
A NEW INVARIANT FOR PLANE CURVE SINGULARITIESTHOMAS KEILEN AND CHRISTOPH LOSSENAbstrat. In [GLS01℄ the authors gave a general suÆient numerial onditionfor the T-smoothness (smoothness and expeted dimension) of equisingular fam-ilies of plane urves. This ondition involves a new invariant � for plane urvesingularities, and it is onjetured to be asymptotially proper. In [Kei04℄, similarsuÆient numerial onditions are obtained for the T-smoothness of equisingularfamilies on various lasses surfaes. These onditions involve a series of invariants��, 0 � � � 1, with �1 = �. In the present paper we ompute (respetively givebounds for) these invariants for semiquasihomogeneous singularities.When studying numerial onditions for the T-smoothness of equisingular familiesof urves, new invariants of plane urve singularities V (f) � (C2; 0) turn up. Theseinvariants are de�ned as the maximum of a funtion depending on the odimensionof omplete intersetion ideals ontaining the Tjurina ideal, respetively the equi-singularity ideal, of f , and on the intersetion multipliity of f with elements of theomplete intersetion ideals. In Setion 1 we will de�ne these invariants, and wewill alulate them for several lasses of singularities, the main results being Propo-sition 11, Proposition 12 and Proposition 13. It is the upper bound in Lemma 8whih ensures that the onditions for T-smoothness with these new onditions (see[GLS00℄, [GLS01℄, [Kei04℄) improve than the previously known ones (see [GLS97℄).In the remaining setions we introdue some notation and we gather some neessary,though mainly well-known tehnial results used in the proofs of Setion 1.We should like to point out that the de�nition of the invariant �1 below is a modi�-ation of the invariant \�" de�ned in [GLS01℄, and it is always bound from aboveby the latter. Moreover, the latter an be replaed by it in the onditions of [GLS01℄Proposition 2.2.NotationThroughout this paper R = Cfx; yg will be the ring of onvergent power series inthe variables x and y, and m = hx; yi�R will be its maximal ideal.Contents1. The ��-Invariants 22. Loal Monomial Orderings 153. The Hilbert Samuel Funtion 164. Semi-Quasihomogeneous Singularities 22Referenes 27Date: September, 2003.1991 Mathematis Subjet Classi�ation. Primary 14H20, 14H15, 14H10.Key words and phrases. Algebrai geometry, singularity theory.The �rst author was supported by the European mathematial network EAGER. The seondauthor was supported by DFG grant no. Lo 864/1.1



2 THOMAS KEILEN AND CHRISTOPH LOSSEN1. The ��-InvariantsFor the de�nition of the ��-invariants the Tjurina ideal, respetively the equisingu-larity ideal in the sense of [Wah74℄, play an essential role. For the onveniene ofthe reader we reall their de�nitions.De�nition 1Let f 2 m be a redued power series. The Tjurina ideal of f is de�ned asIea(f) = ��f�x ; �f�y ; f� ;and the equisingularity ideal of f is de�ned asIes(f) = �g 2 R �� f + "g is equisingular over C["℄=("2)	 � Iea(f):Their odimensions �(f) = dimCR=Iea(f);respetively � es(f) = dimCR=Ies(f);are analytial, respetively topologial, invariants of the singularity type de�ned byf . Note that � es(f) is the odimension of the �-onstant stratum in the equisingulardeformation of the plane urve singularity de�ned by f . It an be omputed in termsof multipliities of the strit transform of f at essential in�nitely near points in theresolution tree of �V (f); 0� (f. [Shu91℄).De�nition 2Let f 2 m be a redued power series, and let 0 � � � 1 be a rational number.If I is a zero-dimensional ideal in R with Iea(f) � I � m and g 2 I, we de�ne��(f ; I; g) := �� � i(f; g) + (1� �) � dimC(R=I)�2i(f; g)� dimC(R=I) ;and�(f ; I) := max�(1 + �)2 � dimC(R=I); ��(f ; I; g) �� g 2 I; i(f; g) � 2 � dimC(R=I)	 ;where i(f; g) denotes the intersetion multipliity of f and g. Note that, by Lemma3, i(f; g) > dimC(R=I) for all g 2 I. Thus �(f ; I) is a well-de�ned positive rationalnumber.We then setea� (f) := max�0; �(f ; I) �� I � Iea(f) is a omplete intersetion ideal	and es� (f) := max�0; �(f ; I) �� I � Ies(f) is a omplete intersetion ideal	Note that if f 2 m nm2, then Iea(f) = Ies(f) = R and there is no zero-dimensionalomplete intersetion ideal ontaining any of those two, hene ea� (f) = es� (f) = 0.Lemma 3Let f 2 m2 be redued, and let I be an ideal suh that Iea(f) � I � m.Then, for any g 2 I, we havedimC(R=I) < dimC �R=hf; gi� = i(f; g):



THE ��-INVARIANT 3Proof: Cf. [Shu97℄ Lemma 4.1; the idea is mainly to show that not both derivativesof f an belong to hf; gi. �Up to embedded isomorphism the Tjurina ideal only depends on the analytial typeof the singularity. More preisely, if f 2 R any power series, u 2 R a unit and� : R ! R an isomorphism, then Iea(u � f Æ �) = fg Æ � j g 2 Iea(f)g. Thus thefollowing de�nition makes sense.De�nition 4Let S be an analytial, respetively topologial, singularity type, and let f 2 R bea representative of S. We then de�neea� (S) := ea� (f);respetively es� (S) := maxfes� (g) j g is a representative of Sg:Sine i(f; g) > dimC(R=I) in the above situation, we dedue the following lemma.Lemma 5Let f 2 m2 be redued, Iea(f) � I � m be a zero-dimensional ideal, and 0 � � <� � 1, then �(f ; I) < �(f ; I).In partiular, for any analytial, respetively topologial, singularity typeea� (S) < ea� (S) respetively es� (S) < es� (S):For reasons of omparison let us also reall the de�nition of � eai , � esi , � and Æ.De�nition 6For f 2 R we de�ne� eai (f) := maxf0; dimC(R=I) j I � Iea(f) a omplete intersetiong;and � esi (f) := maxf0; dimC(R=I) j I � Ies(f) a omplete intersetiong:Again, for analytially equivalent singularities the values oinide, so that for ananalytial singularity type S, hoosing some representative f 2 R, we may de�ne� eai (S) := �i(f):For a topologial singularity type we set� esi (S) := maxf� esi (g) j g a representative of Sg:Note that obviously � eai (S) � �(S) and � esi (S) � � es(S);where �(S) is the Tjurina number of S and � es(S) is as de�ned in De�nition 1.De�nition 7For f 2 R and O = R=hfi, we de�ne the Æ-invariantÆ(f) = dimC eO=Owhere O � eO is the normalisation of O, and the �-invariant�(f) = i�f; � � �f�x + � � �f�x� ;



