
ond
ase, similarly, there is a g 2 I su
h that g � x2 (mod I), and hen
e x2 2 I whi
hin turn implies that yk�2 2 I. Thus I = hx2; xy; yk�2i, and dimC(I=mI) = 3 whi
hby Remark 25 
ontradi
ts the fa
t that I is a 
omplete interse
tion.If Sk = E6, then f = x3 � y4 is a representative and Iea(f) = hx2; y3i. Supposethat dimC(R=I) = k � 1 = 5, then L<ds(I) = hx2; y3; xy2i and H0R=I = H0R=L<ds (I),in 
ontradi
tion to Lemma 24, sin
e H0R=L<ds (I)(2) = 2 and H0R=L<ds (I)(3) = 0. ThusdimC(R=I) � 4 and ��(f ; I; g) � (4 + �)2 � (6+2�)22 .



THE 
��-INVARIANT 7If Sk = E7, then f = x3�xy3 is a representative and Iea(f) = h3x2�y3; xy2i 3 x3; y5.If dimC(R=I) � 4, then ��(f ; I; g) � (4 + �)2 � (7+2�)22 , and we are done. It thusremains to ex
lude the 
ases where dimC(R=I) 2 f5; 6g. For this we note �rst thatif there is a g 2 I su
h that L<ls(g) = y2, theng � y2 + ax + bx2 + 
xy + dx2y (mod I); (1.2)and therefore y2g � y4 (mod I), whi
h implies y4 2 I and hen
e x2y 2 I. Anal-ogously, if there is a g 2 I su
h that L<ls(g) = x2y, then g � x2y (mod I) andagain x2y; y4 2 I. Suppose now that dimC(R=I) = 6, then L<ls(I) = hy2; x3i orL<ls(I) = hy3; xy2; x2y; x3i. In both 
ases we thus have x2y; y4 2 I. However,in the �rst 
ase then x2y 2 L<ls(I), in 
ontradi
tion to the assumption. Whilein the se
ond 
ase we �nd I = hxy2; x2y; 3x2 � y3i, and dimC(I=mI) = 3 
ontra-di
ts the fa
t that I is a 
omplete interse
tion by Lemma 25. Suppose, therefore,that dimC(R=I) = 5. Then L<ls(I) = hy2; x2y; x3i, or L<ls(I) = hy3; xy2; x2i, orL<ls(I) = hy3; xy; x3i. In the �rst 
ase, we know already that y4; x2y 2 I. Look-ing on
e more on (1.2) we 
onsider the 
ases a = 0 and a 6= 0. If a = 0, thenyg � y3 (mod I), and thus y3 2 I, whi
h in turn implies x2 2 I. Similarly, ifa 6= 0, then xg � ax2 (mod I) implies x2 2 I. But then also x2 2 L<ls(I), in
ontradi
tion to the assumption. In the se
ond 
ase there is a g 2 I su
h thatg � x2 + ax2y (mod I), and thus yg � x2y 2 I. But then also x2 2 I and y3 2 I,so that I = hy3; xy2; x2i. However, dimC(I=mI) = 3 
ontradi
ts again the fa
tthat I is a 
omplete interse
tion. Finally in the third 
ase there is a g 2 I withg � xy + ax2 + bx2y (mod I), and thus xg � x2y (mod I) implies x2y 2 I and thenxy + ax2 2 I. Therefore, I = hxy + ax2; 3x2 � y3i, and for for h 2 I and for generi
b; 
 2 C we have i(f; h) � i(x; h)+ i�x2�y3; b �(xy+ax2)+
 �(3x2�y3)� � 3+5 = 8,in 
ontradi
tion to (1.1).Finally, if Sk = E8 with representative f = x3� y5 and Iea(f) = hx2; y4i, we get fordimC(R=I) � 5 that ��(f ; I; g) � (5+�)2 � (8+2�)22 . It therefore remains to ex
ludethe 
ases dimC(R=I) 2 f6; 7g. If dimC(R=I) = 7 then L<ds(I) = hx2; y4; xy3i. Butthen H0R=L<ds (I)(3) = 2 and H0R=L<ds (I)(4) = 0 are in 
ontradi
tion to Lemma 24.And if dimC(R=I) = 6, then L<ls(I) = hy3; x2i or L<ls(I) = hy4; xy2; x2i. In the�rst 
ase there is some g 2 I su
h that g � y3 + ax + bxy + 
xy2 + dxy3 (mod I),and thus xg � xy3 (mod I) and xy3 2 I. But then yg � axy + bxy2 (mod I) andhen
e axy + bxy2 2 I. Sin
e neither xy 2 L<ls(I) nor xy2 2 L<ls(I), we must havea = 0 = b. Therefore, g � y3+
xy2 (mod I) and I = hx2; y3+
xy2i, whi
h for h 2 Iand a; b 2 C generi
 gives i(f; g) � i�x3�y4; ax2+b�(y3+
xy2)� � 8, in 
ontradi
tionto (1.1). In the se
ond 
ase, there is g 2 I su
h that g � xy2 + axy3 (mod I),therefore yg � xy3 (mod I) and xy3 2 I. But then xy2 2 I and I = hy4; xy2; x2i.This, however, is not a 
omplete interse
tion, sin
e dimC(I=mI) = 3, in 
ontradi
tionto the assumption.This �nishes the proof. �Proposition 12 ((Ordinary Multiple Points))Let � be a rational number with 0 � � � 1, and let Mk denote the topologi
alsingularity type of an ordinary k-fold point with k � 3. Then
es� (Mk) = 2 � (k � 1 + �)2:



