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2 THOMAS KEILEN AND ILYA TYOMKIN1. IntrodutionGeneral Assumptions and NotationsThroughout this paper � will be a smooth projetive surfae over C.Given distint points z1; : : : ; zr 2 �, we denote by � : e� = Blz(�) ! � the blowup of � in z = (z1; : : : ; zr), and the exeptional divisors ��zi will be denoted by Ei,i = 1; : : : ; r. We shall write eC = Blz(C) for the strit transform of a urve C � �.For any smooth surfae S we will denote by Div(S) the group of divisors on Sand by KS its anonial divisor. If D is any divisor on S, OS(D) shall be a orre-sponding invertible sheaf. jDjl = P�H0�S;OS(D)�� denotes the system of urveslinearly equivalent to D, while we use the notation jDja for the system of urvesalgebraially equivalent to D (f. [Har77℄ Ex. V.1.7), that is the redution of theonneted omponent of HilbS, the Hilbert sheme of all urves on S, ontainingany urve algebraially equivalent to D (f. [Mum66℄ Chapter 15). We will use thenotation Pi(S) for the Piard group of S, that is Div(S) modulo linear equiva-lene (denoted by �l), NS(S) for the N�eron-Severi group, that is Div(S) moduloalgebrai equivalene (denoted by �a), and Num(S) for Div(S) modulo numerialequivalene (denoted by �n). Note that for all examples of surfaes � whih weonsider in Setion 6 NS(�) and Num(�) oinide.Given a urve C � � we will write pa(C) for its arithmetial genus and g(C) for thegeometrial one.Let Y be a Zariski topologial spae. We say a subset U � Y is very general if itis an at most ountable intersetion of open dense subsets of Y . Some statement issaid to hold for points z1; : : : ; zr 2 Y (or z 2 Y r) in very general position if there isa suitable very general subset U � Y r, ontained in the omplement of the losedsubvariety Si 6=jfz 2 Y r j zi = zjg of Y r, suh that the statement holds for all z 2 U .The main results of this paper will only be valid for points in very general position.Given distint points z1; : : : ; zr 2 � and non-negative integers m1; : : : ; mr we denotebyX(m; z) = X(m1; : : : ; mr; z1; : : : ; zr) the zero-dimensional subsheme of � de�nedby the ideal sheaf JX(m;z)=� with stalksJX(m;z)=�;z = � mmi�;zi ; if z = zi; i = 1; : : : ; r;O�;z; else.We all a sheme of the type X(m; z) a generi fat point sheme.For a redued urve C � � we de�ne the zero-dimensional subsheme Xes(C) of �via the ideal sheaf JXes(C)=� with stalksJXes(C)=�;z = Ies(C; z) = fg 2 O�;z j f + "g is equisingular over C["℄=("2)g;where f 2 O�;z is a loal equation of C at z. Ies(C; z) is alled the equisingularityideal of the singularity (C; z), and it is of ourse O�;z whenever z is a smooth point.If x; y are loal oordinates of � at z, then Ies(C; z)=�f; �f�x ; �f�y � an be identi�ed withthe tangent spae of the equisingular stratum in the semiuniversal deformation of



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 3(C; z). (f. [Wah74℄, [DH88℄, and De�nition 5.1) We all Xes(C) the equisingularitysheme of C.If X � � is any zero-dimensional sheme with ideal sheaf JX and if L � � is anyurve with ideal sheaf L, we de�ne the residue sheme X : L � � by the ideal sheafJX:L=� = JX : L with stalks JX:L=�;z = JX;z : lz;where lz 2 O�;z is a loal equation for L and \:" denotes the ideal quotient. Thisnaturally leads to the de�nition of the trae sheme X \ L � L via the ideal sheafJX\L=L given by the exat sequene0 // JX:L=�(�L) �L // JX=� // JX\L=L // 0:Given topologial singularity types1 S1; : : : ;Sr and a divisor D 2 Div(�), we de-note by VjDj(S1; : : : ;Sr) the loally losed subspae of jDjl of redued urves in thelinear system jDjl having preisely r singular points of types S1; : : : ;Sr. Analo-gously, VjDj(m1; : : : ; mr) = VjDj(m) denotes the loally losed subspae of jDjl of re-dued urves having preisely r ordinary singular points of multipliitiesm1; : : : ; mr.(f. [Los98℄ 1.3.2)The spaes V = VjDj(S1; : : : ;Sr) respetively V = VjDj(m) are the main objets ofinterest of this paper. We say V is T-smooth at C 2 V if the germ (V; C) is smoothof the (expeted) dimension dim jDjl � deg(X), where X = Xes(C) respetivelyX = X(m; z) with Sing(C) = fz1; : : : ; zrg. By [Los98℄ Proposition 2.1 T-smoothnessof V at C is implied by the vanishing of H1��;JX=�(C)�.It is the aim of this paper to give suÆient onditions for the non-emptiness of Vin terms of the linear system jDjl and invariants of the imposed singularities. Theresults are generalisations of known results for P2C , and for an overview on these werefer to [Los98℄ Chapter 4.We basially follow the ideas desribed in [Los98℄ 4.1.2. The ase of ordinary sin-gularities (Corollary 4.2) is treated by applying a vanishing theorem for generi fatpoint shemes (Theorem 2.1), and the more interesting ase of presribed topolog-ial types S1; : : : ;Sr is then dealt with by gluing loal equations into a urve withordinary singularities. Upper bounds for the minimal possible degrees of these loalequations an be taken from the P2C -ase (f. [Los98℄ Theorem 4.2).Thus the main results of this paper are the following theorems and their orollariesCorollary 4.2 and Corollary 5.4.2.1 TheoremLet m1 � : : : � mr � 0 be non-negative integers, � 2 R with � > 1, k� =max�n 2 N �� n < ���1	 and let D 2 Div(�) be a divisor satisfying the followingthree onditions1For the de�nition of a singularity type and more information see [Los98℄ 1.2.



4 THOMAS KEILEN AND ILYA TYOMKIN(2.1) (D �K�)2 � max�� � rPi=1(mi + 1)2; (k� �m1 + k�)2�,(2.2) (D �K�):B � k� � (m1 + 1) for any irreduible urve B with B2 = 0and dim jBja > 0, and(2.3) D �K� is nef.Then for z1; : : : ; zr 2 � in very general position and � > 0H�  Blz(�); ��D � rXi=1 miEi! = 0:In partiular, H���;JX(m;z)=�(D)� = 0:4.1 TheoremGiven m1; : : : ; mr 2 N0, not all zero, and z1; : : : ; zr 2 �, in very general position.Let L 2 Div(�) be very ample over C, and let D 2 Div(�) be suh that(4.1) h1��;JX(m;z)=�(D � L)� = 0, and(4.2) D:L� 2g(L) � mi +mj for all i; j.Then there exists a urve C 2 jDjl with ordinary singular points of multipliity miat zi for i = 1; : : : ; r and no other singular points. Furthermore,h1��;JX(m;z)=�(D)� = 0;and in partiular, VjDj(m) is T-smooth at C.If in addition (4.3) D2 > Pri=1m2i , then C an be hosen to be irreduible andredued.5.3 Theorem (Existene)Let S1; : : : ;Sr be singularity types, and suppose there exists an irreduible urve C 2jDjl with r + r0 ordinary singular points z1; : : : ; zr+r0 of multipliities m1; : : : ; mr+r0respetively as its only singularities suh that mi = s(Si) + 1, for i = 1; : : : ; r, andh1��;JX(m;z)=�(D)� = 0:Then there exists an irreduible urve eC 2 jDjl with r singular points of typesS1; : : : ;Sr and r0 ordinary singular points of multipliities mr+1; : : : ; mr+r0 as itsonly singularities.2Of ourse, ombining the vanishing theorem Theorem 2.1 with the existene theo-rems Theorem 4.1 and Theorem 5.3 we get suÆient numerial onditions for theexistene of urves with ertain singularities (see Corollaries 4.2 and 5.4, and seeSetion 6 for speial surfaes).2Here, of ourse, m = (m1; : : : ;mr+r0) and z = (z1; : : : ; zr+r0). See De�nition 5.1 for the de�nitionof s(Si).



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 5Given any sheme X and any oherent sheaf F on X, we will often write H�(F)instead of H�(X;F) when no ambiguity an arise. Moreover, if F = OX(D) isthe invertible sheaf orresponding to a divisor D, we will usually use the notationH�(X;D) instead of H��X;OX(D)�. Similarly when onsidering tensor produtsover the struture sheaf of some sheme X we may sometimes just write 
 insteadof 
OX .Setion 2 is devoted to the proof of the vanishing theorem Theorem 2.1, and Setion3 provides an important ingredient in this proof. The following setions Setion 4and Setion 5 are onerned with the existene theorems Theorem 4.1 and Theorem5.3, while in Setion 6 we alulate the onditions whih we have found in thease of ruled surfaes, produts of ellipti urves, surfaes in P3C , and K3-surfaes.Finally, in the appendix we gather some well known respetively fairly easy fatsused throughout the paper for the onveniene of the reader.2. The Vanishing Theorem2.1 TheoremLet m1 � : : : � mr � 0 be non-negative integers, � 2 R with � > 1, k� =max�n 2 N �� n < ���1	 and let D 2 Div(�) be a divisor satisfying the followingthree onditions(2.1) (D �K�)2 � max�� � rPi=1(mi + 1)2; (k� �m1 + k�)2�,(2.2) (D �K�):B � k� � (m1 + 1) for any irreduible urve B with B2 = 0and dim jBja > 0, and(2.3) D �K� is nef.Then for z1; : : : ; zr 2 � in very general position and � > 0H�  Blz(�); ��D � rXi=1 miEi! = 0:In partiular, H���;JX(m;z)=�(D)� = 0:Proof: By the Kawamata{Viehweg Vanishing Theorem (f. [Kaw82℄ and [Vie82℄)it suÆes to show that A = ���D �Pri=1miEi��Ke� is big and nef, i. e. we haveto show:(a) A2 > 0, and(b) A:B0 � 0 for any irreduible urve B0 in e� = Blz(�).Note that A = ��(D�K�)�Pri=1(mi+1)Ei, and thus by Hypothesis (2.4) we haveA2 = (D �K�)2 � rXi=1 (mi + 1)2 > 0;