4 THOMAS KEILEN AND CHRISTOPH LOSSENwhere (� : �) 2 P1C is generi.Æ and � are topologial (thus also analytial) invariants of the singularity de�ned byf so that for the topologial, respetively analytial, singularity type S given by fwe an set Æ(S) = Æ(f) and �(S) = �(f):Throughout this artile we will sometimes treat topologial andanalytial singularities at the same time. Whenever we do so, wewill write I�(f) for Iea(f) respetively for Iea(f), and analogouslywe will use the notation ��, � �i and � �.The following lemma is again obvious from the de�nition of �(f ; I), one we takeinto aount that �(f) = i(f; g) for a generi element g 2 Iea(f) of f and that for a�xed value of d = dimC(R=I) the funtion i 7! (�i+(1��)�d)2i�d takes its maximum on[d+ 1; 2d℄ for the minimal possible value i = d+ 1.Lemma 8Let f 2 m2 be redued, and let I be an ideal in R suh that Iea(f) � I � m.Then (1 + �)2 � dimC(R=I) � �(f ; I) � �dimC(R=I) + ��2:Moreover, if �(f) � 2 � dimC(R=I), then�(f ; I) � �� � �(f) + (1� �) � dimC(R=I)�2�(f)� dimC(R=I) :In partiular, for any analytial, respetively topologial, singularity type S(1 + �)2 � � �i(S) � ��(S) � �� �i(S) + ��2;and if �(S) � 2 � � �i(S), then��(S) � �� � �(S) + (1� �) � � �i(S)�2�(S)� � �i(S) :In order to make the onditions for T-smoothness in [Kei04℄ as sharp as possible, itis useful to know under whih irumstanes the term (1+�)2 �dimC(R=I) involvedin the de�nition of ��(f) is atually exeeded.Lemma 9If S is a topologial or analytial singularity type suh that �(S) < 2 � � �i(S), then(1 + �)2 � � �i(S) < ��(S):This is in partiular the ase, if S 6= A1 and � �i(S) = � �(S), i. e. if the Tjurinaideal, respetively the equisingularity ideal, of some representative is a omplete in-tersetion.Proof: Lemma 8 gives��(S) � �� � �(S) + (1� �) � � �i(S)�2�(S)� � �i(S) :



THE ��-INVARIANT 5If we onsider the right-hand side as a funtion in �(S), it is stritly dereasing onthe interval [0; 2 � � �i(S)℄ and takes its minimum thus at 2�� �i(S). By the assumptionon �(S) we, therefore, get ��(S) > (1 + �)2 � � �i(S):Suppose now that � �i(S) = � �(S) and S 6= A1. By Lemma 10 we know Æ(S) <� es(S) � �(S). On the other hand we have �(S) � 2 �Æ(S) (see [GLS05℄). Therefore,�(S) < 2 � � �i(S). �Lemma 10If S 6= A1 is any analytial or topologial singularity type, then Æ(S) < � es(S).Proof: If (C; z) is a representative of S and if T �(C; z) is the essential subtree ofthe omplete embedded resolution tree of (C; z), thenÆ(S) = Xp2T �(C;z) multp(C) � (multp(C)� 1)2and� es(S) = Xp2T �(C;z) multp(C) � (multp(C) + 1)2 �# free points in T �(C; z)� 1;where multp(C) denotes the multipliity of the strit transform of C at p (see[GLS05℄). Setting "p = 0 if p is satellite, "p = 1 if p 6= z is free, and "z = 2,then multp(C) � "p and therefore� es(S) = Æ(S) + Xp2T �(C;z) �multp(C)� "p� � Æ(S):Moreover, we have equality if and only if multz(C) = 2, multp(C) = 1 for all p 6= zand there is no satellite point, but this implies that S = A1. �For some lasses of singularities we an alulate the ��-invariant onretely, and forsome others we an at least give an upper bound, whih in general is muh betterthan the one derived from Lemma 8. We restrit our attention to singularitieshaving a onvenient semi-quasihomogeneous representative f 2 R (see De�nition31). Throughout the following proofs we will frequently make use of monomialorderings, see Setion 2.Proposition 11 ((Simple Singularities))Let � be a rational number with 0 � � � 1. Then we obtain the following values fores� (S) = ea� (S), where S is a simple singularity type.S ea� (S) = es� (S)Ak; k � 1 (k + �)2Dk; 4 � k � 4 +p2 � (2 + �) (k+2�)22Dk; k � 4 +p2 � (2 + �) (k � 2 + �)2Ek; k = 6; 7; 8 (k+2�)22



6 THOMAS KEILEN AND CHRISTOPH LOSSENProof: Let Sk be one of the simple singularity types Ak, Dk or Ek, and let f 2 Rbe a representative of Sk. Note that the Tjurina ideal Iea(f) and the equisingularityideal Ies(f) oinide, and hene so do the ��-invariants, i. e.ea� (Sk) = es� (Sk):Moreover, in the onsidered ases the Tjurina ideal is indeed a omplete intersetionideal with dimC �R=Iea(f)� = k, so that in partiular the given values are upperbounds for (1+�)2 �dimC(R=I) for any omplete intersetion ideal I ontaining theTjurina ideal. By Lemma 8 we know(� � �(Sk) + (1� �) � k)2�(Sk)� k � �(Sk) � (k + �)2:Note that �(Ak) = k + 1, �(Dk) = k + 2 and �(Ek) = k + 2, whih in partiulargives the result for Sk = Ak. Moreover, it shows that for Sk = Dk or Sk = Ek wehave �(Sk) � (k + 2�)22 :If we �x a omplete intersetion ideal I with Iea(f) � I, then��(f ; I; g) = �� � i(f; g) + (1� �) � dimC(R=I)�2i(f; g)� dimC(R=I) ;with g 2 I suh that i(f; g) � 2 � dimC(R=I), onsidered as a funtion in i(f; g) ismaximal, when i(f; g) is minimal. If i(f; g)� dimC(R=I) � 2, then��(f ; I; g) � (k + 2�)22 :It therefore remains to onsider the ase wherei(f; g)� dimC(R=I) = 1 (1.1)for some I and some g 2 I, and to maximise the possible dimC(R=I).We laim that for Sk = Dk with f = x2y�yk�1 as representative, dimC(R=I) � k�2,and thus I = hx; yk�2i and g = x are suitable with��(f ; I; x) = (k � 2 + �)2;whih is greater than (k+2�)22 if and only if k � 4 + p2 � (2 + �). Suppose, there-fore, dimC(R=I) = k � 1. Then yk�1; x3 2 Iea(f) = hxy; x2 � (k � 1) � yk�2i � I,the leading ideal L<ls�Iea(f)� = hx3; xy; yk�2i � L<ls(I), and sine by Proposi-tion 18 dimC(R=I) = dimC �R=L<ls(I)�, either L<ls(I) = hx3; xy; yk�3i or L<ls(I) =hx2; xy; yk�2i. In the �rst ase there is a power series g 2 I suh that g �yk�3 + ax + bx2 (mod I), and hene I 3 yg � yk�2 (mod I), i. e. yk�2 2 I. Butthen x2 2 I and x2 2 L<ls(I), in ontradition to the assumption. In the seondase, similarly, there is a g 2 I suh that g � x2 (mod I), and hene x2 2 I whihin turn implies that yk�2 2 I. Thus I = hx2; xy; yk�2i, and dimC(I=mI) = 3 whihby Remark 25 ontradits the fat that I is a omplete intersetion.If Sk = E6, then f = x3 � y4 is a representative and Iea(f) = hx2; y3i. Supposethat dimC(R=I) = k � 1 = 5, then L<ds(I) = hx2; y3; xy2i and H0R=I = H0R=L<ds (I),in ontradition to Lemma 24, sine H0R=L<ds (I)(2) = 2 and H0R=L<ds (I)(3) = 0. ThusdimC(R=I) � 4 and ��(f ; I; g) � (4 + �)2 � (6+2�)22 .