8 THOMAS KEILEN AND CHRISTOPH LOSSENIn parti
ular 
es� (Mk) > (1 + �)2 � � es
i (Mk):Proof: Note that for any representative f of Mk we haveIes(f) = Iea(f) +mk = ��fk�x ; �fk�y �+mk;where fk is the homogeneous part of degree k of f , so that we may assume f to behomogeneous of degree k.If I is a 
omplete interse
tion ideal with mk � Ies(f) � I, then by Lemma 28dimC(R=I) � �k �mult(I) + 1� �mult(I):We note moreover that for any g 2 Ii(f; g) � mult(f) �mult(g) � k �mult(I);and that for a �xed I we may attain an upper bound for ��(f ; I; g) by repla
ingi(f; g) by a lower bound for i(f; g).Hen
e, if mult(I) � 2, we have��(f ; I; g) � �k � (1� �) � (mult(I)� 1)�2 �mult(I)2mult(I) � �mult(I)� 1� � 2 � (k � 1 + �)2; (1.3)while dimC(R=I) � k � 1 for mult(I) = 1 and the above inequality (1.3) is stillsatis�ed. To see dimC(R=I) � k � 1 for mult(I) = 1 note that the ideal I 
ontainsan element g of order 1 with g1 = ax + by as homogeneous part of degree 1 andthe partial derivatives of f ; applying a linear 
hange of 
oordinates we may assumeg1 = x and f = Qki=1(x � aiy) with pairwise di�erent ai, and we may 
onsider thenegative degree lexi
ographi
al monomial ordering > giving preferen
e to y; if someai = 0, then L>��f�x� = yk�1, while otherwise L>��f�y � = yk�1, so that in any 
asehx; yk�1i � L>(I), and by Proposition 18 therefore dimC(R=I) = dimC �R=L>(I)� �dimC(R=hx; yk�1i) = k � 1.Equation (1.3) together with Lemma 28 shows
es� (Mk) � 2 � (k � 1 + �)2:On the other hand, 
onsidering the representative f = xk � yk, we haveIes(f) = hxk�1; yk�1; xayb j a + b = ki;and I = hyk�1; x2i is a 
omplete interse
tion ideal 
ontaining Ies(f). Moreover,i�f; x2� = 2k, dimC(R=I) = 2 � (k � 1), thus
es� (Mk) � �� � i(f; x2) + (1� �) � dimC(R=I)�2i�f; x2�� dimC(R=I) = 2 � (k � 1 + �)2:The \in parti
ular" part then follows right away from Corollary 29. �Sin
e a 
onvenient semi-quasihomogeneous power series of multipli
ity 2 de�nes anAk-singularity and one with a homogeneous leading term de�nes an ordinary mul-tiple point, the following proposition together with the previous two gives upperbounds for all singularities de�ned by a 
onvenient semi-quasihomogeneous repre-sentative.



THE 
��-INVARIANT 9Proposition 13 ((Semiquasihomogeneous Singularities))Let Sp;q be a singularity type with a 
onvenient semi-quasihomogeneous representa-tive f 2 R, q > p � 3.Then 
es� (Sp;q) � (q�(1��)�b qp
)2b qp
 � q�(p�1+�)2p and we obtain the following upper boundfor 
es� (f): p; q 
es� (f)q � 39 � 3 � (q � 2 + �)2qp 2 (1; 2) � 3 � (q � 1 + �)2qp 2 [2; 4) � 2 � (q � 1 + �)2qp 2 [4;1) � (q � 1 + �)2Proof: To see the 
laimed lower bound for 
es� (Sp;q) re
all that (see [GLS05℄)Ies(f) = 
�f�x ; �f�y ; x�y� �� �p+ �q � pq�: (1.4)In parti
ular, Ies(f) � 
y; xq�b qp 
�, dimC(R=I) = q � � qp� and i(f; y) = q, whi
himplies the 
laim.Let now I be a 
omplete interse
tion ideal with Ies(f) � I. Applying Lemma 28and d(I) � q, we �rst of all note that(1 + �)2 � dimC(R=I) � (1 + �)2 � (q + 1)24 � 2 � (q � 1 + �)2:Moreover, if qp � 3, then(1 + �)2 � dimC(R=I) � (1 + �)2 � �q2 + 4q + 3�6 � (q � 1 + �)2:sin
e dimC(R=I) � dimC �R=Ies(f)� � (p+1)�(q+1)2 by (1.4).It therefore suÆ
es to show��(f ; I; g) � 8>>>>>><>>>>>>:
3 � (q � 2 + �)2; if q � 39;3 � (q � 1 + �)2; if qp 2 (1; 2);2 � (q � 1 + �)2; if qp 2 [2; 4);(q � 1 + �)2; if qp 2 [4;1); (1.5)where g 2 I with i(f; g) � 2 � dimC(R=I). Re
all that��(f ; I; g) = �� � i(f; g) + (1� �) � dimC(R=I)�2i(f; g)� dimC(R=I) :Fixing I and 
onsidering ��(f ; I; g) as a fun
tion in i(f; g), where due to (1.12)the latter takes values between dimC(R=I) + 1 and 2 � dimC(R=I), we note thatthe fun
tion is monotonously de
reasing. In order to 
al
ulate an upper bound for��(f ; I; g) we may therefore repla
e i(f; g) by some lower bound, whi
h still ex
eedsdimC(R=I) + 1. Having done this we may then repla
e dimC(R=I) by an upperbound in order to �nd an upper bound for �(f ; I; g).



10 THOMAS KEILEN AND CHRISTOPH LOSSENNote that for q � 39 we have5419 � (q � 1 + �)2 � 3 � (q � 2 + �)2: (1.6)Fix I and g, and let L(p;q)(g) = xAyB be the leading term of g w. r. t. the weightedordering <(p;q) (see De�nition 16). By Remark 32 we knowi(f; g) � Ap +Bq: (1.7)Working with this lower bound for i(f; g) we redu
e the problem to �nd suitableupper bounds for dimC(R=I). For this purpose we may assume that L(p;q)(g) isminimal, and thus, in parti
ular, B � mult(I).If A = 0, in view of Remark 26 we therefore haveB = mult(I) � d(I) + 12 � q + 12 ;and thus by Lemma 28 thendimC(R=I) � B � (q �B + 1): (1.8)Moreover, for A = 0 Lemma 34 applies with h = g and we getdimC(R=I) � B � q � 1� B�1Xi=1 � qip � � B � q � 1� �qp� � B � (B � 1)2 : (1.9)Sin
e x�y� 2 I for �p + �q � pq, we may assume Ap + Bq � pq. But then, sin
edimC(R=I) � dimCRÆ
�f�y ; g; x�y� j �p + �q � pq�, we may apply Lemma 35 withh = �f�y and C = p� 1. This givesdimC(R=I) � Ap+Bq � AB � A�1Xi=1 �piq �� B�1Xi=1 � qip ��minnA; � qp�o ; (1.10)and if B = 0 we get in additiondimC(R=I) � A � (p� 1): (1.11)Finally note that by Lemma 3 i(f; g) > dimC(R=I): (1.12)Let us now use the inequalities (1.6)-(1.12) to show (1.5). For this we have to
onsider several 
ases for possible values of A and B.Case 1: A = 0, B � 1.If B = 1, then by (1.9) and (1.12) we have ��(f ; I; g) � (q � 1 + �)2.We may thus assume that B � 2. By (1.7) and (1.8)��(f ; I; g) � B2 � �q � (1� �) � (B � 1)�2B � (B � 1) � 2 � (q � 1 + �)2:If, moreover, qp � 3, then we may apply (1.9) to �nd��(f ; I; g) � B2 � �q � (1� �) � (B � 1)�2� qp� � B�(B�1)2 + 1 � (q � 1 + �)2:Taking (1.6) into a

ount, this proves (1.5) in the 
ase A = 0 and B � 1.Case 2: A = 1, B � 1.