6 THOMAS KEILEN AND ILYA TYOMKINwhih gives ondition (a).For ondition (b) we observe that an irreduible urve B0 on e� is either the strittransform of an irreduible urve B in � or is one of the exeptional urves Ei. Inthe latter ase we have A:B0 = A:Ei = mi + 1 > 0:We may, therefore, assume that B0 = eB is the strit transform of an irreduibleurve B on � having multipliity multzi(B) = ni at zi, i = 1; : : : ; r. ThenA:B0 = (D �K�):B � rXi=1 (mi + 1)ni;and thus ondition (b) is equivalent to(b') (D �K�):B � rPi=1(mi + 1)ni.Sine z is in very general position Lemma 3.1 applies in view of Corollary A.2. Usingthe Hodge Index Theorem, Hypothesis (2.4), Lemma 3.1, and the Cauhy-ShwarzInequality we get the following sequene of inequalities:�(D �K�):B�2 � (D �K�)2 �B2 � � � �Pri=1(mi + 1)2� � �Pri=1 n2i � ni0�= Pri=1(mi + 1)2 �Pri=1 n2i + (�� 1) ��Pri=1(mi + 1)2 � �Pri=1 n2i � ���1 � ni0��� �Pri=1(mi + 1) � ni�2 + (�� 1) � �Pri=1(mi + 1)2 � �Pri=1 n2i � ���1 � ni0��;where i0 2 f1; : : : ; rg is suh that ni0 = minfni j ni 6= 0g. Sine D � K� is nef,ondition (b') is satis�ed as soon as we haverXi=1 n2i � ���1 � ni0 :If this is not ful�lled, then ni < ���1 for all i = 1; : : : ; r, and thusrXi=1 (mi + 1) � ni � k� � (m1 + 1):Hene, for the remaining onsiderations (b') may be replaed by the worst ase(D �K�):B � k� � (m1 + 1):Note that sine the zi are in very general position and zi0 2 B we have that B2 � 0and dim jBja > 0 (f. Corollary A.3). If B2 > 0 then we are done by the HodgeIndex Theorem and Hypothesis (2.4), sine D �K� is nef:(D �K�):B �p(D �K�)2 �p(k� �m1 + k�)2 � k� � (m1 + 1):It remains to onsider the ase B2 = 0 whih is overed by Hypothesis (2.5).



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 7For the \in partiular" part we just note thatH���;JX(m;z)=�(D)� = H���; rOi=1 JX(mi;zi)=� 
O�(D)� =H�  e�; ��D � rXi=1 miEi! : �Choosing the onstant � = 2 in Theorem 2.1, then ���1 = 2 and thus k� = 1. Wetherefore get the following orollary, whih has the advantage that the onditionslook simpler, and that the hypotheses on the \exeptional" urves are not too hard.2.2 CorollaryLet m1; : : : ; mr 2 N0, and D 2 Div(�) be a divisor satisfying the following threeonditions(2.4) (D �K�)2 � 2 � rPi=1(mi + 1)2,(2.5) (D � K�):B > maxfmi j i = 1; : : : ; rg for any irreduible urve Bwith B2 = 0 and dim jBja > 0, and(2.6) D �K� is nef.Then for z1; : : : ; zr 2 � in very general position and � > 0H�  Blz(�); ��D � rXi=1 miEi! = 0:In partiular, H���;JX(m;z)=�(D)� = 0:2.3 RemarkCondition (2.3) respetively Condition (2.6) are in several respets \expetable".First, Theorem 2.1 is a orollary of the Kawamata{Viehweg Vanishing Theorem,and if we take all mi to be zero, our assumptions should basially be the same,i. e. D � K� nef and big. The latter is more or less just (2.1) respetively (2.4).Seondly, we want to apply the theorem to an existene problem. A divisor beingnef means it is somehow lose to being e�etive, or better its linear system is loseto being non-empty. If we want that some linear system jDjl ontains a urve withertain properties, then it seems not to be so unreasonable to restrit to systemswhere already jD � K�jl, or even jD � L � K�jl with L some �xed divisor, is ofpositive dimension, thus nef.In many interesting examples, suh as P2C , Condition (2.2) respetively (2.5) turnout to be obsolete or easy to handle. So �nally the most restritive obstrutionseems to be (2.1) respetively (2.4).



8 THOMAS KEILEN AND ILYA TYOMKINIf we onsider the situation where the largest multipliity m1 ours in a largenumber, more preisely, if m1 = : : : = ml� with l� = min�n 2 N �� � �n � k2�	, thenCondition (2.1) omes down to(2.1') (D �K�)2 � � � rPi=1(mi + 1)2.2.4 RemarkEven though we said that Condition (2.4) was the really restritive ondition wewould like to understand better what Condition (2.5) means. We therefore showin Appendix B that an algebrai system jBja of dimension greater than zero withB irreduible and B2 = 0 gives rise to a �bration f : � ! H of � over a smoothprojetive urve H whose �bres are just the elements of jBja.3. The Lemma of Geng Xu3.1 LemmaLet z = (z1; : : : ; zr) 2 �r be in very general position, n 2 Nr0, and let B � � be anirreduible urve with multzi(B) � ni, thenB2 � rXi=1 n2i �minfni j ni 6= 0g:3.2 Remark(i) A proof for the above lemma in the ase � = P2C an be found in [Xu94℄ andin the ase r = 1 in [EL93℄. Here we just extend the arguments given there tothe slightly more general situation.(ii) For better estimates of the self intersetion number of urves where one hassome knowledge on equisingular deformations inside the algebrai system see[GS84℄.(iii) With the notation of Lemma A.1 respetively Corollary A.2 the assumptionin Lemma 3.1 ould be formulated more preisely as \let B � � � PNC be anirreduible urve suh that VB;n = �r", or \let z 2 �r n V ".(iv) Note, that one annot expet to get rid of the \�minfni j ni 6= 0g". E. g. � =Blz �P2C �, the projetive plane blown up in a point z, and B � � the strittransform of a line through z. Let now r = 1, n1 = 1 and z1 2 � be anypoint. Then there is of ourse a (unique) urve B1 2 jBja through z1, butB2 = 0 < 1 = n21.Idea of the proof: Set e1 := n1 � 1 and ei := ni for i 6= 1, where w. l. o. g. n1 =minfnijni 6= 0g. By assumption there is a family fCtgt2C in jBja satisfying therequirements of Lemma 3.3. Setting C := C0 the proof is done in three steps:Step 1: We show that H0�C;JX(e;z)=� � OC(C)� 6= 0. (Lemma 3.3)Step 2: We dedue that H0�C; ��O eC��Pri=1 eiEi�
OC(C)� 6= 0. (Lemma 3.4)



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 9Step 3: It follows that deg ���O eC��Pri=1 eiEi�
OC(C)� � 0, but this degree isjust C2 �Pri=1 eini. 23.3 LemmaGiven e1; : : : ; er 2 N0, r � 1. Let fCtgt2C be a non-trivial family of urves in �suh that� C! � : t 7! z1;t 2 Ct is a smooth urve,� multz1;t(Ct) � e1 + 1 for all t 2 C,� z2; : : : ; zr 2 Ct for any t 2 C, and� multzi(Ct) � ei for all i = 2; : : : ; r and t 2 C.Then for z1 = z1;0 H0�C;JX(e;z)=� � OC(C)� 6= 0;i. e. there is a non-trivial setion of the normal bundle of C, vanishing at zi to theorder of at least ei for i = 1; : : : ; r.Proof: We stik to the onvention n1 = e1 + 1 and ni = ei for i = 2; : : : ; r, and weset zi;t := zi for i = 2; : : : ; r and t 2 C. Let � � C be a small dis around 0 withoordinate t, and hoose oordinates (xi; yi) on � around zi suh that� zi;t = (ai(t); bi(t)) for t 2 � with ai; bi 2 Cftg,� zi = (ai(0); bi(0)) = (0; 0), and� Fi(xi; yi; t) = fi;t(xi; yi) 2 Cfxi; yi; tg, where Ct = ffi;t = 0g loally at zi;t (fort 2 �).We view fCtgt2� as a non-trivial deformation of C, whih implies that the im-age of ��t jt=0 2 T0(�) under the Kodaira-Spener map is a non-zero setion s ofH0�C;OC(C)�. s is loally at zi given by �Fi�t jt=0.Idea: Show that �Fi�t jt=0 2 (xi; yi)ei, whih are the stalks of JX(e;z)=� � OC(C) at thezi, and hene s is atually a global setion of the subsheaf JX(e;z)=� � OC(C).Set �i;t(xi; yi) := Fi;t(xi+ ai(t); yi+ bi(t); t) =P1k=0 'i;k(xi; yi) � tk 2 Cfxi; yi; tg. Byassumption for any t 2 � the multipliity of �i;t at (0; 0) is at least ni, i. e. �i;t(xi; yi) 2(xi; yi)ni for every �xed omplex number t 2 �. Hene, 'i;k(xi; yi) 2 (xi; yi)ni forevery k.3On the other hand we have'i;1(xi; yi) = ��i;t(xi;yi)�t jt=0= D��Fi�xi (xi; yi; 0); �Fi�yi (xi; yi; 0); �Fi�t (xi; yi; 0)�; � _ai(0); _bi(0); 1�E= �fi;0�xi (xi; yi) � _ai(0) + �fi;0�yi (xi; yi) � _bi(0) + �Fi�t (xi; yi; 0):Sine fi;0 2 (xi; yi)ni, we have �fi;0�xi (xi; yi); �fi;0�yi (xi; yi) 2 (xi; yi)ni�1, and hene�Fi�t (xi; yi; 0) 2 (xi; yi)ei. For this note that _ai(0) = _bi(0) = 0, if i 6= 1. �3See Lemma C.1.



10 THOMAS KEILEN AND ILYA TYOMKIN3.4 LemmaGiven e1; : : : ; er 2 N0 and z1; : : : ; zr 2 �, r � 1.The anonial morphism JX(e1;z1)=�
� � �
JX(er;zr)=�
OC(C) �! JX(e;z)=� �OC(C)indues a surjetive morphism � on the level of global setions.If s 2 H0�C;JX(e1;z1)=� 
 � � � 
 JX(er;zr)=� 
 OC(C)�, but not in Ker(�), then sindues a non-zero setion ~s in H0�C; ��O eC��Pri=1 eiEi�
OC OC(C)�.Proof: Set E := �Pri=1 eiEi.We start with the struture sequene for eC:0 // Oe��� eC� // Oe� // O eC // 0:Tensoring with the loally free sheafOe�(E) and then applying �� we get a morphism:��Oe�(E) �! ��O eC(E):Now tensoring by OC(C) over O� we have an exat sequene:0 // Ker() // ��Oe�(E)
O� OC(C) 
// ��O eC(E)
O� OC(C):And �nally taking global setions, we end up with:0 // H0��;Ker()� // H0��; ��Oe�(E)
OC(C)� � // H0��; ��O eC(E)
OC(C)�:Sine the sheaves we look at are atually OC -sheaves and sine C is a losed sub-sheme of �, the global setions of the sheaves as sheaves on � and as sheaves onC oinide (f. [Har77℄ III.2.10 - for more details, see Corollary C.3). Furthermore,��Oe�(E) =Nri=1 JX(ei;zi)=�.Thus it suÆes to show that Ker (�) � Ker (�).Sine �j : e�n(Sri=1Ei)! �nfz1; : : : ; zrg is an isomorphism, we have that supp �Ker()� �fz1; : : : ; zrg is �nite.4 Hene, by Lemma C.5,Ker(�) = H0��;Ker()� � H0��;Tor �Ker()��� H0��;Tor�Ori=1 JX(ei;zi)=� 
OC(C)��:Let now t 2 Ker(�) be given. We have to show that �(t) = 0, i. e. �z(tz) = 0 forevery z 2 �. If z 62 fz1; : : : ; zrg, then tz = 0. Thus we may assume z = zk. As wehave shown,tzk 2 Tor �mek�;zk 
O�;zk OC;zk� = Tor �mek�;zk=fzkmek�;zk� = (fzk)=fzkmek�;zk ;where fzk is a loal equation of C at zk. Therefore, there exists a 0 6= gzk 2 O�;zksuh that tzk = fzkgzk �mod fzkmek�;zk� � fzk 
 gzk (note that fzk 2 mnk�;zk � mek�;zk !).But then �zk(tzk) is just the residue lass of fzkgzk in mek�;zkOC;zk = mek�;zk=(fzk), andis thus zero. �4See Lemma C.4.