THE ��-INVARIANT 7If Sk = E7, then f = x3�xy3 is a representative and Iea(f) = h3x2�y3; xy2i 3 x3; y5.If dimC(R=I) � 4, then ��(f ; I; g) � (4 + �)2 � (7+2�)22 , and we are done. It thusremains to exlude the ases where dimC(R=I) 2 f5; 6g. For this we note �rst thatif there is a g 2 I suh that L<ls(g) = y2, theng � y2 + ax + bx2 + xy + dx2y (mod I); (1.2)and therefore y2g � y4 (mod I), whih implies y4 2 I and hene x2y 2 I. Anal-ogously, if there is a g 2 I suh that L<ls(g) = x2y, then g � x2y (mod I) andagain x2y; y4 2 I. Suppose now that dimC(R=I) = 6, then L<ls(I) = hy2; x3i orL<ls(I) = hy3; xy2; x2y; x3i. In both ases we thus have x2y; y4 2 I. However,in the �rst ase then x2y 2 L<ls(I), in ontradition to the assumption. Whilein the seond ase we �nd I = hxy2; x2y; 3x2 � y3i, and dimC(I=mI) = 3 ontra-dits the fat that I is a omplete intersetion by Lemma 25. Suppose, therefore,that dimC(R=I) = 5. Then L<ls(I) = hy2; x2y; x3i, or L<ls(I) = hy3; xy2; x2i, orL<ls(I) = hy3; xy; x3i. In the �rst ase, we know already that y4; x2y 2 I. Look-ing one more on (1.2) we onsider the ases a = 0 and a 6= 0. If a = 0, thenyg � y3 (mod I), and thus y3 2 I, whih in turn implies x2 2 I. Similarly, ifa 6= 0, then xg � ax2 (mod I) implies x2 2 I. But then also x2 2 L<ls(I), inontradition to the assumption. In the seond ase there is a g 2 I suh thatg � x2 + ax2y (mod I), and thus yg � x2y 2 I. But then also x2 2 I and y3 2 I,so that I = hy3; xy2; x2i. However, dimC(I=mI) = 3 ontradits again the fatthat I is a omplete intersetion. Finally in the third ase there is a g 2 I withg � xy + ax2 + bx2y (mod I), and thus xg � x2y (mod I) implies x2y 2 I and thenxy + ax2 2 I. Therefore, I = hxy + ax2; 3x2 � y3i, and for for h 2 I and for generib;  2 C we have i(f; h) � i(x; h)+ i�x2�y3; b �(xy+ax2)+ �(3x2�y3)� � 3+5 = 8,in ontradition to (1.1).Finally, if Sk = E8 with representative f = x3� y5 and Iea(f) = hx2; y4i, we get fordimC(R=I) � 5 that ��(f ; I; g) � (5+�)2 � (8+2�)22 . It therefore remains to exludethe ases dimC(R=I) 2 f6; 7g. If dimC(R=I) = 7 then L<ds(I) = hx2; y4; xy3i. Butthen H0R=L<ds (I)(3) = 2 and H0R=L<ds (I)(4) = 0 are in ontradition to Lemma 24.And if dimC(R=I) = 6, then L<ls(I) = hy3; x2i or L<ls(I) = hy4; xy2; x2i. In the�rst ase there is some g 2 I suh that g � y3 + ax + bxy + xy2 + dxy3 (mod I),and thus xg � xy3 (mod I) and xy3 2 I. But then yg � axy + bxy2 (mod I) andhene axy + bxy2 2 I. Sine neither xy 2 L<ls(I) nor xy2 2 L<ls(I), we must havea = 0 = b. Therefore, g � y3+xy2 (mod I) and I = hx2; y3+xy2i, whih for h 2 Iand a; b 2 C generi gives i(f; g) � i�x3�y4; ax2+b�(y3+xy2)� � 8, in ontraditionto (1.1). In the seond ase, there is g 2 I suh that g � xy2 + axy3 (mod I),therefore yg � xy3 (mod I) and xy3 2 I. But then xy2 2 I and I = hy4; xy2; x2i.This, however, is not a omplete intersetion, sine dimC(I=mI) = 3, in ontraditionto the assumption.This �nishes the proof. �Proposition 12 ((Ordinary Multiple Points))Let � be a rational number with 0 � � � 1, and let Mk denote the topologialsingularity type of an ordinary k-fold point with k � 3. Thenes� (Mk) = 2 � (k � 1 + �)2:



8 THOMAS KEILEN AND CHRISTOPH LOSSENIn partiular es� (Mk) > (1 + �)2 � � esi (Mk):Proof: Note that for any representative f of Mk we haveIes(f) = Iea(f) +mk = ��fk�x ; �fk�y �+mk;where fk is the homogeneous part of degree k of f , so that we may assume f to behomogeneous of degree k.If I is a omplete intersetion ideal with mk � Ies(f) � I, then by Lemma 28dimC(R=I) � �k �mult(I) + 1� �mult(I):We note moreover that for any g 2 Ii(f; g) � mult(f) �mult(g) � k �mult(I);and that for a �xed I we may attain an upper bound for ��(f ; I; g) by replaingi(f; g) by a lower bound for i(f; g).Hene, if mult(I) � 2, we have��(f ; I; g) � �k � (1� �) � (mult(I)� 1)�2 �mult(I)2mult(I) � �mult(I)� 1� � 2 � (k � 1 + �)2; (1.3)while dimC(R=I) � k � 1 for mult(I) = 1 and the above inequality (1.3) is stillsatis�ed. To see dimC(R=I) � k � 1 for mult(I) = 1 note that the ideal I ontainsan element g of order 1 with g1 = ax + by as homogeneous part of degree 1 andthe partial derivatives of f ; applying a linear hange of oordinates we may assumeg1 = x and f = Qki=1(x � aiy) with pairwise di�erent ai, and we may onsider thenegative degree lexiographial monomial ordering > giving preferene to y; if someai = 0, then L>��f�x� = yk�1, while otherwise L>��f�y � = yk�1, so that in any asehx; yk�1i � L>(I), and by Proposition 18 therefore dimC(R=I) = dimC �R=L>(I)� �dimC(R=hx; yk�1i) = k � 1.Equation (1.3) together with Lemma 28 showses� (Mk) � 2 � (k � 1 + �)2:On the other hand, onsidering the representative f = xk � yk, we haveIes(f) = hxk�1; yk�1; xayb j a + b = ki;and I = hyk�1; x2i is a omplete intersetion ideal ontaining Ies(f). Moreover,i�f; x2� = 2k, dimC(R=I) = 2 � (k � 1), thuses� (Mk) � �� � i(f; x2) + (1� �) � dimC(R=I)�2i�f; x2�� dimC(R=I) = 2 � (k � 1 + �)2:The \in partiular" part then follows right away from Corollary 29. �Sine a onvenient semi-quasihomogeneous power series of multipliity 2 de�nes anAk-singularity and one with a homogeneous leading term de�nes an ordinary mul-tiple point, the following proposition together with the previous two gives upperbounds for all singularities de�ned by a onvenient semi-quasihomogeneous repre-sentative.



THE ��-INVARIANT 9Proposition 13 ((Semiquasihomogeneous Singularities))Let Sp;q be a singularity type with a onvenient semi-quasihomogeneous representa-tive f 2 R, q > p � 3.Then es� (Sp;q) � (q�(1��)�b qp)2b qp � q�(p�1+�)2p and we obtain the following upper boundfor es� (f): p; q es� (f)q � 39 � 3 � (q � 2 + �)2qp 2 (1; 2) � 3 � (q � 1 + �)2qp 2 [2; 4) � 2 � (q � 1 + �)2qp 2 [4;1) � (q � 1 + �)2Proof: To see the laimed lower bound for es� (Sp;q) reall that (see [GLS05℄)Ies(f) = 
�f�x ; �f�y ; x�y� �� �p+ �q � pq�: (1.4)In partiular, Ies(f) � 
y; xq�b qp �, dimC(R=I) = q � � qp� and i(f; y) = q, whihimplies the laim.Let now I be a omplete intersetion ideal with Ies(f) � I. Applying Lemma 28and d(I) � q, we �rst of all note that(1 + �)2 � dimC(R=I) � (1 + �)2 � (q + 1)24 � 2 � (q � 1 + �)2:Moreover, if qp � 3, then(1 + �)2 � dimC(R=I) � (1 + �)2 � �q2 + 4q + 3�6 � (q � 1 + �)2:sine dimC(R=I) � dimC �R=Ies(f)� � (p+1)�(q+1)2 by (1.4).It therefore suÆes to show��(f ; I; g) � 8>>>>>><>>>>>>:
3 � (q � 2 + �)2; if q � 39;3 � (q � 1 + �)2; if qp 2 (1; 2);2 � (q � 1 + �)2; if qp 2 [2; 4);(q � 1 + �)2; if qp 2 [4;1); (1.5)where g 2 I with i(f; g) � 2 � dimC(R=I). Reall that��(f ; I; g) = �� � i(f; g) + (1� �) � dimC(R=I)�2i(f; g)� dimC(R=I) :Fixing I and onsidering ��(f ; I; g) as a funtion in i(f; g), where due to (1.12)the latter takes values between dimC(R=I) + 1 and 2 � dimC(R=I), we note thatthe funtion is monotonously dereasing. In order to alulate an upper bound for��(f ; I; g) we may therefore replae i(f; g) by some lower bound, whih still exeedsdimC(R=I) + 1. Having done this we may then replae dimC(R=I) by an upperbound in order to �nd an upper bound for �(f ; I; g).