THE 
��-INVARIANT 11From (1.10) we dedu
edimC(R=I) � B � (q � 1) + (p� 1)� � qp� � B�(B�1)2 :Sin
e p�1+�q�1+� � pq we thus get��(f ; I; g) � �B + p�1+�q�1+��2B + � qp� � B�(B�1)2 + 1 � (q � 1 + �)2
� 8>>>>>><>>>>>>:

(B+ 13 )23B22 �B2 +1 � (q � 1 + �)2 � (q � 1 + �)2; if qp � 3;(B+ 12 )2B2+1 � (q � 1 + �)2 � 54 � (q � 1 + �)2; if qp � 2;2 � (B+1)2B2+B+2 � (q � 1 + �)2 � 167 � (q � 1 + �)2; if qp > 1:On
e more we are done, sin
e 167 � 5419 .Case 3: A � 2, B � 1.Note that br
 � r � 1 for any rational number r, and set s = qp , then by (1.10)dimC(R=I) � Ap+Bq�(A�1)�(B�1)�A � (A� 1)2s �s �B � (B � 1)2 �1�min�A; dse	:This amounts to��(f ; I; g) ��Ap +Bq � (1� �) � �(A� 1) � (B � 1) + A�(A�1)2s + s�B�(B�1)2 + 1 +minfA; dseg��2(A� 1) � (B � 1) + A�(A�1)2s + s�B�(B�1)2 + 3� �A � (p� 1 + �) +B � (q � 1 + �)�2(A� 1) � (B � 1) + A�(A�1)2s + s�B�(B�1)2 + 3 � '(A;B) � (q � 1 + �)2;where '(A;B) = �As +B�2(A� 1) � (B � 1) + A�(A�1)2s + s�B�(B�1)2 + 3 :For the last inequality we just note again that p�1+�q�1+� � pq = 1s , while for the se
ondinequality a number of di�erent 
ases has to be 
onsidered. We postpone this for amoment.In order to show (1.5) in the 
ase A � 2 and B � 1 it now suÆ
es to show'(A;B) � 8>>><>>>: 5419 ; if s � 1;2; if s � 2;1; if s � 4: (1.13)Elementary 
al
ulus shows that for B � 1 �xed the fun
tion [2;1) ! R : A 7!'(A;B) takes its maximum atA = max�2; 16� 3B2 + 1s � :



12 THOMAS KEILEN AND CHRISTOPH LOSSENIf B � 3, then the maximum is attained at A = 16�3B2+ 1s , and'(A;B) � '�16� 3B2 + 1s ; B� = 8sB � 8B + 644s2B � 4s2 � 4sB + 28s� 1 :Again elementary 
al
ulus shows that the fun
tionB 7! '�16�3B2+ 1s ; B� is monotonouslyde
reasing on [1; 3℄ and, therefore,'(A;B) � '� 132 + 1s ; 1� = 8s+ 5624s� 1 =:  1(s):Sin
e also the fun
tion  1 is monotonously de
reasing on [1;1) and  1(1) = 6423 � 5419 , 1(2) = 7247 � 2 and  1(4) = 8895 � 1 Equation (1.13) follows in this 
ase.As soon as B � 4 the maximum for '(A;B) is attained for A = 2 and'(A;B) � '(2; B) = 2 � (sB + 2)2s3B2 � s3B + 2s2B + 4s2 + 2s:On
e more elementary 
al
ulus shows that the fun
tionB 7! '(2; B) is monotonouslyde
reasing on [4;1). Thus'(A;B) � '(2; 4) = 4 � (1 + 2s)26s3 + 6s2 + s =:  2(s):Applying elementary 
al
ulus again, we �nd that the fun
tion  2 is monotonouslyde
reasing on [1;1), so that we are done sin
e  2(1) = 3613 � 5419 ,  2(2) = 5037 � 2 and 2(4) = 81121 � 1.Let us now 
ome ba
k to proving the missing inequality above. We have to showA+B � (A� 1) � (B � 1) + A � (A� 1)2s + s �B � (B � 1)2 + 1 +min�A; dse	;or equivalentlyA � (A� 1)2s + s �B � (B � 1)2 + 2 +min�A; dse	 + AB � 2A� 2B � 0:If B � 2, then AB � 2A and s�B�(B�1)2 + 2 +min�A; dse	 � 2B, so we are done. Itremains to 
onsider the 
ase B = 1, and we have to showA2 � A� 2sA+ 2s �min�A; dse	 � 0:If A � dse or A = 2 this is obvious. We may thus suppose that A > dse and A � 3.Sin
e A23 � A it remains to show2A23 � 2sA+ 2s � dse � 0:For this 2A23 � 2sA+ 2s � dse � 8>>>>>><>>>>>>:
2A23 � 2sA � 0; if A � 3s;2A23 � 4sA3 � 0; if 2s � A � 3s;2A23 � sA � 0; if 3s2 � A � 2s;2A23 � 2sA3 � 0; if dse � A � 3s2 :Case 4: A � 1, B = 0.