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 11Proof of Lemma 3.1: Using the notation of the idea of the proof given on page 8,we have, by Lemma 3.3, a non-zero setion s 2 H0�C;JX(e;z)=� � OC(C)�. This liftsunder the surjetion � to a setion s0 2 H0�C;Nri=1 JX(ei;zi)=�
OC(C)� whih is notin the kernel of �. Again setting E := �Pri=1 eiEi, by Lemma 3.4, we have a non-zero setion ~s 2 H0�C; ��O eC(E)
OC OC(C)�, where by the projetion formula thelatter is just H0�C; ���O eC(E)
O eC ��OC(C)�� =def H0� eC;O eC(E)
O eC ��OC(C)�.Sine O eC(E) 
O eC ��OC(C) has a global setion and sine eC is irreduible andredued, we get by Lemma D.2:0 � deg �O eC(E)
O eC ��OC(C)� = E: eC + deg �OC(C)� = rXi=1 �eini + C2: �4. Existene Theorem for Generi Fat Point Shemes4.1 TheoremGiven m1; : : : ; mr 2 N0, not all zero, and z1; : : : ; zr 2 �, in very general position.Let L 2 Div(�) be very ample over C, and let D 2 Div(�) be suh that(4.1) h1��;JX(m;z)=�(D � L)� = 0, and(4.2) D:L� 2g(L) � mi +mj for all i; j.Then there exists a urve C 2 jDjl with ordinary singular points of multipliity miat zi for i = 1; : : : ; r and no other singular points. Furthermore,h1��;JX(m;z)=�(D)� = 0;and in partiular, VjDj(m) is T-smooth at C.If in addition (4.3) D2 > Pri=1m2i , then C an be hosen to be irreduible andredued.Idea of the proof: For eah zj �nd a urve Cj 2 ��H0�JX(m;z)=�(D)���l with anordinary singular point of multipliity mj and show that this linear system hasno other base points than z1; : : : ; zr. Then the generi element is smooth outsidez1; : : : ; zr and has an ordinary singularity of multipliity mj in zj.Proof: W. l. o. g. mi � 1 for all i = 1 : : : ; r. For the onveniene of notation we setzr+1 := z1 and mr+1 := m1. Sine L is very ample, we may hoose smooth urvesLj 2 jLjl through zj and zj+1 for j = 1; : : : ; r (f. Lemma E.3). Writing X forX(m; z) we introdue zero-dimensional shemes Xj for j = 1; : : : ; r byJXj=�;z = � JX=�;z; if z 6= zj;m�;zj � JX=�;zj ; if z = zj:Step 1: h1�JXj=�(D)� = 0.



12 THOMAS KEILEN AND ILYA TYOMKINBy Condition (4.2) we getdeg �Xj \ Lj� � mj +mj+1 + 1 � D:L+ 1� 2g(L); (4.4)and the exat sequene0 // JX=� // JXj :Lj=� // mmj+1�1�;zj+1 =mmj+1�;zj+1 // 0implies with the aid of (4.1) h1�JXj :Lj=�(D � L)� = 0: (4.5)(4.4) and (4.5) allow us to apply Lemma E.5 in order to obtainh1�JXj=�(D)� = 0:Step 2: For eah j = 1; : : : ; r there exists a urve Cj 2 jDjl with an ordinarysingular point of multipliity mj at zj and with multzi(Cj) � mi for i 6= j.Consider the exat sequene0 // JXj=� // JX=� // mmj�;zj=mmj+1�;zj // 0twisted by D and the orresponding long exat ohomology sequeneH0�JX=�(D)� // mmj�;zj=mmj+1�;zj // H1�JXj=�(D)� //Step 1 H1�JX=�(D)� // 0:0 (4.6)Thus we may hoose the Cj to be given by a setion in H0�JX=�(D)� where the mjtangent diretions at zj are all di�erent.Step 3: The base lous of P�H0�JX=�(D)�� is fz1; : : : ; zrg.Suppose w 2 � was an additional base point and de�ne the zero-dimensional shemeX [ fwg by JX[fwg=�;z = � JX=�;z; if z 6= w;m�;w � JX=�;w; if z = w:Choosing a generi, and thus smooth, urve Lw 2 jLjl through w we may dedue asin Step 1 h1�JX[fwg=�(D)� = 0;and thus as in Step 2 h0�JX=�(D)� = h0�JX[fwg=�(D)�+ 1:But by assumption w is a base point, and thush0�JX=�(D)� = h0�JX[fwg=�(D)�;whih gives us the desired ontradition.Step 4: 9 C 2 P�H0�JX=�(D)�� � jDjl with an ordinary singular point of multi-pliity mi at zi for i = 1; : : : ; r and no other singular points.



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 13Beause of Step 2 the generi element in P�H0�JX=�(D)�� has an ordinary singularpoint of multipliity mi at zi and is by Bertini's Theorem (f. [Har77℄ III.10.9.2)smooth outside its base lous.For two generi urves C;C 0 2 P�H0�JX=�(D)�� the intersetion multipliity in ziis i(C;C 0; zi) = m2i . Thus, if Condition (4.3) is ful�lled then C and C 0 have an addi-tional intersetion point outside the base lous of P�H0�JX=�(D)��, and Bertini'sTheorem (f. [Wae73℄ x47, Satz 4) implies that the generi urve in P�H0�JX=�(D)��is irreduible.Step 5: h1�JX=�(D)� = 0, by Equation (4.6).Step 6: VjDj(m) is T-smooth at C.By [GLS98b℄, Lemma 2.7, we haveJX=� � JXes(C)=�;and thus by Step 5 h1�JXes(C)=�(D)� = 0;whih proves the laim. �4.2 CorollaryLet m1; : : : ; mr 2 N0, not all zero, r � 1, and let L 2 Div(�) be very ample over C.Suppose D 2 Div(�) suh that(4.7) (D � L�K�)2 � 2Pri=1(mi + 1)2,(4.8) (D�L�K�):B > maxfm1; : : : ; mrg for any irreduible urve B � �with B2 = 0 and dim jBja � 1,(4.9) D � L�K� is nef, and(4.10) D:L� 2g(L) � mi +mj for all i; j.Then for z1; : : : ; zr 2 � in very general position there exists a urve C 2 jDjl withordinary singular points of multipliity mi at zi for i = 1; : : : ; r and no other singularpoints. Furthermore, h1��;JX(m;z)=�(D)� = 0;and in partiular, VjDj(m) is T-smooth in C.If in addition (4.11) D2 > Pri=1m2i , then C an be hosen to be irreduible andredued.Proof: Follows from Theorem 4.1 and Corollary 2.2. �4.3 RemarkIn view of Condition (4.7) Condition (4.11) is satis�ed if the following ondition isful�lled: D2 + (2D � L�K�):(L+K�) + 4 rXi=1 mi + 2r > 0 (4.12)



14 THOMAS KEILEN AND ILYA TYOMKINProof: Suppose (4.11) was not satis�ed, then2 rXi=1 m2i � 2D2 = D2 + (D � L�K�)2 + (2D � L�K�):(L +K�)� D2 + 2 rXi=1 m2i + 4 rXi=1 mi + 2r + (2D � L�K�):(L +K�):Hene, D2 + (2D � L�K�):(L +K�) + 4 rXi=1 mi + 2r � 0;whih implies that (4.12) is suÆient. �5. Existene Theorem for General Equisingularity ShemesNotationIn the following we will denote by C[x; y℄d, respetively by C[x; y℄�d the C-vetorspaes of polynomials of degree d, respetively of degree at most d. If f 2 C[x; y℄�dwe denote by fk 2 C[x; y℄k for k = 0; : : : ; d the homogeneous part of degree k of f ,and thus f =Pdk=0 fk. By a = (ak;lj0 � k + l � d) we will denote the oordinatesof C[x; y℄�d with respet to the basis �xkylj0 � k + l � d	.For any f 2 C[x; y℄�d the tautologial familyC[x; y℄�d � C2 � [g2C[x;y℄�dfgg � g�1(0) �! C[x; y℄�dindues a deformation of the plane urve singularity �f�1(0); 0� whose base spae isthe germ �C[x; y℄�d; f� of C[x; y℄�d at f . Given any deformation (X; x) ,! (X ; x)!(S; s) of a plane urve singularity (X; x), we will denote by Ses = (Ses; s) the germof the equisingular stratum of (S; s). Thus, �xed an f 2 C[x; y℄�d, C[x; y℄es�d =�C[x; y℄es�d; f� is the (loal) equisingular stratum of C[x; y℄�d at f .5.1 De�nition(i) We say the family C[x; y℄�d is T-smooth at f 2 C[x; y℄�d if for any e � d thereexists a � � �(k; l) 2 N20 �� 0 � k + l � d	 with #� = � es suh that C[x; y℄es�eis given by equationsak;l = �k;l�a(1); a(2)�; (k; l) 2 �;with �k;l 2 C�a(1); a(2)	 where a(0) = (ak;lj(k; l) 2 �), a(1) = (ak;l j 0 �k + l � d; (k; l) 62 �), and a(2) = (ak;l j d + 1 � k + l � e), and where� es = dimC �Cfx; yg=Ies�f�1(0); 0�� is the odimension of the equisingularstratum in the base spae of the semiuniversal deformation of �f�1(0); 0�.(ii) A polynomial f 2 C[x; y℄�d is said to be a good representative of the singularitytype S in C[x; y℄�d if it meets the following onditions:(a) Sing �f�1(0)� = np 2 C2 j f(p) = 0; �f�x(p) = 0; �f�y (p) = 0o = f0g,