10 THOMAS KEILEN AND CHRISTOPH LOSSENNote that for q � 39 we have5419 � (q � 1 + �)2 � 3 � (q � 2 + �)2: (1.6)Fix I and g, and let L(p;q)(g) = xAyB be the leading term of g w. r. t. the weightedordering <(p;q) (see De�nition 16). By Remark 32 we knowi(f; g) � Ap +Bq: (1.7)Working with this lower bound for i(f; g) we redue the problem to �nd suitableupper bounds for dimC(R=I). For this purpose we may assume that L(p;q)(g) isminimal, and thus, in partiular, B � mult(I).If A = 0, in view of Remark 26 we therefore haveB = mult(I) � d(I) + 12 � q + 12 ;and thus by Lemma 28 thendimC(R=I) � B � (q �B + 1): (1.8)Moreover, for A = 0 Lemma 34 applies with h = g and we getdimC(R=I) � B � q � 1� B�1Xi=1 � qip � � B � q � 1� �qp� � B � (B � 1)2 : (1.9)Sine x�y� 2 I for �p + �q � pq, we may assume Ap + Bq � pq. But then, sinedimC(R=I) � dimCRÆ
�f�y ; g; x�y� j �p + �q � pq�, we may apply Lemma 35 withh = �f�y and C = p� 1. This givesdimC(R=I) � Ap+Bq � AB � A�1Xi=1 �piq �� B�1Xi=1 � qip ��minnA; � qp�o ; (1.10)and if B = 0 we get in additiondimC(R=I) � A � (p� 1): (1.11)Finally note that by Lemma 3 i(f; g) > dimC(R=I): (1.12)Let us now use the inequalities (1.6)-(1.12) to show (1.5). For this we have toonsider several ases for possible values of A and B.Case 1: A = 0, B � 1.If B = 1, then by (1.9) and (1.12) we have ��(f ; I; g) � (q � 1 + �)2.We may thus assume that B � 2. By (1.7) and (1.8)��(f ; I; g) � B2 � �q � (1� �) � (B � 1)�2B � (B � 1) � 2 � (q � 1 + �)2:If, moreover, qp � 3, then we may apply (1.9) to �nd��(f ; I; g) � B2 � �q � (1� �) � (B � 1)�2� qp� � B�(B�1)2 + 1 � (q � 1 + �)2:Taking (1.6) into aount, this proves (1.5) in the ase A = 0 and B � 1.Case 2: A = 1, B � 1.



THE ��-INVARIANT 11From (1.10) we deduedimC(R=I) � B � (q � 1) + (p� 1)� � qp� � B�(B�1)2 :Sine p�1+�q�1+� � pq we thus get��(f ; I; g) � �B + p�1+�q�1+��2B + � qp� � B�(B�1)2 + 1 � (q � 1 + �)2
� 8>>>>>><>>>>>>:

(B+ 13 )23B22 �B2 +1 � (q � 1 + �)2 � (q � 1 + �)2; if qp � 3;(B+ 12 )2B2+1 � (q � 1 + �)2 � 54 � (q � 1 + �)2; if qp � 2;2 � (B+1)2B2+B+2 � (q � 1 + �)2 � 167 � (q � 1 + �)2; if qp > 1:One more we are done, sine 167 � 5419 .Case 3: A � 2, B � 1.Note that br � r � 1 for any rational number r, and set s = qp , then by (1.10)dimC(R=I) � Ap+Bq�(A�1)�(B�1)�A � (A� 1)2s �s �B � (B � 1)2 �1�min�A; dse	:This amounts to��(f ; I; g) ��Ap +Bq � (1� �) � �(A� 1) � (B � 1) + A�(A�1)2s + s�B�(B�1)2 + 1 +minfA; dseg��2(A� 1) � (B � 1) + A�(A�1)2s + s�B�(B�1)2 + 3� �A � (p� 1 + �) +B � (q � 1 + �)�2(A� 1) � (B � 1) + A�(A�1)2s + s�B�(B�1)2 + 3 � '(A;B) � (q � 1 + �)2;where '(A;B) = �As +B�2(A� 1) � (B � 1) + A�(A�1)2s + s�B�(B�1)2 + 3 :For the last inequality we just note again that p�1+�q�1+� � pq = 1s , while for the seondinequality a number of di�erent ases has to be onsidered. We postpone this for amoment.In order to show (1.5) in the ase A � 2 and B � 1 it now suÆes to show'(A;B) � 8>>><>>>: 5419 ; if s � 1;2; if s � 2;1; if s � 4: (1.13)Elementary alulus shows that for B � 1 �xed the funtion [2;1) ! R : A 7!'(A;B) takes its maximum atA = max�2; 16� 3B2 + 1s � :



12 THOMAS KEILEN AND CHRISTOPH LOSSENIf B � 3, then the maximum is attained at A = 16�3B2+ 1s , and'(A;B) � '�16� 3B2 + 1s ; B� = 8sB � 8B + 644s2B � 4s2 � 4sB + 28s� 1 :Again elementary alulus shows that the funtionB 7! '�16�3B2+ 1s ; B� is monotonouslydereasing on [1; 3℄ and, therefore,'(A;B) � '� 132 + 1s ; 1� = 8s+ 5624s� 1 =:  1(s):Sine also the funtion  1 is monotonously dereasing on [1;1) and  1(1) = 6423 � 5419 , 1(2) = 7247 � 2 and  1(4) = 8895 � 1 Equation (1.13) follows in this ase.As soon as B � 4 the maximum for '(A;B) is attained for A = 2 and'(A;B) � '(2; B) = 2 � (sB + 2)2s3B2 � s3B + 2s2B + 4s2 + 2s:One more elementary alulus shows that the funtionB 7! '(2; B) is monotonouslydereasing on [4;1). Thus'(A;B) � '(2; 4) = 4 � (1 + 2s)26s3 + 6s2 + s =:  2(s):Applying elementary alulus again, we �nd that the funtion  2 is monotonouslydereasing on [1;1), so that we are done sine  2(1) = 3613 � 5419 ,  2(2) = 5037 � 2 and 2(4) = 81121 � 1.Let us now ome bak to proving the missing inequality above. We have to showA+B � (A� 1) � (B � 1) + A � (A� 1)2s + s �B � (B � 1)2 + 1 +min�A; dse	;or equivalentlyA � (A� 1)2s + s �B � (B � 1)2 + 2 +min�A; dse	 + AB � 2A� 2B � 0:If B � 2, then AB � 2A and s�B�(B�1)2 + 2 +min�A; dse	 � 2B, so we are done. Itremains to onsider the ase B = 1, and we have to showA2 � A� 2sA+ 2s �min�A; dse	 � 0:If A � dse or A = 2 this is obvious. We may thus suppose that A > dse and A � 3.Sine A23 � A it remains to show2A23 � 2sA+ 2s � dse � 0:For this 2A23 � 2sA+ 2s � dse � 8>>>>>><>>>>>>:
2A23 � 2sA � 0; if A � 3s;2A23 � 4sA3 � 0; if 2s � A � 3s;2A23 � sA � 0; if 3s2 � A � 2s;2A23 � 2sA3 � 0; if dse � A � 3s2 :Case 4: A � 1, B = 0.