THE 
��-INVARIANT 13Applying (1.10) and (1.11) we get��(f ; I; g) � 8>>>><>>>>: A2�(p�1+�)2A � 8<: As2 � (q � 1 + �)2A � (q � 2 + �)2 9=; for any A; andA2�(p�1+�)2PA�1i=1 b piq 
+minfA;d qp eg � '�;s(A) � (q � 1 + �)2; if A � 3;where'�;s(A) = A2s2A�(A�1)2s � (A� 1) + � = 2A2sA2 � (2s2 + s) � A+ 2 � (� + 1) � s2with � = 2 for s 2 (1; 2℄ and � = 3 for s 2 (2;1).In parti
ular, due to the �rst two inequalities we may thus assume thatA > 8>>>>>><>>>>>>:
3; if q � 39;3s2; if s 2 (1; 2);2s2; if s 2 [2; 4);s2; if s 2 [4;1):Note that '3;s(A) � 1 for s � 4, sin
eA � s2 = 9s216 + 7s216 � s � (1 + 2s)2 � (s� 2) + ss� 2 �qs2 � 3s+ 334 :This gives (1.5) for s � 4.If now s 2 (2; 4), then '3;s is monotonously de
reasing on �2s2;1�, as is s 7!'3;s�2s2� on [2; 4), and thus'3;s(A) � '3;s�2s2� = 4s22s3 � 2s2 � s+ 4 � 85 � 2;while for s = 2 the fun
tion '2;2 is monotonously de
reasing on [8;1) and thus'2;2(A) � 169 � 2. This �nishes the 
ase s 2 [2; 4).Let's now 
onsider the 
ase s 2 (1; 2) and q � 39 parallel. Applying elemen-tary 
al
ulus, we �nd that '2;s takes its maximum on [3;1) at A = 12s1+2s and ismonotonously de
reasing on � 12s1+2s ;1�. Moreover, the fun
tion s 7! '2;s� 12s1+2s� ismonotonously de
reasing on (1; 2). If s � 76 , then'2;s(A) � '2;s� 12s1+2s� � '2; 76 �215 � = 5419 :Due to (1.6) it thus remains to 
onsider the 
ase s 2 �1; 76� and A > 3. If A � 8,then '2;s(A) � '2;1(8) = 6423 � 5419 ;sin
e the fun
tion s 7! '2;s(8) is monotonously de
reasing on [1; 2).So, we are �nally stu
k with the 
ase A 2 f4; 5; 6; 7g and 1 � qp = s � 76 . Wewant to apply Lemma 28. For this we note �rst that by Lemma 36 in our situationd(I) � p + 1 and A = mult(I) � p+22 . But thendimC(R=I) � A � (p� A+ 2)



14 THOMAS KEILEN AND CHRISTOPH LOSSENand thus,��(f ; I; g) � A2 � �p� (1� �) � (A� 2)�2A � (A� 2) � A(A� 2) � (q� 2+�)2 � 2 � (q� 2+�)2:This �nishes the proof. �Remark 14In the proof of the previous proposition we a
hieved for almost all 
ases ��(f ; I; g) �5419 � (q � 1 + �)2, apart from the single 
ase L<(p;q)(g) = x3. The following exampleshows that indeed in this 
ase we 
annot, in general, expe
t any better 
oeÆ
ientthan 3. More pre
isely, the example shows that the bound3 � (q � 2 + �)2is sharp for the family of singularities given by xq � yq�1, q � 39. A 
loser investi-gation should allow to lower the bound on q, but we 
annot get this for all q � 4,as the example of E6 and E8 show.Moreover, we give series of examples for whi
h the bound (q � 1 + �)2 is sharp,respe
tively for whi
h 2 � (q � 1 + �)2 is a lower bound.Example 15Throughout these examples q > p � 3 are integers.(a) Let f = xq � yq�1, then 
es� (f) � 3 � (q � 2 + �)2. In parti
ular, for q � 39,
es� (f) = 3 � (q � 2 + �)2:For this we note that I = hx3; yq�2i is a 
omplete interse
tion ideal in Rwith Ies(f) = 
xq�1; yq�2; x�y� �� � � (q � 1) + �q � q � (q � 1)� � I, sin
e2 � (q � 1) + (q � 3) � q = q2 � q � 2 < q � (q � 1) and thus x2yq�3 62 Ies(f).This also shows that the monomial xiyj with 0 � i � 2 and 0 � j � q � 3form a C-basis of R=I, so that dimC(R=I) = 3q� 6. Sin
e i�f; x3� = 3q � 3,the 
laim follows.(b) Let qp < 2 and f = xq � yp, then
es� (f) � 2 � (q � 1 + �)2:By the assumption on p and q we have (q� 2) � p+ q < pq and hen
e xq�2y 62Ies(f). Thus Ies(f) = 
xq�1; yp�1; x�y� �� �p + �q � pq� � I = hy2; xq�1i,and we are done sin
e dimC(R=I) = 2q � 2 and i�f; y2� = 2q.(
) Let f 2 R be 
onvenient, semi-quasihomogeneous of ord(p;q)(f) = pq, andsuppose that in f no monomial xky, k � q � 2, o

urs (e. g. f = xq � yp),then 
es� (f) � (q � 1 + �)2. In parti
ular, if qp � 4, then
es� (f) = (q � 1 + �)2:By the assumption, Ies(f) � I = hxq�1; yi, sin
e �f�x � xq�1 �u(x) (mod y) fora unit u and �f�y � 0 �mod hy; xq�1i�. Hen
e we are done sin
e dimC(R=I) =q � 1 and i(f; y) = q.(d) Let f = y3� 3x8y+3x12, then f does not satisfy the assumptions of (
), butstill 
es� (f) = (11 + �)2 = (q � 1 + �)2.For this note that I = hy � x4; x11i 
ontains Ies(f), dimC(R=I) = 11 andi�f; y � x4� = 12.