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 15(b) �f�1(0); 0� �t S,() fd is redued, and(d) C[x; y℄�d is T-smooth at f .(iii) Given a singularity type S we de�ne s(S) to be the minimal number d suhthat S has a good representative of degree d.5.2 Remark(i) The ondition for T-smoothness just means that for any e � d the equisingularstratum C[x; y℄es�e is smooth at the point f of the expeted odimension in�C[x; y℄�e; f�.(ii) Note that for a polynomial of degree d the highest homogeneous part fd de�nesthe normal one, i. e. the intersetion of the urve ff̂ = 0g with the line atin�nity in P2C , where f̂ is the homogenisation of f . Thus the ondition \fdredued" in the de�nition of a good representative just means that the line atin�nity intersets the urve transversally in d di�erent points.(iii) If f 2 C[x; y; z℄d is an irreduible polynomial suh that (0 : 0 : 1) is theonly singular point of the plane urve ff = 0g � P2C , then a linear hange ofoordinates of the type (x; y; z) 7! (x; y; z+ax+by) will ensure that the deho-mogenisation �f of f satis�es \ �fd redued". Note for this that the oordinatehange orresponds to hoosing a line in P2C , not passing through (0 : 0 : 1)and meeting the urve in d distint points. Therefore, the bounds for s(S)given in [Los98℄ Theorem 4.2 and Remark 4.3 do apply here.(iv) For re�ned results using the tehniques of the following proof we refer to[Shu99℄.5.3 Theorem (Existene)Let S1; : : : ;Sr be singularity types, and suppose there exists an irreduible urve C 2jDjl with r + r0 ordinary singular points z1; : : : ; zr+r0 of multipliities m1; : : : ; mr+r0respetively as its only singularities suh that mi = s(Si) + 1, for i = 1; : : : ; r, andh1��;JX(m;z)=�(D)� = 0:Then there exists an irreduible urve eC 2 jDjl with r singular points of typesS1; : : : ;Sr and r0 ordinary singular points of multipliities mr+1; : : : ; mr+r0 as itsonly singularities.5Idea of the proof: The basi idea is to glue loally at the zi equations of goodrepresentatives for the Si into the urve C. Let us now explain more detailed whatwe mean by this.If gi = Pmi�1k+l=0 ai;fixk;l xki yli, i = 1; : : : ; r, are good representatives of the Si, then weare looking for a family Ft, t 2 (C; 0), in H0��;O�(D)� whih in loal oordinates5Here, of ourse, m = (m1; : : : ;mr+r0) and z = (z1; : : : ; zr+r0).



16 THOMAS KEILEN AND ILYA TYOMKINxi; yi at zi looks like F it = mi�1Xk+l=0 tmi�1�k�l~aik;l(t)xki yli + h:o:t:;where the ~aik;l(t) should be onvergent power series in t with ~aik;l(0) = ai;fixk;l . Repla-ing gi by some arbitrarily small multiple �igi the urve de�ned by F0 is an arbitrarilysmall deformation of C inside some suitable linear system, thus it is smooth outsidez1; : : : ; zr+r0 and has ordinary singular points in z1; : : : ; zr+r0 . For t 6= 0, on the otherhand, F it an be transformed, by (xi; yi) 7! (txi; tyi), into a member of some family~F it = mi�1Xk+l=0 ~aik;l(t)xki yli + h:o:t:; t 2 C;with ~F i0 = gi:Using now the T-smoothness property of gi, i = 1; : : : ; r, we an hoose the ~aik;l(t)suh that this family is equisingular. Hene, for small t 6= 0, the urve given by Ftwill have the right singularities at the zi. Finally, the knowledge on the singularitiesof the urve de�ned by F0 and the onservation of Milnor numbers will ensure thatthe urve given by Ft has no further singularities, for t 6= 0 suÆiently small.The proof will be done in several steps. First of all we are going to �x some no-tation by hoosing a basis of H0��;O�(D)� whih reets the \independene" ofthe oordinates at the di�erent zi ensured by h1��;JX(m;z)=�(D)� = 0 (Step 1.1),and by hoosing good representatives for the Si (Step 1.2). In a seond step weare making an \Ansatz" for the family Ft, and, for the loal investigation of thesingularity type, we are swithing to some other families ~F it , i = 1; : : : ; r (Step 2.1).We, then, redue the problem of Ft, for t 6= 0 small, having the right singularities toa question about the equisingular strata of some families of polynomials (Step 2.2),whih in Step 2.3 will be solved. The �nal step serves to show that the urves Fthave only the singularities whih we ontrolled in the previous steps.Proof:Step 1.1: Parametrise jDjl = P�H0�O�(D)��.Consider the following exat sequene:0 �! JX(m;z)=�(D) �! O�(D) �! r+r0Mi=1 O�;zi=mmi�;zi �! 0:Sine h1�JX(m;z)=�(D)� = 0, the long exat ohomology sequene givesH0�O�(D)� = r+r0Mi=1 Cfxi; yig=(xi; yi)mi �H0�JX(m;z)=�(D)�;where xi; yi are loal oordinates of (�; zi).



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 17We, therefore, an �nd a basis �sik;l; sj �� j = 1; : : : ; e; i = 1; : : : ; r + r0; 0 � k + l �mi � 1	 of H0�O�(D)�, with e = h0�JX(m;z)=�(D)�, suh that6� C is the urve de�ned by s1,� (sj)zi =Pj�j�mi Bj;i� x�1i y�2i for j = 1; : : : ; e, i = 1; : : : ; r + r0,� �sjk;l�zi = 8><>: xki yli + Pj�j�miAi;i�;k;lx�1i y�2i ; if i = j;Pj�j�miAj;i�;k;lx�1i y�2i ; if i 6= j:Let us now denote the oordinates of H0�O�(D)� w. r. t. this basis by (a; b) =�a1; : : : ; ar+r0; b� with ai = �aik;l j 0 � k + l � mi � 1� and b = (bj j j = 1; : : : ; e).Thus the familyF(a;b) = r+r0Xi=1 mi�1Xk+l=0 aik;lsik;l + eXj=1 bjsj; (a; b) 2 CN with N = e+ r+r0Xi=1 �mi + 12 �;parametrises H0�O�(D)�.Step 1.2: By the de�nition of s(Si) and sine s(Si) = mi� 1, we may hoose goodrepresentatives gi = mi�1Xk+l=0 ai;fixk;l xki yli 2 C[xi; yi℄�mi�1for the Si, i = 1; : : : ; r. Let ai;fix = �ai;fixk;l �� 0 � k + l � mi � 1� and afix =�a1;fix; : : : ; ar;fix�. We should remark here that for any �i 6= 0 the polynomial �igiis also a good representative, and thus, replaing gi by �igi, we may assume thatthe ai;fixk;l are arbitrarily lose to 0.Step 2: We are going to glue the good representatives for the Si into the urve C.More preisely, we are onstruting a subfamily Ft, t 2 (C; 0), in H0�O�(D)� suhthat, if Ct 2 jDjl denotes the urve de�ned by Ft,(1) z1; : : : ; zr+r0 are the only singular points of the irreduible redued urve C0,and they are ordinary singularities of multipliities mi � 1, for i = 1; : : : ; r,and mi, for i = r + 1; : : : ; r + r0 respetively,(2) loally in zi, i = 1; : : : ; r, the Ft, for small t 6= 0, an be transformed intomembers of a �xed Si-equisingular family,(3) while for i = r + 1; : : : ; r + r0 and t 6= 0 small Ct has an ordinary singularityof multipliity mi in zi.Step 2.1: \Ansatz" and �rst redution for a loal investigation.Let us make the following \Ansatz":b1 = 1; b2 = : : : = be = 0; ai = 0; for i = r + 1; : : : ; r + r0;aik;l = tmi�1�k�l � ~aik;l; for i = 1; : : : ; r; 0 � k + l � mi � 1:6Throughout this proof we will use the multi index notation � = (�1; �2) 2 N2 and j�j = �1+�2.



18 THOMAS KEILEN AND ILYA TYOMKINThis gives rise to a familyF(t;~a) = s1 + rXi=1 mi�1Xk+l=0 tmi�1�k�l~aik;lsik;l 2 H0�O�(D)�with t 2 C and ~a = �~a1; : : : ; ~ar� where ~ai = �~aik;l j 0 � k + l � mi � 1� 2 CNi withNi = �mi+12 �.Fixing i 2 f1; : : : ; rg, in loal oordinates at zi the family looks likeF i(t;~a) := �F(t;~a)�zi = mi�1Xk+l=0 tmi�1�k�l~aik;lxki yli + Xj�j�mi 'i�(t; ~a) x�1i y�2i ;with 'i�(t; ~a) = B1;i� + rXj=1 mj�1Xk+l=0 tmj�1�k�l~ajk;lAj;i�;k;l:For t 6= 0 the transformation  it : (xi; yi) 7! (txi; tyi) is indeed a oordinate trans-formation, and thus F i(t;~a) is ontat equivalent7 to~F i(t;~a) := t�mi+1 � F i(t;~a)(txi; tyi) = mi�1Xk+l=0 ~aik;lxki yli + Xj�j�mi t1+j�j�mi'i�(t; ~a) x�1i y�2i :Note that for this new family in Cfxi; yig we have~F i(0;afix) = mi�1Xk+l=0 ai;fixk;l xki yli = gi;and hene it gives rise to a deformation of �g�1i (0); 0�.Step 2.2: Redution to the investigation of the equisingular strata of ertain fam-ilies of polynomials.It is basially our aim to verify the ~a as onvergent power series in t suh that theorresponding family is equisingular. However, sine the ~F i(t;~a) are power series in xiand yi, we annot right away apply the T-smoothness property of gi, but we ratherhave to redue to polynomials. For this let ei be the determinay bound8 of Si and7Let f; g 2 On = Cfx1; : : : ; xng be two onvergent power series in n indeterminates. We all fand g ontat equivalent, if On=(f) �= On=(g), and we write in this ase f � g. Equivalently, weould ask the germs �V (f); 0� and �V (g); 0� to be isomorphi, that is, ask the singularities to beanalytially equivalent. C. f. [DP00℄ De�nition 9.1.1 and De�nition 3.4.19.8A power series f 2 On = Cfx1; : : : ; xng (respetively the singularity �V (f); 0� de�ned by f) is saidto be �nitely determined with respet to some equivalene relation � if there exists some positiveinteger e suh that f � g whenever f and g have the same e-jet. If f is �nitely determined, thesmallest possible e is alled the determinay bound. Isolated singularities are �nitely determinedwith respet to analytial equivalene and hene, for n = 2, as well with respet to topologialequivalene. C. f. [DP00℄ Theorem 9.1.3 and Footnote 9.