THE ��-INVARIANT 13Applying (1.10) and (1.11) we get��(f ; I; g) � 8>>>><>>>>: A2�(p�1+�)2A � 8<: As2 � (q � 1 + �)2A � (q � 2 + �)2 9=; for any A; andA2�(p�1+�)2PA�1i=1 b piq +minfA;d qp eg � '�;s(A) � (q � 1 + �)2; if A � 3;where'�;s(A) = A2s2A�(A�1)2s � (A� 1) + � = 2A2sA2 � (2s2 + s) � A+ 2 � (� + 1) � s2with � = 2 for s 2 (1; 2℄ and � = 3 for s 2 (2;1).In partiular, due to the �rst two inequalities we may thus assume thatA > 8>>>>>><>>>>>>:
3; if q � 39;3s2; if s 2 (1; 2);2s2; if s 2 [2; 4);s2; if s 2 [4;1):Note that '3;s(A) � 1 for s � 4, sineA � s2 = 9s216 + 7s216 � s � (1 + 2s)2 � (s� 2) + ss� 2 �qs2 � 3s+ 334 :This gives (1.5) for s � 4.If now s 2 (2; 4), then '3;s is monotonously dereasing on �2s2;1�, as is s 7!'3;s�2s2� on [2; 4), and thus'3;s(A) � '3;s�2s2� = 4s22s3 � 2s2 � s+ 4 � 85 � 2;while for s = 2 the funtion '2;2 is monotonously dereasing on [8;1) and thus'2;2(A) � 169 � 2. This �nishes the ase s 2 [2; 4).Let's now onsider the ase s 2 (1; 2) and q � 39 parallel. Applying elemen-tary alulus, we �nd that '2;s takes its maximum on [3;1) at A = 12s1+2s and ismonotonously dereasing on � 12s1+2s ;1�. Moreover, the funtion s 7! '2;s� 12s1+2s� ismonotonously dereasing on (1; 2). If s � 76 , then'2;s(A) � '2;s� 12s1+2s� � '2; 76 �215 � = 5419 :Due to (1.6) it thus remains to onsider the ase s 2 �1; 76� and A > 3. If A � 8,then '2;s(A) � '2;1(8) = 6423 � 5419 ;sine the funtion s 7! '2;s(8) is monotonously dereasing on [1; 2).So, we are �nally stuk with the ase A 2 f4; 5; 6; 7g and 1 � qp = s � 76 . Wewant to apply Lemma 28. For this we note �rst that by Lemma 36 in our situationd(I) � p + 1 and A = mult(I) � p+22 . But thendimC(R=I) � A � (p� A+ 2)



14 THOMAS KEILEN AND CHRISTOPH LOSSENand thus,��(f ; I; g) � A2 � �p� (1� �) � (A� 2)�2A � (A� 2) � A(A� 2) � (q� 2+�)2 � 2 � (q� 2+�)2:This �nishes the proof. �Remark 14In the proof of the previous proposition we ahieved for almost all ases ��(f ; I; g) �5419 � (q � 1 + �)2, apart from the single ase L<(p;q)(g) = x3. The following exampleshows that indeed in this ase we annot, in general, expet any better oeÆientthan 3. More preisely, the example shows that the bound3 � (q � 2 + �)2is sharp for the family of singularities given by xq � yq�1, q � 39. A loser investi-gation should allow to lower the bound on q, but we annot get this for all q � 4,as the example of E6 and E8 show.Moreover, we give series of examples for whih the bound (q � 1 + �)2 is sharp,respetively for whih 2 � (q � 1 + �)2 is a lower bound.Example 15Throughout these examples q > p � 3 are integers.(a) Let f = xq � yq�1, then es� (f) � 3 � (q � 2 + �)2. In partiular, for q � 39,es� (f) = 3 � (q � 2 + �)2:For this we note that I = hx3; yq�2i is a omplete intersetion ideal in Rwith Ies(f) = 
xq�1; yq�2; x�y� �� � � (q � 1) + �q � q � (q � 1)� � I, sine2 � (q � 1) + (q � 3) � q = q2 � q � 2 < q � (q � 1) and thus x2yq�3 62 Ies(f).This also shows that the monomial xiyj with 0 � i � 2 and 0 � j � q � 3form a C-basis of R=I, so that dimC(R=I) = 3q� 6. Sine i�f; x3� = 3q � 3,the laim follows.(b) Let qp < 2 and f = xq � yp, thenes� (f) � 2 � (q � 1 + �)2:By the assumption on p and q we have (q� 2) � p+ q < pq and hene xq�2y 62Ies(f). Thus Ies(f) = 
xq�1; yp�1; x�y� �� �p + �q � pq� � I = hy2; xq�1i,and we are done sine dimC(R=I) = 2q � 2 and i�f; y2� = 2q.() Let f 2 R be onvenient, semi-quasihomogeneous of ord(p;q)(f) = pq, andsuppose that in f no monomial xky, k � q � 2, ours (e. g. f = xq � yp),then es� (f) � (q � 1 + �)2. In partiular, if qp � 4, thenes� (f) = (q � 1 + �)2:By the assumption, Ies(f) � I = hxq�1; yi, sine �f�x � xq�1 �u(x) (mod y) fora unit u and �f�y � 0 �mod hy; xq�1i�. Hene we are done sine dimC(R=I) =q � 1 and i(f; y) = q.(d) Let f = y3� 3x8y+3x12, then f does not satisfy the assumptions of (), butstill es� (f) = (11 + �)2 = (q � 1 + �)2.For this note that I = hy � x4; x11i ontains Ies(f), dimC(R=I) = 11 andi�f; y � x4� = 12.



THE ��-INVARIANT 15(e) Let f = 7y3 + 15x7 � 21x5y, then f is semi-quasihomogeneous with weights(p; q) = (3; 7) and onvenient, but es0 (f) � 25 < 36 = (q � 1)2. This showsthat (q � 1)2 is not a general lower bound for es0 (Sp;q).We note �rst that Ies(f) = hx7; y2 � x5; x6 � x4yi is not a omplete in-tersetion and dimC �R=Ies(f)� = 11. Let now I be a omplete intersetionideal with Ies(f) � I and let h 2 I suh that L<(3;7)(h) = xAyB is minimal,in partiular, ord(3;7)(h) = 3A + 7B is minimal. Then dimC(R=I) � 10 andi(f; g) � 3A+ 7B for all g 2 I.If, therefore, 3A + 7B � 14, thendimC(R=I)2i(f; g)� dimC(R=I) � 25:We may thus assume that 3A+ 7B � 13, in partiular B < 2. If B = 0, andhene A � 4, then by Lemma 35 dimC(R=I) � 2A, so thatdimC(R=I)2i(f; g)� dimC(R=I) � 4A � 16:Similarly, if B = 1 and A = 2, then by the same Lemma dimC(R=I) � 9 andi(f; g) � 13, so that dimC(R=I)2i(f; g)� dimC(R=I) � 814 :So it remains to onsider the ase B = 1 and A 2 f0; 1g. That is h = xAy+h0with ord(3;7)(h0) � 9+3A. Consider the ideal J = 
x�y� �� 3�+7� � 21� � I.Then x4�A � h � x4y (mod J), and thus x6 � x4y � x6 (mod hhi + J),i. e. hh; x6 � x4yi + J = hh; x6i + J . Moreover, x6 62 hhi + J , so thatdimC �RÆhg; x6�x4yi+J� � 6+A. If we an show that hg; x6�x4yi+J $ I,then dimC(R=I)2i(f; g)� dimC(R=I) � (5 + A)23A+ 7� 5� A � 252 :We are therefore done, one we know that y2�x5 62 hg; x6i+J . Suppose therewas a g suh that gh = y2�x5 �mod hx6i+J�. Then y2 = L<(3;7)(g)�L<(3;7)(h),whih in partiular means A = 0 and L<(3;7)(h) = L<(3;7)(g) = y. But then theoeÆients of 1, x and x2 in h and g must be zero, so that x5 annot our witha non-zero oeÆient in the produt. This gives the desired ontradition.2. Loal Monomial OrderingsThroughout the proofs of the auxilary statements in Setion 4 we make use of someresults from omputer algebra onerning properties of loal monomial orderings.In this setion we reall the relevant de�nitions and results.De�nition 16Amonomial ordering is a total ordering< on the set of monomials �x�y� �� �; � � 0	suh that for all �; �; ; Æ; �; � � 0x�y� < xyÆ =) x�+�y�+� < x+�yÆ+�:



16 THOMAS KEILEN AND CHRISTOPH LOSSENA monomial ordering < is alled loal if 1 > x�y� for all (�; �) 6= (0; 0), and it is aloal degree ordering if � + � >  + Æ =) x�y� < xyÆ:Finally, if < is any loal monomial ordering, then we de�ne the leading monomialL<(f) with respet to < of a non-zero power series f 2 R to be the maximalmonomial x�y� suh that the oeÆient of x�y� in f does not vanish. For f = 0,we set L<(f) := 0.If I � R is an ideal in R, then L<(I) = hL<(f) j f 2 Ii is alled its leading ideal.We will give now some examples of loal monomial orderings whih are used in theproofs.Example 17Let �; �; ; Æ � 0 be integers.(a) The negative lexiographial ordering <ls is de�ned by the relationx�y� <ls xyÆ :() � >  or (� =  and � > Æ):(b) The negative degree reverse lexiographial ordering <ds is de�ned by therelationx�y� <ds xyÆ :() � + � >  + Æ or (� + � =  + Æ and � > Æ):() If positive integers p and q are given, then we de�ne the loal weighted degreeordering <(p;q) with weights (p; q) by the relationx�y� <(p;q) xyÆ :() �p+ �q > p+ Æq or(�p+ �q = p+ Æq and � < Æ):We note that <ds is a loal degree ordering, while <ls is not and <(p;q) is if and onlyif p = q.Let us �nally reall some useful properties of loal orderings (see e. g. [GrP02℄Corollary 7.5.6 and Proposition 5.5.7).Proposition 18Let < be any loal monomial ordering, and let I be a zero-dimensional ideal in R.(a) The monomials of R=L<(I) form a C-basis of R=I. In partiulardimC(R=I) = dimC �R=L<(I)�:(b) If < is a degree ordering, then the Hilbert Samuel funtions of R=I and ofR=L<(I) oinide (see De�nition 19, and see also Remark 21).3. The Hilbert Samuel FuntionA useful tool in the study of the degree of zero-dimensional shemes and theirsubshemes is the Hilbert Samuel funtion of the struture sheaf, that is of theorresponding Artinian ring.De�nition 19Let I � R be a zero-dimensional ideal.



THE ��-INVARIANT 17(a) The funtionH1R=I : Z! Z : d 7! 8<: dimC �RÆ(I +md+1)�; d � 0;0; d < 0;is alled the Hilbert Samuel funtion of R=I.(b) We de�ne the slope of the Hilbert Samuel funtion of R=I to be the funtionH0R=I : N! N : d 7! H1R=I(d)�H1R=I(d� 1):Thus H0R=I(d) = dimC �mdÆ((I \ md) +md+1)�;is just the number d + 1 of linearly independent monomials of degree d inmd, minus the number of linearly independent monomials of degree d in�I \md�+md+1.Note that if m = m=I denotes the maximal ideal of R=I and Grm(R=I) =Ld�0md=md+1 the assoiated graded ring, thenH0R=I(d) = dimC �md=md+1�is just the dimension of the graded piee of degree d of Grm(R=I).() Finally, we de�ne the multipliity of I to bemult(I) := min�mult(f) �� 0 6= f 2 I	;and the degree bound of I asd(I) := min�d 2 N �� md � I	:Let us gather some straight forward properties of the slope of the Hilbert Samuelfuntion.Lemma 20Let J � I �R be zero-dimensional ideals.(a) H0R=I(d) = d+ 1 for all 0 � d < mult(I).(b) H0R=I(d) � H0R=I(d� 1) for all d � mult(I).() H0R=I(d) � mult(I).(d) H0R=I(d) = 0 for all d � d(I) and H0R=I 6= 0 for all d < d(I). In partiulardimC(R=I) = d(I)�1Xd=0 H0R=I(d):(e) H0R=I(d) � H0R=J(d) for all d 2 N.(f) d(I) and mult(I) are ompletely determined by H0R=I .Proof: For (a) we note that I � md for all d � mult(I) and thus H0R=I(d) =dimC �md=md+1� = d+ 1 for all 0 � d < mult(I).By de�nition we see that H0R=I(d) is just the number of linearly independent mono-mials of degree d in md, whih is d + 1, minus the number of linearly independentmonomials, say m1; : : : ; mr, of degree d in �I \ md�+ md+1. We note that then theset fxm1; : : : ; xmr; ym1; : : : ; ymrg � m � �(I \ md) +md+1� � �I \md+1�+md+2



18 THOMAS KEILEN AND CHRISTOPH LOSSENontains at least r + 1 linearly independent monomials of degree d + 1, one r wasnon-zero. However, for d = mult(I) and g = gd + h:o:t 2 I with homogeneous partgd 6= 0 of degree d, we have gd 2 �I \md�+md+1, that is, d = mult(I) is the smallestinteger d for whih there is a monomial of degree d in �I \ md� + md+1. Thus ford � mult(I)� 1H0R=I(d+ 1) � (d+ 2)� (r + 1) = d+ 1� r = H0R=I(d);whih proves (b), while () is an immediate onsequene of (a) and (b).If d � d(I), then H1R=I(d) = dimC(R=I) is independent of d, and hene H0R=I(d) = 0for all d � d(I). In partiular,d(I)�1Xi=0 H0R=I(d) = H1R=I(d(I)� 1)�H1R=I(�1) = dimC(R=I):Moreover, md(I)�1+ I 6= I = I +md(I), so that H0R=I�d(I)� 1� 6= 0, and by (b) thenH0R=I(d) 6= 0 for all d < d(I). This proves (d), and (e) and (f) are obvious. �Remark 21Let < be a loal degree ordering on R, then the Hilbert Samuel funtions of R=Iand of R=L<(I) oinide by Proposition 18, and hene we have as wellH0R=I = H0R=L<(I); d(I) = d �L<(I)�; and mult(I) = mult �L<(I)�;sine by the previous lemma the multipliity and the degree bound only depend onthe slope of the Hilbert Samuel funtion.Remark 22The slope of the Hilbert Samuel funtion of R=I gives rise to a histogram as thegraph of the funtion H0R=I . By the Lemma 20 we know that up to mult(I)� 1 thehistogram is just a stairase with steps of height one, and from mult(I)�1 on it anonly go down, whih it eventually will do until it reahes the value zero for d = d(I).This means that we get a histogram of form shown in Figure 1.H0R=I(d)
dd(I)mult(I)

mult(I)
Figure 1. The histogram of H0R=I for a general ideal I.Note also, that by Lemma 20 (a) the area of the histogram is just dimC(R=I)!Example 23In order to understand the slope of the Hilbert Samuel funtion better, let us onsidersome examples.(a) Let f = x2 � yk+1, k � 1, and let I = Iea(f) = hx; yki the equisingularityideal of an Ak-singularity. Then d(I) = k, mult(I) = 1 and dimC(R=I) = k.