THE 
��-INVARIANT 15(e) Let f = 7y3 + 15x7 � 21x5y, then f is semi-quasihomogeneous with weights(p; q) = (3; 7) and 
onvenient, but 
es0 (f) � 25 < 36 = (q � 1)2. This showsthat (q � 1)2 is not a general lower bound for 
es0 (Sp;q).We note �rst that Ies(f) = hx7; y2 � x5; x6 � x4yi is not a 
omplete in-terse
tion and dimC �R=Ies(f)� = 11. Let now I be a 
omplete interse
tionideal with Ies(f) � I and let h 2 I su
h that L<(3;7)(h) = xAyB is minimal,in parti
ular, ord(3;7)(h) = 3A + 7B is minimal. Then dimC(R=I) � 10 andi(f; g) � 3A+ 7B for all g 2 I.If, therefore, 3A + 7B � 14, thendimC(R=I)2i(f; g)� dimC(R=I) � 25:We may thus assume that 3A+ 7B � 13, in parti
ular B < 2. If B = 0, andhen
e A � 4, then by Lemma 35 dimC(R=I) � 2A, so thatdimC(R=I)2i(f; g)� dimC(R=I) � 4A � 16:Similarly, if B = 1 and A = 2, then by the same Lemma dimC(R=I) � 9 andi(f; g) � 13, so that dimC(R=I)2i(f; g)� dimC(R=I) � 814 :So it remains to 
onsider the 
ase B = 1 and A 2 f0; 1g. That is h = xAy+h0with ord(3;7)(h0) � 9+3A. Consider the ideal J = 
x�y� �� 3�+7� � 21� � I.Then x4�A � h � x4y (mod J), and thus x6 � x4y � x6 (mod hhi + J),i. e. hh; x6 � x4yi + J = hh; x6i + J . Moreover, x6 62 hhi + J , so thatdimC �RÆhg; x6�x4yi+J� � 6+A. If we 
an show that hg; x6�x4yi+J $ I,then dimC(R=I)2i(f; g)� dimC(R=I) � (5 + A)23A+ 7� 5� A � 252 :We are therefore done, on
e we know that y2�x5 62 hg; x6i+J . Suppose therewas a g su
h that gh = y2�x5 �mod hx6i+J�. Then y2 = L<(3;7)(g)�L<(3;7)(h),whi
h in parti
ular means A = 0 and L<(3;7)(h) = L<(3;7)(g) = y. But then the
oeÆ
ients of 1, x and x2 in h and g must be zero, so that x5 
annot o

ur witha non-zero 
oeÆ
ient in the produ
t. This gives the desired 
ontradi
tion.2. Lo
al Monomial OrderingsThroughout the proofs of the auxilary statements in Se
tion 4 we make use of someresults from 
omputer algebra 
on
erning properties of lo
al monomial orderings.In this se
tion we re
all the relevant de�nitions and results.De�nition 16Amonomial ordering is a total ordering< on the set of monomials �x�y� �� �; � � 0	su
h that for all �; �; 
; Æ; �; � � 0x�y� < x
yÆ =) x�+�y�+� < x
+�yÆ+�:



16 THOMAS KEILEN AND CHRISTOPH LOSSENA monomial ordering < is 
alled lo
al if 1 > x�y� for all (�; �) 6= (0; 0), and it is alo
al degree ordering if � + � > 
 + Æ =) x�y� < x
yÆ:Finally, if < is any lo
al monomial ordering, then we de�ne the leading monomialL<(f) with respe
t to < of a non-zero power series f 2 R to be the maximalmonomial x�y� su
h that the 
oeÆ
ient of x�y� in f does not vanish. For f = 0,we set L<(f) := 0.If I � R is an ideal in R, then L<(I) = hL<(f) j f 2 Ii is 
alled its leading ideal.We will give now some examples of lo
al monomial orderings whi
h are used in theproofs.Example 17Let �; �; 
; Æ � 0 be integers.(a) The negative lexi
ographi
al ordering <ls is de�ned by the relationx�y� <ls x
yÆ :() � > 
 or (� = 
 and � > Æ):(b) The negative degree reverse lexi
ographi
al ordering <ds is de�ned by therelationx�y� <ds x
yÆ :() � + � > 
 + Æ or (� + � = 
 + Æ and � > Æ):(
) If positive integers p and q are given, then we de�ne the lo
al weighted degreeordering <(p;q) with weights (p; q) by the relationx�y� <(p;q) x
yÆ :() �p+ �q > 
p+ Æq or(�p+ �q = 
p+ Æq and � < Æ):We note that <ds is a lo
al degree ordering, while <ls is not and <(p;q) is if and onlyif p = q.Let us �nally re
all some useful properties of lo
al orderings (see e. g. [GrP02℄Corollary 7.5.6 and Proposition 5.5.7).Proposition 18Let < be any lo
al monomial ordering, and let I be a zero-dimensional ideal in R.(a) The monomials of R=L<(I) form a C-basis of R=I. In parti
ulardimC(R=I) = dimC �R=L<(I)�:(b) If < is a degree ordering, then the Hilbert Samuel fun
tions of R=I and ofR=L<(I) 
oin
ide (see De�nition 19, and see also Remark 21).3. The Hilbert Samuel Fun
tionA useful tool in the study of the degree of zero-dimensional s
hemes and theirsubs
hemes is the Hilbert Samuel fun
tion of the stru
ture sheaf, that is of the
orresponding Artinian ring.De�nition 19Let I � R be a zero-dimensional ideal.