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 19de�neF̂ i(t;~a) := mi�1Xk+l=0 ~aik;lxki yli + eiXj�j=mi t1+j�j�mi'i�(t; ~a) x�1i y�2i � ~F i(t;~a)�mod (xi; yi)ei+1�:Thus F̂ i(t;~a) is a family in C[xi; yi℄�ei, and stillF̂ i(0;afix) = ~F i(0;afix) = gi:We laim that it suÆes to �nd ~a(t) 2 Cftg with ~a(0) = �ai;fixk;l �� i = 1; : : : ; r; 0 �k+l � mi�1�, suh that the families F̂ it := F̂ i(t;~a(t)), t 2 (C; 0), are in the equisingularstrata C[xi; yi℄es�ei, for i = 1; : : : ; r.Sine then we have, for small9 t 6= 0,gi = F̂ i0 � F̂ it � ~F i(t;~a(t)) � F i(t;~a(t)) = �F(t;~a(t))�zi(t);by the ei-determinay and sine  it is a oordinate hange for t 6= 0, whih provesondition (2). Note that the singular points zi will move with t.It remains to verify onditions (1) and (3). Setting Ft := F(t;~a(t)) 2 H0�O�(D)�, fort 2 (C; 0), we �nd that F0 = s1 + rXj=1 Xk+l=mj�1 aj;fixk;l sjk;lis an element inside the linear system D = f�0s1 +Prj=1 �jsj j (�0 : : : : : �r) 2PrC g, where sj = Pk+l=mj�1 aj;fixk;l sjk;l. Loally at zi, i = 1; : : : ; r + r0, D indues adeformation of (C; zi) with equations�i � �gi�mi�1 + h:o:t:; if i = 1; : : : ; r;and�0 �0� Xj�j=miB1;i� x�1i y�2i 1A + rXj=1 �j �0� Xk+l=mj�1 aj;fixk;l Xj�j=miAj;i�;k;lx�1i y�2i 1A + h:o:t:;if i = r + 1; : : : ; r + r0;respetively. Thus any element of D has ordinary singularities of multipliitymi�1at zi for i = 1; : : : ; r, and sine s1 has an ordinary singularity of multipliity miat zi for i = r + 1; : : : ; r + r0, so has a generi element of D. Moreover, a generielement of D has not more singular points than the speial element s1 and has thussingularities preisely in fz1; : : : ; zr+r0g. Replaing the gi by some suitable multiples,we may assume that the urve de�ned by F0 is a generi element of D, whih proves9 Here f �t g, for two onvergent power series f; g 2 O2 = Cfx; yg, means that the singularities�V (f); 0� and �V (g); 0� are topologially equivalent, that is, there exists a homeomorphism � :�C2; 0� ! �C2; 0� with ��V (f); 0� = �V (g); 0�, whih of ourse means, that this is orret forsuitably hosen representatives. Note that if f and g are ontat equivalent, then there exists evenan analytial oordinate hange �, that is, f � g implies f �t g.



20 THOMAS KEILEN AND ILYA TYOMKIN(1). Similarly, we note that Ft in loal oordinates at zi, for i = r + 1; : : : ; r + r0,looks likeXj�j=miB1;i� x�1i y�2i + rXj=1 mj�1Xk+l=0 tmj�1�k�l~ajk;l(t) Xj�j=miAj;i�;k;lx�1i y�2i + h:o:t:= Xj�j=mi B1;i� + rXj=1 mj�1Xk+l=0 tmj�1�k�l~ajk;l(t)Aj;i�;k;l! x�1i y�2i + h:o:t:;and thus, for t 6= 0 suÆiently small, the singularity of Ft at zi will be an ordinarysingularity of multipliity mi, whih gives (3).Step 2.3: Find ~a(t) 2 Cftgn with ~a(0) = �ai;fixk;l , i = 1; : : : ; r; 0 � k + l �mi � 1�, n = Pri=1 �mi+12 �, suh that the families F̂ it = F̂ i(t;~a(t)), t 2 (C; 0), arein the equisingular strata C[xi; yi℄es�ei, for i = 1; : : : r.In the sequel we adopt the notation of de�nition 5.1 adding indies i in the obviousway.Sine C[xi; yi℄�mi�1 is T-smooth at gi, for i = 1; : : : ; r, there exist �i � f(k; l) j 0 �k + l � mi � 1g and power series �ik;l 2 C�~ai(1); ~ai(2)	, for (k; l) 2 �i, suh that theequisingular stratum C[xi; yi℄es�ei is given by the � es;i = #�i equations~aik;l = �ik;l�~ai(1); ~ai(2)�; for (k; l) 2 �i:Setting � = Srj=1fjg��j we use the notation ~a(0) = �~a1(0); : : : ; ~ar(0)� = �~aik;l �� (i; k; l) 2�� and, similarly ~a(1), ~a(2), ai;fix(1) , afix(0) , and afix(1) . Moreover, setting ~'i�t; ~a(0)� =�tj�j�mi'i��t; ~a(0); afix(1) � �� mi � j�j � ei�, we de�ne an analytial map germ� : �C� C�es;1 � � � � � C�es;r ; �0; afix(0) ��! �C�es;1 � � � � � C�es;r ; 0�by �ik;l�t; ~a(0)� = ~aik;l � �ik;l�ai;fix(1) ; t � ~'i�t; ~a(0)��; for (i; k; l) 2 �;and we onsider the system of equations�ik;l�t; ~a(0)� = 0; for (i; k; l) 2 �:One easily veri�es that ��ik;l�~aj�;� �0; afix(0) �!(i;k;l);(j;�;�)2� = idCn :Thus by the Inverse Funtion Theorem there exist ~aik;l(t) 2 Cftg with ~aik;l(0) = ai;fixk;lsuh that ~aik;l(t) = �ik;l�ai;fix(1) ; t � ~'i�t; ~a(0)(t)��; (i; k; l) 2 �:Now, setting ~a(1)(t) � afix(1) , the families F̂ it = F̂ i(t;~a(t)) are in the equisingular strataC[xi; yi℄es�ei, for i = 1; : : : ; r.



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 21Step 3: It �nally remains to show that Ft, for small t 6= 0, has no other singularpoints than z1(t); : : : ; zr(t); zr+1; : : : ; zr+r0.Sine for any i = 1; : : : ; r+ r0 the family Ft, t 2 (C; 0), indues a deformation of thesingularity (C0; zi) there are, by the Conservation of Milnor Numbers10 (f. [DP00℄,Chapter 6), (Eulidean) open neighbourhoods U(zi) � � and V (0) � C suh thatfor any t 2 V (0)(5.1) Sing(Ct) � Sr+r0i=1 U(zi), i. e. singular points of Ct ome from singularpoints of C0,(5.2) �(C0; zi) =Pz2Sing(F it )\U(zi) ��F it ; z�, i = 1; : : : ; r + r0.For i = r + 1; : : : ; r + r0 ondition (5.2) implies(mi � 1)2 = �(C0; zi) � ��F it ; zi� = (mi � 1)2;and thus zi must be the only ritial point of F it in U(zi), in partiular,Sing(Ct) \ U(zi) = fzig:Let now i 2 f1; : : : ; rg. For t 6= 0 �xed, we onsider the transformation de�ned bythe oordinate hange  it,C2 � U(zi) �! Ut(zi) � C22 2(xi; yi) 7! �1txi; 1t yi�;and the transformed equations~F it (xi; yi) = t�mi+1F it (txi; tyi) = 0:Condition (5.2) then implies,(mi � 2)2 = �(C0; zi) = Xz2Sing(F it )\U(zi)��F it ; z� = Xz2Sing( ~F it )\Ut(zi)�� ~F it ; z�:For t 6= 0 very small Ut(zi) beomes very large, so that, by shrinking V (0) we maysuppose that for any 0 6= t 2 V (0)Sing(gi) � Ut(zi);and that for any z 2 Sing(gi) there is an open neighbourhood U(z) � Ut(zi) suhthat �(gi; z) = Xz02Sing( ~F it )\U(z)�� ~F it ; z0�:10Reall the de�nition of the Milnor number of a holomorphi map f 2 O(U) respetively off�1�f(z)� at a point z 2 U � C2: �(f; z) = ��f�1�f(z)�; z� = dimC �OU;zÆ��f�x (z); �f�y (z)��:



22 THOMAS KEILEN AND ILYA TYOMKINIf we now take into aount that gi has preisely one ritial point, zi, on its zerolevel, and that the ritial points on the zero level of ~F it all ontribute to the Milnornumber �(gi; zi), then we get the following sequene of inequalities:(mi � 2)2 � �(Si) = Xz2Sing(gi)�(gi; z)� Xz2Sing(g�1i (0)) �(gi; z)� Xz2Sing( ~F it )\Ut(zi)�� ~F it ; z�� Xz2Sing(( ~F it )�1(0))\Ut(zi)�� ~F it ; z�= Xz2Sing(F it )\U(zi) �(F it ; z)� Xz2Sing((F it )�1(0))\U(zi)�(F it ; z)� �(C0; zi)� ��F it ; zi� = (mi � 2)2 � �(Si):Hene all inequalities must have been equalities, and, in partiular,Sing(Ct) \ U(zi) = Sing �(F it )�1(0)� \ U(zi) = fzig;whih in view of Condition (5.1) �nishes the proof.Note that Ct, being a small deformation of the irreduible redued urve C0, willagain be irreduible and redued. �5.4 CorollaryLet L 2 Div(�) be very ample over C. Suppose that D 2 Div(�) and S1; : : : ;Sr aretopologial singularity types with �(S1) � : : : � �(Sr) suh that(5.3) (D � L�K�)2 � 4145 P�(Si)�38 �(Si) + 58 P�(Si)�39 �p�(Si) + 132p29�2,(5.4) (D � L�K�):B > 8<: q2075 p�(S1)� 1; if �(S1) � 38;p29p�(S1) + 112 ; if �(S1) � 39;for any irreduible urve B with B2 = 0 and dim jBja > 0,(5.5) D � L�K� is nef,
(5.6) D:L�2g(L) � 8>>>>>>><>>>>>>>:

q2075 �p�(S1) +p�(S2)�� 2; if �(S1) � 38;q2075 p�(S1) +p29p�(S1) + 92 ; if �(S1) � 39& �(S2) � 38;p29�p�(S1) +p�(S2)�+ 11; if �(S2) � 39;(5.7) D2 � 2075 P�(Si)�38�p�(Si)�q 5207�2 + 29 P�(Si)�39�p�(Si) + 112p29�2,then there is an irreduible redued urve C in jDjl with r singular points of topo-logial types S1; : : : ;Sr as its only singularities.