THE ��-INVARIANT 19kFigure 2. The histogram of H0R=I for an Ak-singularity(b) Let f = x2y � yk�1, k � 4, and let I = Iea(f) = hxy; x2 � (k � 1) � yk�2ithe equisingularity ideal of a Dk-singularity. Then x3; xy; yk�1 2 I, and thusmk�1 � I, whih gives d(I) = k � 1, mult(I) = 2 and dimC(R=I) = k, whihshows that the bound in Lemma 28 need not be obtained.k � 1Figure 3. The histogram of H0R=I for a Dk-singularity() Let f = x3 � y4 and let I = Iea(f) = hx2; y3i the equisingularity ideal of anE6-singularity. Then d(I) = 4, mult(I) = 2 and dimC(R=I) = 6.Let f = x3 � xy3 and let I = Iea(f) = h3x2 � y3; xy2i the equisingularityideal of an E7-singularity. Then x3; xy2; y5 2 I, and thus m5 � I, whih givesd(I) = 5, mult(I) = 2 and dimC(R=I) = 7.Let f = x3 � y5 and let I = Iea(f) = hx2; y4i the equisingularity ideal of anE8-singularity. Then d(I) = 6, mult(I) = 2 and dimC(R=I) = 8.4 5 6Figure 4. The histogram of H0R=I for E6, E7 and E8.(d) Let I = hx3; x2y; y3i, then d(I) = 4, mult(I) = 3 and dimC(R=I) = 7.
4Figure 5. The histogram of H0R=I for I = hx3; x2y; y3i.The following result providing a lower bound for the minimal number of generatorsof a zero-dimensional ideal in R is due to A. Iarrobino.Lemma 24Let I � R be a zero-dimensional ideal. Then I annot be generated by less than1 + supnH0R=I(d� 1)�H0R=I(d) �� d � mult(I)o elements.In partiular, if I is a omplete intersetion ideal then for d � mult(I)H0R=I(d� 1)� 1 � H0R=I(d) � H0R=I(d� 1):



20 THOMAS KEILEN AND CHRISTOPH LOSSENProof: See [Iar77℄ Theorem 4.3 or [Bri77℄ Proposition III.2.1. �Moreover, by the Lemma of Nakayama and Proposition 18 we an ompute theminimal number of generators for a zero-dimensional ideal exatly.Lemma 25Let I�R be zero-dimensional ideal and let < denote any loal ordering on R. Thenthe minimal number of generators of I isdimC(I=mI) = dimC �R=L<(I)�� dimC �R=L<(mI)�:Remark 26If we apply Lemma 24 to a zero-dimensional omplete intersetion ideal I�R, i. e. azero-dimensional ideal generated by two elements, then we know that the histogramof H0R=I will be as shown in Figure 6; that is, up to the value d = mult(I) the
d(I)mult(I)

mult(I)
Figure 6. The histogram of H0R=I for a omplete intersetion.histogram of H0R=I is an asending stairase with steps of height and length one,then it remains onstant for a while, and �nally it is a desending stairase againwith steps of height one, but a possibly longer length. In partiular we see thatmult(I) � 8<: d(I)+12 ; if d(I) is odd;d(I)2 ; if d(I) is even: (3.1)Example 27Let I = mk for k � 1. Then d(I) = mult(I) = k and dimC(R=I) = �k+12 �.

k
k

Figure 7. The histogram of H0R=mk . The shaded region is the max-imal possible value of dimC(R=I) for a omplete intersetion ideal Iontaining mk.



THE ��-INVARIANT 21Lemma 28Let I �R be a zero-dimensional omplete intersetion ideal, thendimC(R=I) � �d(I)�mult(I) + 1� �mult(I):In partiular dimC(R=I) � 8<: (d(I)+1)24 ; if d(I) odd;d(I)2+2d(I)4 ; if d(I) even:Proof: By Remark 22 we have to �nd an upper bound for the area A of the his-togram of H0R=I . This area would be maximal, if in the desending part the stepshad all length one, i. e. if the histogram was as shown in Figure 8. Sine the twoH0R=I(d)
dd(I)mult(I) d(I)�mult(I)

mult(I)
Figure 8. Maximal possible area.shaded regions have the same area, we getA � � d(I)�mult(I) + 1� �mult(I):Consider now the funtion' : hmult(I); d(I)+12 i �! R : x 7! �d(I)� x + 1� � x;then this funtion is monotonously inreasing, whih �nishes the proof in view ofEquation (3.1). �Corollary 29For an ordinary m-fold point Mm we have� esi (Mm) = 8>>><>>>: (m+1)24 ; if m � 3 odd;m2+2m4 ; if m � 4 even;1; if m = 2:Proof: Let f be a representative of Mm. ThenIes(f) = ��f�x ; �f�x�+mm;and as in the proof of Proposition 12 we may assume that f is a homogeneous ofdegree m.In partiular, if m = 2, then Ies(f) = m is a omplete intersetion and � esi (M2) = 1.We may therefore assume that m � 3.



22 THOMAS KEILEN AND CHRISTOPH LOSSENFor any omplete intersetion ideal I with mm � Ies(f) � I we automatially haved(I) � m, and by Lemma 28� esi (f) � 8<: (m+1)24 ; if m odd;m2+2m4 ; if m � 4 even:Consider now the representative f = xm � ym. If m = 2k is even, then the idealI = hxk; yk+1i is a omplete intersetion with Ies(f) � I and� esi (f) � dimC(R=I) = k2 + k = m2 + 2m4 :Similarly, if m = 2k� 1 is odd, then the ideal I = hxk; yki is a omplete intersetionwith Ies(f) � I and � esi (f) � dimC(R=I) = k2 = m2 + 2m+ 14 : �Remark 30Let I � R be any zero-dimensional ideal, not neessarily a omplete intersetion,then still dimC(R=I) � �d(I)� mult(I)� 12 � �mult(I):Proof: The proof is the same as for the omplete intersetion ideal, just that weannot ensure that the histogram goes down to zero at d(I) with steps of size one.The dimension is thus bounded by the region of the histogram in Figure 9. �H0R=I(d)
dd(I)mult(I)

mult(I)
Figure 9. Maximal possible area.4. Semi-Quasihomogeneous SingularitiesDe�nition 31A non-zero polynomial of the form f = P��p+��q=d a�;�x�y� is alled quasihomoge-neous of (p; q)-degree d. Thus the Newton polygon of a quasihomogeneous polyno-mial has just one side of slope �pq .A quasihomogeneous polynomial is said to be non-degenerate if it is redued, that isif it has no multiple fators, and it is said to be onvenient if dp ; dq 2 Z and a dp ;0 anda0; dq are non-zero, that is if the Newton polygon meets the x-axis and the y-axis.If f = f0 + f1 with f0 quasihomogeneous of (p; q)-degree d and for any monomialx�y� ourring in f1 with a non-zero oeÆient we have � � p + � � q > d, we say