THE 
��-INVARIANT 17(a) The fun
tionH1R=I : Z! Z : d 7! 8<: dimC �RÆ(I +md+1)�; d � 0;0; d < 0;is 
alled the Hilbert Samuel fun
tion of R=I.(b) We de�ne the slope of the Hilbert Samuel fun
tion of R=I to be the fun
tionH0R=I : N! N : d 7! H1R=I(d)�H1R=I(d� 1):Thus H0R=I(d) = dimC �mdÆ((I \ md) +md+1)�;is just the number d + 1 of linearly independent monomials of degree d inmd, minus the number of linearly independent monomials of degree d in�I \md�+md+1.Note that if m = m=I denotes the maximal ideal of R=I and Grm(R=I) =Ld�0md=md+1 the asso
iated graded ring, thenH0R=I(d) = dimC �md=md+1�is just the dimension of the graded pie
e of degree d of Grm(R=I).(
) Finally, we de�ne the multipli
ity of I to bemult(I) := min�mult(f) �� 0 6= f 2 I	;and the degree bound of I asd(I) := min�d 2 N �� md � I	:Let us gather some straight forward properties of the slope of the Hilbert Samuelfun
tion.Lemma 20Let J � I �R be zero-dimensional ideals.(a) H0R=I(d) = d+ 1 for all 0 � d < mult(I).(b) H0R=I(d) � H0R=I(d� 1) for all d � mult(I).(
) H0R=I(d) � mult(I).(d) H0R=I(d) = 0 for all d � d(I) and H0R=I 6= 0 for all d < d(I). In parti
ulardimC(R=I) = d(I)�1Xd=0 H0R=I(d):(e) H0R=I(d) � H0R=J(d) for all d 2 N.(f) d(I) and mult(I) are 
ompletely determined by H0R=I .Proof: For (a) we note that I � md for all d � mult(I) and thus H0R=I(d) =dimC �md=md+1� = d+ 1 for all 0 � d < mult(I).By de�nition we see that H0R=I(d) is just the number of linearly independent mono-mials of degree d in md, whi
h is d + 1, minus the number of linearly independentmonomials, say m1; : : : ; mr, of degree d in �I \ md�+ md+1. We note that then theset fxm1; : : : ; xmr; ym1; : : : ; ymrg � m � �(I \ md) +md+1� � �I \md+1�+md+2
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ontains at least r + 1 linearly independent monomials of degree d + 1, on
e r wasnon-zero. However, for d = mult(I) and g = gd + h:o:t 2 I with homogeneous partgd 6= 0 of degree d, we have gd 2 �I \md�+md+1, that is, d = mult(I) is the smallestinteger d for whi
h there is a monomial of degree d in �I \ md� + md+1. Thus ford � mult(I)� 1H0R=I(d+ 1) � (d+ 2)� (r + 1) = d+ 1� r = H0R=I(d);whi
h proves (b), while (
) is an immediate 
onsequen
e of (a) and (b).If d � d(I), then H1R=I(d) = dimC(R=I) is independent of d, and hen
e H0R=I(d) = 0for all d � d(I). In parti
ular,d(I)�1Xi=0 H0R=I(d) = H1R=I(d(I)� 1)�H1R=I(�1) = dimC(R=I):Moreover, md(I)�1+ I 6= I = I +md(I), so that H0R=I�d(I)� 1� 6= 0, and by (b) thenH0R=I(d) 6= 0 for all d < d(I). This proves (d), and (e) and (f) are obvious. �Remark 21Let < be a lo
al degree ordering on R, then the Hilbert Samuel fun
tions of R=Iand of R=L<(I) 
oin
ide by Proposition 18, and hen
e we have as wellH0R=I = H0R=L<(I); d(I) = d �L<(I)�; and mult(I) = mult �L<(I)�;sin
e by the previous lemma the multipli
ity and the degree bound only depend onthe slope of the Hilbert Samuel fun
tion.Remark 22The slope of the Hilbert Samuel fun
tion of R=I gives rise to a histogram as thegraph of the fun
tion H0R=I . By the Lemma 20 we know that up to mult(I)� 1 thehistogram is just a stair
ase with steps of height one, and from mult(I)�1 on it 
anonly go down, whi
h it eventually will do until it rea
hes the value zero for d = d(I).This means that we get a histogram of form shown in Figure 1.H0R=I(d)
dd(I)mult(I)

mult(I)
Figure 1. The histogram of H0R=I for a general ideal I.Note also, that by Lemma 20 (a) the area of the histogram is just dimC(R=I)!Example 23In order to understand the slope of the Hilbert Samuel fun
tion better, let us 
onsidersome examples.(a) Let f = x2 � yk+1, k � 1, and let I = Iea(f) = hx; yki the equisingularityideal of an Ak-singularity. Then d(I) = k, mult(I) = 1 and dimC(R=I) = k.
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��-INVARIANT 19kFigure 2. The histogram of H0R=I for an Ak-singularity(b) Let f = x2y � yk�1, k � 4, and let I = Iea(f) = hxy; x2 � (k � 1) � yk�2ithe equisingularity ideal of a Dk-singularity. Then x3; xy; yk�1 2 I, and thusmk�1 � I, whi
h gives d(I) = k � 1, mult(I) = 2 and dimC(R=I) = k, whi
hshows that the bound in Lemma 28 need not be obtained.k � 1Figure 3. The histogram of H0R=I for a Dk-singularity(
) Let f = x3 � y4 and let I = Iea(f) = hx2; y3i the equisingularity ideal of anE6-singularity. Then d(I) = 4, mult(I) = 2 and dimC(R=I) = 6.Let f = x3 � xy3 and let I = Iea(f) = h3x2 � y3; xy2i the equisingularityideal of an E7-singularity. Then x3; xy2; y5 2 I, and thus m5 � I, whi
h givesd(I) = 5, mult(I) = 2 and dimC(R=I) = 7.Let f = x3 � y5 and let I = Iea(f) = hx2; y4i the equisingularity ideal of anE8-singularity. Then d(I) = 6, mult(I) = 2 and dimC(R=I) = 8.4 5 6Figure 4. The histogram of H0R=I for E6, E7 and E8.(d) Let I = hx3; x2y; y3i, then d(I) = 4, mult(I) = 3 and dimC(R=I) = 7.
4Figure 5. The histogram of H0R=I for I = hx3; x2y; y3i.The following result providing a lower bound for the minimal number of generatorsof a zero-dimensional ideal in R is due to A. Iarrobino.Lemma 24Let I � R be a zero-dimensional ideal. Then I 
annot be generated by less than1 + supnH0R=I(d� 1)�H0R=I(d) �� d � mult(I)o elements.In parti
ular, if I is a 
omplete interse
tion ideal then for d � mult(I)H0R=I(d� 1)� 1 � H0R=I(d) � H0R=I(d� 1):



20 THOMAS KEILEN AND CHRISTOPH LOSSENProof: See [Iar77℄ Theorem 4.3 or [Bri77℄ Proposition III.2.1. �Moreover, by the Lemma of Nakayama and Proposition 18 we 
an 
ompute theminimal number of generators for a zero-dimensional ideal exa
tly.Lemma 25Let I�R be zero-dimensional ideal and let < denote any lo
al ordering on R. Thenthe minimal number of generators of I isdimC(I=mI) = dimC �R=L<(I)�� dimC �R=L<(mI)�:Remark 26If we apply Lemma 24 to a zero-dimensional 
omplete interse
tion ideal I�R, i. e. azero-dimensional ideal generated by two elements, then we know that the histogramof H0R=I will be as shown in Figure 6; that is, up to the value d = mult(I) the
d(I)mult(I)

mult(I)
Figure 6. The histogram of H0R=I for a 
omplete interse
tion.histogram of H0R=I is an as
ending stair
ase with steps of height and length one,then it remains 
onstant for a while, and �nally it is a des
ending stair
ase againwith steps of height one, but a possibly longer length. In parti
ular we see thatmult(I) � 8<: d(I)+12 ; if d(I) is odd;d(I)2 ; if d(I) is even: (3.1)Example 27Let I = mk for k � 1. Then d(I) = mult(I) = k and dimC(R=I) = �k+12 �.