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 23Proof: This follows right away from Corollary 4.2, Theorem 5.3, and [Los98℄ The-orem 4.2. �5.5 RemarkOne ould easily simplify the above formulae by not distinguishing the ases �(Si) �39 and �(Si) � 38. However, one would loose information.On the other hand, knowing something more about the singularity type one ouldahieve muh better results, applying the orresponding bounds for the s(Si). Weleave it to the reader to apply the bounds. (Cf. [Los98℄ Remarks 4.3, 4.8, and 4.15)As we have already mentioned earlier the most restritive of the above suÆientonditions is (5.3), whih ould be haraterised as a ondition of the typerXi=1 �(Si) � �D2 + �D:K + ;where K is some �xed divisor lass, �; � and  are some onstants.There are also neessary onditions of this type, e. g.rXi=1 �(Si) � D2 +D:K� + 2;whih follows from the genus formula.11See [Los98℄ Setion 4.1 for onsiderations on the asymptotial optimality of theonstant �. 6. ExamplesIn this setion we are going to examine the onditions in the vanishing theorem(Corollary 2.2) and in the orresponding existene results for various types of sur-faes. Unless otherwise stated, r � 1 is a positive integer, and m1; : : : ; mr 2 N0 arenon-negative, while at least one mi is positive whenever we onsider onditions forexistene theorems.11If D is an irreduible urve with preisely r singular points of types S1; : : : ;Sr and � : eD ! Dits normalisation, then pa(D) = g� eD� + Æ(D) � Æ(D), where Æ(D) = dimC ���O eD=OD� is thedelta-invariant of D (f. [BPV84℄ II.11). Moreover, by de�nition Æ(D) =Pz2Sing(D) Æ(D; z) whereÆ(D; z) = dimC ���O eD=OD�z is the loal delta-invariant at z, and it is well known that 2Æ(D; z) =�(D; z) + r(D; z)� 1 � �(D; z), where r(D; z) is the number of branhes of the urve singularity(D; z) and �(D; z) is its Milnor number (f. [Mil68℄ Chapter 10). Using now the genus formula weget D2 +D:K� + 2 = 2pa(D) � 2 rXi=1 Æ(Si) � rXi=1 �(Si):



24 THOMAS KEILEN AND ILYA TYOMKIN6.a. The Classial Case - � = P2C . Sine in P2C there are no irreduible urvesof self-intersetion number zero, Condition (2.5) is redundant. Moreover, Condition(2.6) takes in view of (2.4) the form d + 3 � p2. Corollary 2.2 thus takes thefollowing form, where L 2 jOP2C (1)jl is a generi line.2.2a CorollaryLet d be any integer suh that(2.4a) (d+ 3)2 � 2Pri=1(mi + 1)2,(2.6a) d � �1.Then for z1; : : : ; zr 2 P2C in very general position and � > 0H�  Blz �P2C �; d��L� rXi=1 miEi! = 0:Now turning to the existene theorem Corollary 4.2 for generi fat point shemes,we, of ourse, �nd that Condition (4.8) is obsolete, and so is (4.9), taking intoaount that (4.10) implies d > 0. But then Conditions (4.10) and (4.11) beomealso redundant in view of Condition (4.7) and equation (4.12).Thus the onditions in Corollary 4.2 redue to d > 0 and(4.7a) (d+ 2)2 � 2Pri=1(mi + 1)2,and, similarly, the onditions in Corollary 5.4 redue to d > 7 and(5.3a) (d+ 2)2 � 4145 P�(Si)�38 �(Si) + 58 P�(Si)�39 �p�(Si) + 132p29�2.These results are muh weaker than the previously known ones (e. g. [Los98℄ Propo-sition 4.11, where the fator 2 is replaed by 109 ) whih use the Vanishing Theorem ofGeng Xu (f. [Xu95℄ Theorem 3), partiularly designed for P2C . { Using L 2 jO�(l)jlwith l > 1 instead of O�(1) in Corollary 4.2 does not improve the onditions.6.b. Geometrially Ruled Surfaes. Let � = P(E) � // C be a geometriallyruled surfae with normalised bundle E (in the sense of [Har77℄ V.2.8.1). The N�eron-Severi group of � is NS(�) = C0Z� FZ;with intersetion matrix � �e 11 0 � ;where F �= P1C is a �bre of �, C0 a setion of � with O�(C0) �= OP(E)(1), ande = � deg(�2E) � �g.12 For the anonial divisor we haveK� �a �2C0 + (2g � 2� e)F;12By [Nag70℄ Theorem 1 there is some setion D �a C0 + bF with g � D2 = 2b� e. Sine D isirreduible, by [Har77℄ V.2.20/21 b � 0, and thus �g � e.



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 25where g = g(C) is the genus of the base urve C.In order to understand Condition (2.5) we have to examine speial irreduible urveson �.6.2 LemmaLet B 2 jaC0 + bF ja be an irreduible urve with B2 = 0 and dim jBja � 1. Thenwe are in one of the following ases(6.1) a = 0, b = 1, and B �a F ,(6.2) e = 0, a � 1, b = 0, and B �a aC0, or(6.3) e < 0, a � 2, b = a2e < 0, and B �a aC0 + a2eF .Moreover, if a = 1, then � �= C0 � P1C .Proof: Sine B is irreduible, we have0 � B:F = a and 0 � B:C0 = b� ae: (6.4)If a = 0, then jBja = jbF ja, but sine the general element of jBja is irreduible, bhas to be one, and we are in ase (6.1).We, therefore, may assume that a � 1. Sine B2 = 0 we have0 = B2 = 2a �b� a2e� ; hene b = a2e: (6.5)Combining this with (6.4) we get e � 0.Moreover, if e = 0, then of ourse b = 0, while, if e < 0, then a � 2 by [Har77℄V.2.21, sine otherwise b would have to be non-negative. This brings us down tothe ases (6.2) and (6.3).It remains to show, that B:F = a = 1 implies � �= C0 � P1C . But by assumptionthe elements of jBja are disjoint setions of the �bration �. Thus, by Lemma 6.3,� �= C � P1C . �6.3 LemmaIf � : � ! C has three disjoint setions, then � is isomorphi to C � P1C as aruled surfae, i. e. there is an isomorphism � : �! C � P1C suh that the followingdiagram is ommutative: � � //�
��:

:
:

:
:

:
:

C � P1Cpr
}}zz

zz
zz

zzC:Proof: See [IS96℄ p. 229.



26 THOMAS KEILEN AND ILYA TYOMKIN� is a loally trivial P1C -bundle, thus C is overed by a �nite number of open aÆnesubsets Ui � C with trivialisations��1(Ui) �='i //�
""D

DD
DD

DD
D

Ui � P1Cpr
||zz

zz
zz

zzUi;whih are linear on the �bres.The three disjoint setions on �, say S0, S1, and S1, give rise to three setions Si0, Si1,and Si1 on Ui�P1C . For eah point z 2 Ui there is a unique linear projetivity on the�bre fzg�P1C mapping the three points p0;z = Si0\�fzg�P1C �, p1;z = Si1\�fzg�P1C �,and p1;z = Si1 \ �fzg � P1C � to the standard basis 0 � �z; (1 : 0)�, 1 � �z; (1 : 1)�,and 1 � �z; (0 : 1)� of P1C �= fzg � P1C . If p0;z = �z; (x0 : y0)�, p1;z = �z; (x1 : y1)�,and p1;z = �z; (x1 : y1)�, the projetivity is given by the matrixA =  (x0y1�y0x1)y1y0y1x21�y0x1x1y1�x0y1x1y1+x0x1y1 (x0y1�y0x1)x1y0y1x21�y0x1x1y1�x0y1x1y1+x0x1y1y0x0y1�y0x1 x0x0y1�y0x1 ! ;whose entries are rational funtions in the oordinates of p0;z, p1;z, and p1;z. In-serting for the oordinates loal equations of the setions, A �nally gives rise to anisomorphism of P1C -bundles �i : Ui � P1C ! Ui � P1Cmapping the setions Si0, Si1, and Si1 to the trivial setions.The transition mapsUij � P1C ��1ij
// Uij � P1C '�1ij

// ��1(Uij) 'jj
// Uij � P1C �jj

// Uij � P1C ;with Uij = Ui \ Uj, are linear on the �bres and �x the three trivial setions. Thusthey must be the identity maps, whih implies that the �i Æ 'i, i = 1; : : : ; r, gluetogether to an isomorphism of ruled surfaes:� � //�
��:

:
:

:
:

:
:

C � P1Cpr
}}zz

zz
zz

zzC: �Knowing the algebrai equivalene lasses of irreduible urves in � whih satisfythe assumptions in Condition (2.5) we an give a better formulation of the vanishingtheorem in the ase of geometrially ruled surfaes.In order to do the same for the existene theorems, we have to study very ampledivisors on �. These, however, depend very muh on the struture of the base urveC, and the general results whih we give may be not the best possible. Only in thease C = P1C we an give a omplete investigation.



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 27The geometrially ruled surfaes with base urve P1C are, up to isomorphism, just theHirzebruh surfaes Fe = P�OP1C � OP1C (�e)�, e � 0. Note that Pi(Fe) = NS(Fe),that is, algebrai equivalene and linear equivalene oinide. Moreover, by [Har77℄V.2.18 a divisor lass L = �C0 + �F is very ample over C if and only if � > 0 and� > �e. The onditions throughout the existene theorems turn out to be optimalif we work with L = C0 + (e + 1)F , while for other hoies of L they beome morerestritive.13In the ase C 6�= P1C , we may hoose an integer l � maxfe + 1; 2g suh that thealgebrai equivalene lass jC0+ lF ja ontains a very ample divisor L, e. g. l = e+3will do, if C is an ellipti urve.14 In partiular, l � 2 as soon as � 6�= P1C � P1C .With the above hoie of L we have g(L) = 1+ L2+L:K�2 = 1+ (�e+2l)+(e�2l+2g�2)2 = g,and hene the generi urve in jLjl is a smooth urve whose genus equals the genusof the base urve.2.2b CorollaryGiven two integers a; b 2 Z satisfying(2.4b) a�b� �a2 � 1�e� �Pri=1(mi + 1)2,(2.5b.i) a > maxfmi j i = 1; : : : ; rg,(2.5b.ii) b > maxfmi j i = 1; : : : ; rg, if e = 0,(2.5b.iii) 2�b� �a2 � 1�e� > maxfmi j i = 1; : : : ; rg, if e < 0, and(2.6b) b � (a� 1)e, if e > 0.For z1; : : : ; zr 2 � in very general position and � > 0H�  Blz(�); (a� 2) � ��C0 + (b� 2 + 2g)��F � rXi=1 miEi! = 0:Proof: Note that if the invariant e is non-positive, then �b� �a2 � 1�e� > 0 impliesb � (a� 1)e; (6.6)so that this inequality is ful�lled for any hoie of e.13 Let L0 = �C0 + �F , then D � L0 �KFe = (a + 1 � �)C0 + (b + 1 + e � �)F , and thus theoptimality of the onditions follows from(4.7b.i/ii) (D � L0 �KFe)2 = (a+ 1� �)�2(b+ 1 + e� �) � (a + 1� �)e� � a�(2b� ae) +(�e+ e+ 2� 2�)� � a(2b� ae) = (D � L�KFe)2,(4.8b.i/ii) (D � L0 �KFe):F = a+ 1� � � a = (D �L�KFe):F , and for e = 0, (D �L0 �KFe):C0 = b+ 1� � � b = (D � L�KFe):C0, and(4.9b.ii) b+ 1 + e� � � e(a+ 1� �) implies b � b+ e�+ 1� � � ae.14l will be the degree of a suitable very ample divisor d on C. Now d de�nes an embedding of Cinto some PNC suh that the degree of the image C 0 is just deg(d). Therefore deg(d) � 2, unless C 0is linear, whih implies C �= P1C .