THE ��-INVARIANT 23that f is of (p; q)-order d, and we all f0 the (p; q)-leading form of f and denote itby lead(p;q)(f). We denote the (p; q)-order of f by ord(p;q)(f).A power series f 2 R is said to be semi-quasihomogeneous with respet to theweights (p; q) if the (p; q)-leading form is non-degenerate.Remark 32Let f 2 R with deg(p;q)(f) = pq and let f0 denote its (p; q)-leading form.(a) If gd(p; q) = r, then f0 has r fators of the form aix qr � biy pr , i = 1; : : : ; r.If, moreover, f0 is non-degenerate, then these will all be irreduible andpairwise di�erent, i. e. not salar multiples of eah other.(b) If f is irreduible, then f0 has only one irreduible fator, possibly of highermultipliity.() If f0 is non-degenerate, then f has r = gd(p; q) branhes f1; : : : ; fr, whihare all semi-quasihomogeneous with irreduible (p; q)-leading form aix qr�biy prfor pairwise distint points (ai : bi) 2 P1C , i = 1; : : : ; r.The harateristi exponents of fi are qr and pr for all i = 1; : : : ; r, and thusfi admits a parametrisation of the form�xi(t); yi(t)� = ��it pr + h:o:t; �it qr + h:o:t�:(d) If f0 is non-degenerate, i. e. f is semi-quasihomogeneous, and g 2 R, theni(f; g) � ord(p;q)(g):Proof:(a) If �p + �q = pq, then p j �q and hene p j �r, so that � � rp is a naturalnumber. Similarly � � rq is a natural number. We may therefore onsider thetransformation f0�x rq ; y rp � 2 C[x; y℄rwhih is a homogeneous polynomial of degree r. Thus f0�x rq ; y rp � fators inr linear fators aix� biy, i = 1; : : : ; r, so that f0 fators asf0 = rYi=1 �aix qr � biy pr �: (4.1)Sine gd �pr ; qr� = 1, the fators aix qr � biy pr are irreduible one neither ainor bi is zero.If f0 is non-degenerate, then the irreduible fators of f0 are pairwise dis-tint. So, ai = 0 implies r = p and still aix qr � biy pr = biy irreduible, whilebi = 0 similarly gives r = q and aix qr � biy pr = aix irreduible. Thus, in anyase the fators in (4.1) are irreduible and, hene, pairwise distint.(b) With the notation from Lemma 33 and the fatorisation of f0 from (4.1) weget g = Qri=1 aiu bqr v pqr2 � biuapr v pqr2uapv pqr = rYi=1(aiu� bi):By assumption f is irreduible, hene aording to Lemma 33 g has at mostone, possibly repeated, zero. But thus the fators of f0 all oinide { up tosalar multiple.



24 THOMAS KEILEN AND CHRISTOPH LOSSEN() The �rst assertion is an immediate onsequene from (a) and (b), while the\in partiular" part follows by Puiseux expansion.(d) Let g0 be the (p; q)-leading form of g. Using the notation from () we havei(f; g) = rXi=1 i(fi; g) = rXi=1 ord �g(xi(t); yi(t))�= rXi=1 ord�g0��it pr ; �it qr �+ h:o:t� � rXi=1 ord(p;q)(g)r = ord(p;q)(g):�Lemma 33Let f 2 R with ord(p;q)(f) = pq and let f0 denote its (p; q)-leading form. Letr = gd(p; q) and a; b � 0 suh that qb� pa = r. Finally setg = f0�ubv pr ; uav qr �uapv pqr 2 C[u℄:Then the number of di�erent zeros of g is a lower bound for the number of branhesof f .Proof: See [BrK86℄ Remark on p. 480. �The following investigations are ruial for the proof of Proposition 13.Lemma 34Let f 2 R be onvenient semi-quasihomogeneous with leading form f0 and ord(p;q)(f) =pq, let I = 
x�y� �� �p+ �q � pq�, and let h 2 R. ThendimCR=�hhi+ Ies(f)� < dimCR=�hhi+ I�:In partiular, if L(p;q)(h) = yB with B � p, thendimCR=hhi+ Ies(f) � Bq � 1� B�1Xi=1 � qip �:Proof: As Ies(f) = 
�f�x ; �f�y� + I;it suÆes to show that Ies(f) 6� hhi+ I;whih is the same as showing that not both �f�x and �f�y belong to hhi+ I.Suppose the ontrary, that is, there are hx; hy 2 R suh that�f�x � hx � h (mod I) and �f�y � hy � h (mod I):We note that lead(p;q) ��f�x� = �f0�x and lead(p;q) ��f�y � = �f0�y ;and none of the monomials involved is ontained in I. Thereforelead(p;q)(hx) � lead(p;q)(h) = �f0�x and lead(p;q)(hy) � lead(p;q)(h) = �f0�y ;whih in partiular implies that �f0�x and �f0�y have a ommon fator. This, however,is then a multiple fator of the quasihomogeneous polynomial f0, in ontraditionto f being semi-quasihomogeneous.
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Figure 10. A Basis of R=hhi+ I.For the \in partiular" part, we note that by Proposition 18dimCR=hhi+ I = dimCR=L<(p;q)�hhi+ I� � dimCR=
yB�+ I;and the monomials x�y� with �p+ �q < pq and � < B form a C-basis of the lattervetor spae (see also Figure 10). Hene,dimCR=hhi+ I � B�1Xi=0 �q � qip � = Bq � B�1Xi=1 b qip �: �Lemma 35Let g; h 2 R suh that L(p;q)(g) = xAyB and L(p;q)(h) = yC, and onsider the idealsJ = 
xAyB; yC; x�y� �� �p+ �q � pq� and J 0 = 
g; h; x�y� �� �p+ �q � pq�. ThendimCR=J 0 � dimCR=J;and if Ap+Bq � pq and B � C � p, thendimCR=J = Ap+Bq � AB � A�1Xi=1 �piq �� B�1Xi=1 � qip �� p�1Xi=C minnA; �q � Cqp �o :Moreover, if B = 0, then dimCR=J � A � C.Proof: By Proposition 18dimCR=J 0 � dimCR=L<(p;q)(J 0) � dimCR=J:Let I = 
x�y� �� �p + �q � pq�. Then the monomials x�y� with (�; �) 2 � =�(�; �) 2 N � N �� �p + �q < pq	 form a basis of R=I. Moreover, the monomialsx�y� with (�; �) 2 �1 [ �2 are a basis of J=I, where�1 = �(�; �) 2 � �� � � A and � � B	and �2 = �(�; �) 2 � n �1 �� � � C	:(See also Figure 11.) This gives rise to the above values for dimCR=J . �
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�1�2 �p+ �q � pq

Figure 11. A Basis of R=J .Lemma 36Let q > p be suh that qp < dd�1 for some integer d � 2, and let 0 � A � d.(a) If L(p;q)(g) = xA, then L<ds(g) = xA.(b) mp+1 � 
xA; yp�1; x�y� �� �p+ �q � pq�.() If I is an ideal suh that g; h; x�y� 2 I for �p+�q � pq and where L<(p;q)(g) =xA and L<(p;q)(h) = yp�1, then d(I) � p+ 1.Moreover, if L<(p;q)(g) is minimal among the leading monomials of elementsin I w. r. t. <(p;q), then mult(I) = A.Proof: It suÆes to onsider the ase A = d, sine this implies the other ases.Note that by assumption d � p.(a) Sine xd is less than any monomial of degree at least d with respet to <ds,we have to show that in g no monomial of degree less than d an our witha non-zero oeÆient. xd being the leading monomial of g with respet to<(p;q), it suÆes to show that �+� < d implies �p+�q < dp, or alternatively,sine qp < dd�1 , � + � � dd� 1 � d:For �+ � < d the left hand side of this inequality will be maximal for � = 0and � = d� 1, and thus the inequality is satis�ed.(b) We only have to show that xyp+1� 2 
xd; yp�1; x�y� �� �p + �q � pq�for  = 3; : : : ; d � 1, sine the remaining generators of mp+1 de�nitely are.However, by assumption qp < dd�1 � �1 , and thus  � p+ (p+ 1� ) � q � pq.() By the assumption on I we dedue form (a) and (b) that d �L<ds(I)� � p+1.However, by Remark 21 d(I) = d �L<ds(I)�, whih proves the �rst assertion.Suppose now that mult(I) < A, i. e. there is an f 2 I suh that mult(f) � A�1. The onsiderations for (a) show that then L<(p;q)(f) < xA in ontraditionto the assumption. �
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