k
k

Figure 7. The histogram of H0R=mk . The shaded region is the max-imal possible value of dimC(R=I) for a 
omplete interse
tion ideal I
ontaining mk.
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��-INVARIANT 21Lemma 28Let I �R be a zero-dimensional 
omplete interse
tion ideal, thendimC(R=I) � �d(I)�mult(I) + 1� �mult(I):In parti
ular dimC(R=I) � 8<: (d(I)+1)24 ; if d(I) odd;d(I)2+2d(I)4 ; if d(I) even:Proof: By Remark 22 we have to �nd an upper bound for the area A of the his-togram of H0R=I . This area would be maximal, if in the des
ending part the stepshad all length one, i. e. if the histogram was as shown in Figure 8. Sin
e the twoH0R=I(d)
dd(I)mult(I) d(I)�mult(I)

mult(I)
Figure 8. Maximal possible area.shaded regions have the same area, we getA � � d(I)�mult(I) + 1� �mult(I):Consider now the fun
tion' : hmult(I); d(I)+12 i �! R : x 7! �d(I)� x + 1� � x;then this fun
tion is monotonously in
reasing, whi
h �nishes the proof in view ofEquation (3.1). �Corollary 29For an ordinary m-fold point Mm we have� es
i (Mm) = 8>>><>>>: (m+1)24 ; if m � 3 odd;m2+2m4 ; if m � 4 even;1; if m = 2:Proof: Let f be a representative of Mm. ThenIes(f) = ��f�x ; �f�x�+mm;and as in the proof of Proposition 12 we may assume that f is a homogeneous ofdegree m.In parti
ular, if m = 2, then Ies(f) = m is a 
omplete interse
tion and � es
i (M2) = 1.We may therefore assume that m � 3.



22 THOMAS KEILEN AND CHRISTOPH LOSSENFor any 
omplete interse
tion ideal I with mm � Ies(f) � I we automati
ally haved(I) � m, and by Lemma 28� es
i (f) � 8<: (m+1)24 ; if m odd;m2+2m4 ; if m � 4 even:Consider now the representative f = xm � ym. If m = 2k is even, then the idealI = hxk; yk+1i is a 
omplete interse
tion with Ies(f) � I and� es
i (f) � dimC(R=I) = k2 + k = m2 + 2m4 :Similarly, if m = 2k� 1 is odd, then the ideal I = hxk; yki is a 
omplete interse
tionwith Ies(f) � I and � es
i (f) � dimC(R=I) = k2 = m2 + 2m+ 14 : �Remark 30Let I � R be any zero-dimensional ideal, not ne
essarily a 
omplete interse
tion,then still dimC(R=I) � �d(I)� mult(I)� 12 � �mult(I):Proof: The proof is the same as for the 
omplete interse
tion ideal, just that we
annot ensure that the histogram goes down to zero at d(I) with steps of size one.The dimension is thus bounded by the region of the histogram in Figure 9. �H0R=I(d)
dd(I)mult(I)

mult(I)
Figure 9. Maximal possible area.4. Semi-Quasihomogeneous SingularitiesDe�nition 31A non-zero polynomial of the form f = P��p+��q=d a�;�x�y� is 
alled quasihomoge-neous of (p; q)-degree d. Thus the Newton polygon of a quasihomogeneous polyno-mial has just one side of slope �pq .A quasihomogeneous polynomial is said to be non-degenerate if it is redu
ed, that isif it has no multiple fa
tors, and it is said to be 
onvenient if dp ; dq 2 Z and a dp ;0 anda0; dq are non-zero, that is if the Newton polygon meets the x-axis and the y-axis.If f = f0 + f1 with f0 quasihomogeneous of (p; q)-degree d and for any monomialx�y� o

urring in f1 with a non-zero 
oeÆ
ient we have � � p + � � q > d, we say
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��-INVARIANT 23that f is of (p; q)-order d, and we 
all f0 the (p; q)-leading form of f and denote itby lead(p;q)(f). We denote the (p; q)-order of f by ord(p;q)(f).A power series f 2 R is said to be semi-quasihomogeneous with respe
t to theweights (p; q) if the (p; q)-leading form is non-degenerate.Remark 32Let f 2 R with deg(p;q)(f) = pq and let f0 denote its (p; q)-leading form.(a) If g
d(p; q) = r, then f0 has r fa
tors of the form aix qr � biy pr , i = 1; : : : ; r.If, moreover, f0 is non-degenerate, then these will all be irredu
ible andpairwise di�erent, i. e. not s
alar multiples of ea
h other.(b) If f is irredu
ible, then f0 has only one irredu
ible fa
tor, possibly of highermultipli
ity.(
) If f0 is non-degenerate, then f has r = g
d(p; q) bran
hes f1; : : : ; fr, whi
hare all semi-quasihomogeneous with irredu
ible (p; q)-leading form aix qr�biy prfor pairwise distin
t points (ai : bi) 2 P1C , i = 1; : : : ; r.The 
hara
teristi
 exponents of fi are qr and pr for all i = 1; : : : ; r, and thusfi admits a parametrisation of the form�xi(t); yi(t)� = ��it pr + h:o:t; �it qr + h:o:t�:(d) If f0 is non-degenerate, i. e. f is semi-quasihomogeneous, and g 2 R, theni(f; g) � ord(p;q)(g):Proof:(a) If �p + �q = pq, then p j �q and hen
e p j �r, so that � � rp is a naturalnumber. Similarly � � rq is a natural number. We may therefore 
onsider thetransformation f0�x rq ; y rp � 2 C[x; y℄rwhi
h is a homogeneous polynomial of degree r. Thus f0�x rq ; y rp � fa
tors inr linear fa
tors aix� biy, i = 1; : : : ; r, so that f0 fa
tors asf0 = rYi=1 �aix qr � biy pr �: (4.1)Sin
e g
d �pr ; qr� = 1, the fa
tors aix qr � biy pr are irredu
ible on
e neither ainor bi is zero.If f0 is non-degenerate, then the irredu
ible fa
tors of f0 are pairwise dis-tin
t. So, ai = 0 implies r = p and still aix qr � biy pr = biy irredu
ible, whilebi = 0 similarly gives r = q and aix qr � biy pr = aix irredu
ible. Thus, in any
ase the fa
tors in (4.1) are irredu
ible and, hen
e, pairwise distin
t.(b) With the notation from Lemma 33 and the fa
torisation of f0 from (4.1) weget g = Qri=1 aiu bqr v pqr2 � biuapr v pqr2uapv pqr = rYi=1(aiu� bi):By assumption f is irredu
ible, hen
e a

ording to Lemma 33 g has at mostone, possibly repeated, zero. But thus the fa
tors of f0 all 
oin
ide { up tos
alar multiple.