28 THOMAS KEILEN AND ILYA TYOMKINSetting D = (a� 2)C0 + (b� 2 + 2g)F we have(D �K�)2 = �aC0 + (b + e)F �2 = 2a�b� �a2 � 1�e� � 2 rXi=1 (mi + 1)2;whih is just (2.4). Similarly, by (2.5b.i/ii/iii) and Lemma 6.2 Condition (2.5) issatis�ed.15 Finally Condition (2.6b) implies that D �K� is nef.In order to see the last statement, we have to onsider two ases.Case 1: e � 0.If B 2 ja0C0 + b0F ja is irreduible, then we are in one of the following situations, by[Har77℄ V.2.20:(i) a0 = 0 and b0 = 1, whih, onsidering (2.5b.i), implies(D �K�):B = a > 0:(ii) a0 = 1 and b0 = 0, whih by (6.6) leads to(D �K�):B = b� (a� 1)e � 0:(iii) a0 > 0 and b0 � a0e, whih in view of (2.5b.i), (6.6), and e � 0 gives(D �K�):B = �aa0e+ ab0 + (b + e)a0 � (b + e)a0 � 0:Hene, D �K� is nef.Case 2: e < 0.In this ase we may apply [Har77℄ V.2.21 and �nd that if B 2 ja0C0 + b0F ja isirreduible, then we are in one of the following situations:(i) a0 = 0 and b0 = 1, whih is treated as in Case 1.(ii) a0 = 1 and b0 � 0, whih, onsidering (2.5b.i) and (6.6), implies(D �K�):B = b� (a� 1)e + ab0 � 0:(iii) a0 � 2 and b0 � 12a0e, whih in view of (2.5b.iii) leads to(D �K�):B = �aa0e + ab0 + (b+ e)a0 � �12aa0e+ (b + e)a0= �b� �a2 � 1�e�a0 > 0:Hene, D �K� is nef. �15To see this, let B �a a0C0 + b0F be an irreduible urve with B2 = 0. Then by Lemma 6.2either a0 = 0 and b0 = 1, or e = 0, a0 � 1 and b0 = 0, or e < 0, a0 � 2, and b0 = a02 e < 0.In the �rst ase, (D � K�):B = a > maxfmi j i = 1; : : : ; rg by (2.5b.i). In the seond ase,(D �K�):B = ba0 � b > maxfmi j i = 1; : : : ; rg by (2.5b.ii). And �nally, in the third ase, wehave (D �K�):B = a0 � �b� �a2 � 1�e)� > maxfmi j i = 1; : : : ; rg by (2.5b.iii).



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 29In order to obtain nie formulae we onsidered D = (a � 2)C0 + (b � 2 + 2g)F inthe formulation of the vanishing theorem. For the existene theorems it turns outthat the formulae look best if we work with D = (a� 1)C0 + (b+ l + 2g � 2� e)Finstead. In the ase of Hirzebruh surfaes this is just D = (a� 1)C0 + (b� 1)F .4.2b CorollaryGiven integers a; b 2 Z satisfying(4.7b) a�b� a2e� �Pri=1(mi + 1)2,(4.8b.i) a > maxfmi j i = 1; : : : ; rg,(4.8b.ii) b > maxfmi j i = 1; : : : ; rg, if e = 0,(4.8b.iii) 2�b� a2e� > maxfmi j i = 1; : : : ; rg, if e < 0, and(4.9b) b � ae, if e > 0,then for z1; : : : ; zr 2 � in very general position there is an irreduible redued urveC 2 j(a� 1)C0 + (b+ l+ 2g� 2� e)F ja with ordinary singularities of multipliitiesmi at the zi as only singularities. Moreover, VjCj(m) is T-smooth at C.Proof: Note that by (4.7b) and (4.8b.i) b > a2e � ae, if e � 0, and thus theinequality b � ae; (6.7)is ful�lled no matter what e is.Noting that D � L � K� �a aC0 + bF , it is in view of Lemma 6.2 lear, that theConditions (4.7) and (4.8) take the form (4.7b) respetively (4.8b). It, therefore,remains to show that (4.10) and (4.11) are obsolete, and that (4.9) takes the form(4.9b), whih in partiular means that it is obsolete in the ase � �= C � P1C .Step 1: (4.10) is obsolete.If � 6�= P1C �P1C , then l � 2. Sine, moreover, g(L) = g and D:L = a(l�e)+b+2g�2,Condition (4.8b.i) and (6.7) imply (4.10), i. e. for all i; jD:L� 2g(L) = a(l � e) + b� 2 � � a+ b� 2 � mi +mj; if � �= P1C � P1C ;2a+ (b� ae)� 2 � mi +mj; else.Step 2: (4.9) takes the form (4.9b).We have to onsider two ases.Case 1: e � 0.If B 2 ja0C0 + b0F ja is irreduible, then we are in one of the following situations, by[Har77℄ V.2.20:(i) a0 = 0 and b0 = 1, whih, onsidering (4.8b.i), implies(D � L�K�):B = a > 0:



30 THOMAS KEILEN AND ILYA TYOMKIN(ii) a0 = 1 and b0 = 0, whih by (6.7) leads to(D � L�K�):B = b� ae � 0:(iii) a0 > 0 and b0 � a0e, whih in view of (4.8b.i), (6.7), and e � 0 gives(D � L�K�):B = �aa0e+ ab0 + ba0 � ba0 � 0:Hene, D � L�K� is nef.Case 2: e < 0.In this ase we may apply [Har77℄ V.2.21 and �nd that if B 2 ja0C0 + b0F ja isirreduible, then we are in one of the following situations:(i) a0 = 0 and b0 = 1, whih is treated as in Case 1.(ii) a0 = 1 and b0 � 0, whih, onsidering (4.8b.i) and (6.7), implies(D � L�K�):B = b� ae+ ab0 � 0:(iii) a0 � 2 and b0 � 12a0e, whih in view of (4.8b.iii) leads to(D � L�K�):B = �aa0e+ ab0 + ba0 � �12aa0e + ba0 = �b� a2e�a0 > 0:Hene, D � L�K� is nef.Step 3: (4.12) is satis�ed, and thus (4.11) is obsolete.We have D2 = �e(a� 1)2 + 2(a� 1)(b+ l + 2g � 2� e);and (2D � L�K�):(L +K�) = e + 2al + 4ag + 4� 2b� 4a� 4g � 2l:Hene Condition (4.12) is equivalent to4b+ 8a + 4l + a2e + 8g < 2ab + 4al + 2e+ 8ag + 8 + 4 rXi=1 mi + 2r: (6.8)If � �= P1C �P1C , then the situation is symmetri and we may w. l. o. g. assume thatb � a. Sine by (4.8b.i) a � 2 we have to onsider the following ases:a � 4: g = 0; e = 0: Then � �= P1C � P1C , and by assumption b � a � 4 and l =e+1 = 1. We thus have 2ab+4al = ab+ ab+4a � 4b+8a and 8 > 4l,whih implies (6.8).g = 0; e > 0 or g � 1; e � 0: By (6.7) we get 2ab � 4b+ ab � 4b+ a2e.g = 0; e 2 f1; 2g: Then l = e+ 1, and hene 4al � 8a and 8 + 2e � 4l.g = 0; e � 3: Thus l = e+ 1 � 4, whih implies 2al � 8a and 2al � 4l.g � 1: Then l � 2, and thus 2al + 4ag � 8a, 2al � 4l, and 4ag � 8g.In any of the above ases (6.8) is satis�ed.g � 1; e < 0: Then l � 2 and 2ag � 8g. We therefore onsider the followingases:b � 0: Thus 2ab � 4b, 2al + 4ag � 8a, 2al � 4l, and 2e � a2e.



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 31b < 0: By (4.8b.i) and (4.8b.iii) 2ab � a2e, and of ourse 0 > 4b.Moreover, sine e � �g, we have ag + 2e � 0. And �nally,3al + 5ag � 8a and al � 4l.These onsiderations together ensure that (6.8) is ful�lled.a = 3: In this ase (6.8) omes down to16 + 7e < 2b + 8l + 16g + 4 rXi=1 mi + 2r: (6.9)e > 0, or e = 0 and g = 0: Then b � a = 3. Thus 2b + 8l + 4Pri=1mi �6 + 8(e + 1) + 4 > 16 + 7e, so that the inequality (6.9) is ertainlysatis�ed.e < 0, or e = 0 and g � 1: Then g � 1 and 16g � 16 + 7e, so that again theinequality (6.9) is ful�lled.a = 2: (6.8) reads just 8 + 2e < 4l + 8g + 4 rXi=1 mi + 2r: (6.10)e < 0: Then g � 1, and thus 8g � 8 + 2e, whih implies (6.10).e � 0: Then 4l + 4Pri=1mi � 4(e + 1) + 4 � 8 + 2e, and hene (6.10) isful�lled. �With the same D and L as above the onditions in the existene theorem Corollary5.4 redue to(5.3b) a(b� a2e) � 2075 P�(Si)�38 �(Si) + 29 P�(Si)�39 �p�(Si) + 132p29�2,(5.4b.i) a > 8<: q2075 p�(S1)� 1; if �(S1) � 38;p29p�(S1) + 112 ; if �(S1) � 39;(5.4b.ii) b > 8<: q2075 p�(S1)� 1; if �(S1) � 38;p29p�(S1) + 112 ; if �(S1) � 39; if e = 0,(5.4b.iii) 2�b� a2e� > 8<: q2075 p�(S1)� 1; if �(S1) � 38;p29p�(S1) + 112 ; if �(S1) � 39; if e < 0, and(5.5b) b � ae, if e > 0.6.. Produts of Curves. Let C1 and C2 be two smooth projetive urves ofgenuses g1 � 1 and g2 � 1 respetively. The surfae � = C1 � C2 is naturallyequipped with two �brations pri : � ! Ci, i = 1; 2, and by abuse of notation wedenote two generi �bres pr�12 (p2) = C1 � fp2g resp. pr�11 (p1) = fp1g � C2 again byC1 resp. C2.