24 THOMAS KEILEN AND CHRISTOPH LOSSEN(
) The �rst assertion is an immediate 
onsequen
e from (a) and (b), while the\in parti
ular" part follows by Puiseux expansion.(d) Let g0 be the (p; q)-leading form of g. Using the notation from (
) we havei(f; g) = rXi=1 i(fi; g) = rXi=1 ord �g(xi(t); yi(t))�= rXi=1 ord�g0��it pr ; �it qr �+ h:o:t� � rXi=1 ord(p;q)(g)r = ord(p;q)(g):�Lemma 33Let f 2 R with ord(p;q)(f) = pq and let f0 denote its (p; q)-leading form. Letr = g
d(p; q) and a; b � 0 su
h that qb� pa = r. Finally setg = f0�ubv pr ; uav qr �uapv pqr 2 C[u℄:Then the number of di�erent zeros of g is a lower bound for the number of bran
hesof f .Proof: See [BrK86℄ Remark on p. 480. �The following investigations are 
ru
ial for the proof of Proposition 13.Lemma 34Let f 2 R be 
onvenient semi-quasihomogeneous with leading form f0 and ord(p;q)(f) =pq, let I = 
x�y� �� �p+ �q � pq�, and let h 2 R. ThendimCR=�hhi+ Ies(f)� < dimCR=�hhi+ I�:In parti
ular, if L(p;q)(h) = yB with B � p, thendimCR=hhi+ Ies(f) � Bq � 1� B�1Xi=1 � qip �:Proof: As Ies(f) = 
�f�x ; �f�y� + I;it suÆ
es to show that Ies(f) 6� hhi+ I;whi
h is the same as showing that not both �f�x and �f�y belong to hhi+ I.Suppose the 
ontrary, that is, there are hx; hy 2 R su
h that�f�x � hx � h (mod I) and �f�y � hy � h (mod I):We note that lead(p;q) ��f�x� = �f0�x and lead(p;q) ��f�y � = �f0�y ;and none of the monomials involved is 
ontained in I. Thereforelead(p;q)(hx) � lead(p;q)(h) = �f0�x and lead(p;q)(hy) � lead(p;q)(h) = �f0�y ;whi
h in parti
ular implies that �f0�x and �f0�y have a 
ommon fa
tor. This, however,is then a multiple fa
tor of the quasihomogeneous polynomial f0, in 
ontradi
tionto f being semi-quasihomogeneous.
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�
p
B q

�p+ �q � pq

Figure 10. A Basis of R=hhi+ I.For the \in parti
ular" part, we note that by Proposition 18dimCR=hhi+ I = dimCR=L<(p;q)�hhi+ I� � dimCR=
yB�+ I;and the monomials x�y� with �p+ �q < pq and � < B form a C-basis of the latterve
tor spa
e (see also Figure 10). Hen
e,dimCR=hhi+ I � B�1Xi=0 �q � qip � = Bq � B�1Xi=1 b qip �: �Lemma 35Let g; h 2 R su
h that L(p;q)(g) = xAyB and L(p;q)(h) = yC, and 
onsider the idealsJ = 
xAyB; yC; x�y� �� �p+ �q � pq� and J 0 = 
g; h; x�y� �� �p+ �q � pq�. ThendimCR=J 0 � dimCR=J;and if Ap+Bq � pq and B � C � p, thendimCR=J = Ap+Bq � AB � A�1Xi=1 �piq �� B�1Xi=1 � qip �� p�1Xi=C minnA; �q � Cqp �o :Moreover, if B = 0, then dimCR=J � A � C.Proof: By Proposition 18dimCR=J 0 � dimCR=L<(p;q)(J 0) � dimCR=J:Let I = 
x�y� �� �p + �q � pq�. Then the monomials x�y� with (�; �) 2 � =�(�; �) 2 N � N �� �p + �q < pq	 form a basis of R=I. Moreover, the monomialsx�y� with (�; �) 2 �1 [ �2 are a basis of J=I, where�1 = �(�; �) 2 � �� � � A and � � B	and �2 = �(�; �) 2 � n �1 �� � � C	:(See also Figure 11.) This gives rise to the above values for dimCR=J . �
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�
pCB qA

�1�2 �p+ �q � pq

Figure 11. A Basis of R=J .Lemma 36Let q > p be su
h that qp < dd�1 for some integer d � 2, and let 0 � A � d.(a) If L(p;q)(g) = xA, then L<ds(g) = xA.(b) mp+1 � 
xA; yp�1; x�y� �� �p+ �q � pq�.(
) If I is an ideal su
h that g; h; x�y� 2 I for �p+�q � pq and where L<(p;q)(g) =xA and L<(p;q)(h) = yp�1, then d(I) � p+ 1.Moreover, if L<(p;q)(g) is minimal among the leading monomials of elementsin I w. r. t. <(p;q), then mult(I) = A.Proof: It suÆ
es to 
onsider the 
ase A = d, sin
e this implies the other 
ases.Note that by assumption d � p.(a) Sin
e xd is less than any monomial of degree at least d with respe
t to <ds,we have to show that in g no monomial of degree less than d 
an o

ur witha non-zero 
oeÆ
ient. xd being the leading monomial of g with respe
t to<(p;q), it suÆ
es to show that �+� < d implies �p+�q < dp, or alternatively,sin
e qp < dd�1 , � + � � dd� 1 � d:For �+ � < d the left hand side of this inequality will be maximal for � = 0and � = d� 1, and thus the inequality is satis�ed.(b) We only have to show that x
yp+1�
 2 
xd; yp�1; x�y� �� �p + �q � pq�for 
 = 3; : : : ; d � 1, sin
e the remaining generators of mp+1 de�nitely are.However, by assumption qp < dd�1 � 

�1 , and thus 
 � p+ (p+ 1� 
) � q � pq.(
) By the assumption on I we dedu
e form (a) and (b) that d �L<ds(I)� � p+1.However, by Remark 21 d(I) = d �L<ds(I)�, whi
h proves the �rst assertion.Suppose now that mult(I) < A, i. e. there is an f 2 I su
h that mult(f) � A�1. The 
onsiderations for (a) show that then L<(p;q)(f) < xA in 
ontradi
tionto the assumption. �
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