32 THOMAS KEILEN AND ILYA TYOMKINOne an show that for a generi hoie of the urves C1 and C2 the Neron-Severigroup NS(�) = C1Z� C2Z of � is two-dimensional16 with intersetion matrix(Ci:Cj)i;j = � 0 11 0 � :Thus, the only irreduible urves B � � with sel�ntersetion B2 = 0 are the �bresC1 and C2, and for any irreduible urve B �a aC1 + bC2 the oeÆients a and bmust be non-negative. Taking into aount that K� �a (2g2 � 2)C1 + (2g1 � 2)C2Corollary 2.2 omes down to the following.2.2 CorollaryLet C1 and C2 be two generi urves with g(Ci) = gi � 1, i = 1; 2, and let a; b 2 Zbe integers satisfying(2.4) (a� 2g2 + 2)(b� 2g1 + 2) �Pri=1(mi + 1)2, and(2.5) (a� 2g2 + 2); (b� 2g1 + 2) > maxfmi j i = 1; : : : ; rg,then for z1; : : : ; zr 2 � = C1 � C2 in very general position and � > 0H�  Blz(�); a��C1 + b��C2 � rXi=1 miEi! = 0:We know that C1 + C2 has positive self-intersetion and intersets any irreduibleurve positive, is thus ample by Nakai-Moishezon. But then we may �nd someinteger l � 3 suh that L = lC1 + lC2 is very ample. We hoose l minimal with thisproperty for the existene theorem Corollary 4.2, and we laim that the Conditions(4.9), (4.10) and (4.11) beome obsolete, while (4.7) and (4.8) take the form(4.7) (a� l � 2g2 + 2)(b� l � 2g1 + 2) �Pri=1(mi + 1)2, and(4.8) (a� l � 2g2 + 2); (b� l � 2g1 + 2) > maxfmi j i = 1; : : : ; rg.That is, under these hypotheses there is an irreduible urve in jDjl, for any D �aaC1 + bC2, with preisely r ordinary singular points of multipliities m1; : : : ; mr.(4.9) beomes redundant in view of (4.8) and sine an irreduible urve B �aa0C1 + b0C2 has non-negative oeÆients a0 and b0. For (4.11) we look at (4.12),whih in this ase takes the form2ab + �(2a� l � 2g2 + 2)(l + 2g1 � 2) + (2b� l � 2g1 + 2)(l + 2g2 � 2)�+4 rXi=1 mi + 2r > 0:However, in view of (4.8) the fators and summands on the left-hand side are allpositive, so that the inequality is ful�lled.16In the ase that C1 and C2 are ellipti urves, generi means preisely, that they are not isogenous- see Setion 6.d. For a further investigation of the Neron-Severi group of a produt of two urveswe refer to Appendix F.



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 33It remains to show thatD:L�g(L) � mi+mj for all i; j. However, by the adjuntionformula g(L) = 1+ 12(L2+L:K�) = 1+ l �(l+g1+g2�2), and by (4.8) D:L�g(L) >l � �(a� l � 2g2 + 2) + (b� l � 2g1 + 2)� > 3(mi +mj) � mi +mj. Thus the laimis proved.From these onsiderations we at one dedue the onditions for the existene of anirreduible urve in jDjl, D �a aC1 + bC2, with presribed singularities of arbitrarytype, i. e. the onditions in Corollary 5.4. They ome down to(5.3) (a�l�2g2+2)(b�l�2g1+2) � 2075 P�(Si)�38�(Si)+29P�(Si)�39�p�(Si)+ 132p29�2,and(5.4) (a� l�2g2+2); (b� l�2g1+2) > 8<: q2075 p�(S1)� 1; if �(S1) � 38;p29p�(S1) + 112 ; if �(S1) � 39:6.d. Produts of Ellipti Curves. Let C1 = C=�1 and C2 = C=�2 be two elliptiurves, where �i = Z � �iZ � C is a lattie and �i is in the upper half plane ofC. We denote the natural group struture on eah of the Ci by + and the neutralelement by 0.Our interest lies in the study of the surfae � = C1 � C2. This surfae is naturallyequipped with two �brations pri : � ! Ci, i = 1; 2, and by abuse of notation wedenote the �bres pr�12 (0) = C1�f0g resp. pr�11 (0) = f0g�C2 again by C1 resp. C2.The group strutures on C1 and C2 extend to � so that � itself is an abelian variety.Moreover, for p = (p1; p2) 2 � the mapping �p : �! � : (a; b) 7! (a + p1; b + p2) isan automorphism of abelian varieties. Due to these translation morphisms we knowthat for any urve B � � the algebrai family of urves jBja overs the whole of �,and in partiular dim jBja � 1. This also implies B2 � 0.Sine � is an abelian surfae, NS(�) = Num(�), K� = 0, and the Piard number� = �(�) � 4 (f. [LB92℄ 4.11.2 and Ex. 2.5). But the N�eron-Severi group of �ontains the two independent elements C1 and C2, so that � � 2. The general ase17is indeed � = 2, however � might also be larger (see Example 6.8), in whih ase theadditional generators may be hosen to be graphs of surjetive morphisms from C1to C2 (f. [IS96℄ 3.2 Example 3). That is, �(�) = 2 if and only if C1 and C2 are notisogenous.6.7 LemmaLet B � � be an irreduible urve, B 6�a Ck, k = 1; 2, and fi; jg = f1; 2g.(i) If B2 = 0, then B is smooth, g(B) = 1, and prij : B ! Ci is an unrami�edovering of degree B:Cj.17The abelian surfaes with � � 2 possessing a priniple polarisation are parametrized by a ount-able number of surfaes in a three-dimensional spae, and the Piard number of suh an abeliansurfae is two unless it is ontained the intersetion of two or three of these surfaes (f. [IS96℄11.2). See also [GH94℄ p. 286 and Proposition F.1.



34 THOMAS KEILEN AND ILYA TYOMKIN(ii) If B2 = 0, then #�B \ �p(Ci)� = B:Cj for any p 2 �, and if q; q0 2 B, then�q�q0(B) = B.(iii) If B2 = 0, then the base urve H in the �bration � : � ! H with �bre B,whih exists aording to Proposition B.1, is an ellipti urve.(iv) If B:Ci = 1, then B2 = 0 and Cj �= B.(v) If B:Ci = 1 = B:Cj, then C1 �= C2.(vi) If B is the graph of a morphism � : Ci ! Cj, then B:Cj = 1 and B2 = 0.Proof:(i) The adjuntion formula givespa(B) = 1 + B2 +K�:B2 = 1:Sine jC2ja overs the whole of � and B 6�a C2, the two irreduible urvesB and C2 must interset properly, that is, B is not a �bre of pr1. But thenthe mapping pr1j : B ! C1 is a �nite surjetive morphism of degree B:C2.If B was a singular urve its normalisation would have to have arithmetialgenus 0 and the omposition of the normalisation with pr1j would give rise toa surjetive morphism from P1C to an ellipti urve, ontraditing Hurwitz'sformula. Hene, B is smooth and g(B) = pa(B) = 1. We thus may apply theformula of Hurwitz to pr1j and the degree of the rami�ation divisor R turnsout to be deg(R) = 2�g(B)� 1 + (g(C1)� 1) deg(pr1j)� = 0:The remaining ase is treated analogously.(ii) W. l. o. g. i = 2. For p = (p1; p2) 2 � we have �p(C2) = pr�11 (p1) is a �bre ofpr1, and sine pr1j is unrami�ed, #�B \ �p(C2)� = deg(pr1j) = B:C2.Suppose q; q0 2 B with �q�q0(B) 6= B. Then q = �q�q0(q0) 2 B \ �q�q0(B), andhene B2 = B:�q�q0(B) > 0, whih ontradits the assumption B2 = 0.(iii) Sine �(�) = 0, [FM94℄ Lemma I.3.18 and Proposition I.3.22 imply thatg(H) = pg(�) = h0(�; K�) = 1.(iv) W. l. o. g. B:C2 = 1. Let 0 6= p 2 C2. We laim that B \ �p(B) = ;, andhene B2 = B:�p(B) = 0.Suppose (a; b) 2 B \ �p(B), then there is an (a0; b0) 2 B suh that (a; b) =�p(a0; b0) = (a0; b0 + p), i. e. a = a0 and b = b0 + p. Hene, (0; b); (0; b0) 2��a(B) \ C2. But, ��a(B):C2 = B:C2 = 1, and thus b0 = b = b0 + p inontradition to the hoie of p.C1 �= B via pr1j follows from (i).(v) By (iv) we have C1 �= B �= C2.



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 35(vi) prij : B ! Ci is an isomorphism, and has thus degree one. But deg(prij) =B:Cj. Thus we are done with (iv). �6.8 Example(i) Let C1 = C2 = C = C=� with � = Z��Z, and � = C1�C2 = C�C. The Pi-ard number �(�) is then either three or four, depending on whether the groupEnd0(C) of endomorphisms of C �xing 0 is just Z or larger. Using [Har77℄Theorem IV.4.19 and Exerise IV.4.11 we �nd the following lassi�ation.Case 1: 9 d 2 N suh that � 2 Q[p�d℄, i. e. Z $ End0(C).Then �(�) = 4 and NS(�) = C1Z�C2Z�C3Z�C4Z where C3 is the diagonalin � and C4 is the graph of the morphism � : C ! C : p 7! (b�) � p of degreejb� j2, where 0 6= b 2 N minimal with b(� + � ) 2 Z and b�� 2 Z. Settinga := C3:C4 � 1, the intersetion matrix is(Cj:Ck)j;k=1;:::;4 = 0BB� 0 1 1 jb� j21 0 1 11 1 0 ajb� j2 1 a 0 1CCA :If e. g. � = i, then C4 = �(; i) j  2 C	 and(Cj:Ck)j;k=1;:::;4 = 0BB� 0 1 1 11 0 1 11 1 0 11 1 1 0 1CCA :Case 2: �d 2 N suh that � 2 Q[p�d℄, i. e. Z = End0(C).Then �(�) = 3 and NS(�) = C1Z�C2Z�C3Z where again C3 is the diagonalin �. The intersetion matrix in this ase is(Cj:Ck)j;k=1;2;3 = 0� 0 1 11 0 11 1 0 1A :(ii) Let C1 = C=�1 and C2 = C=�2 with �1 = Z� �1Z, �1 = i, and �2 = Z� �2Z,�2 = 12 i. Then C1 6�= C2.We onsider the surjetive morphisms �j : C1 ! C2, j = 3; 4, indued bymultipliation with the omplex numbers �3 = 1 and �4 = i respetively.Denoting by Cj the graph of �j, we laim, C1:C3 = deg(�3) = 2 and C1:C4 =deg(�4) = 2. �j being an unrami�ed overing, we an alulate its degree byounting the preimages of 0. If p = [a + ib℄ 2 C=�1 = C1 with 0 � a; b < 1,then �3(p) = 0, a+ ib = �3 � (a+ ib) 2 �2, 9 r; s 2 Z : a = r and b = 12s, a = 0 and b 2 �0; 12	:



36 THOMAS KEILEN AND ILYA TYOMKINand �4(p) = 0, ia� b = �4 � (a+ ib) 2 �2, 9 r; s 2 Z : �b = r and a = 12s, b = 0 and a 2 �0; 12	:Moreover, the graphs C3 and C4 interset only in the point (0; 0) and theintersetion is obviously transversal, so C3:C4 = 1.Thus � = C1�C2 is an example for a produt of non-isomorphi ellipti urveswith �(�) = 4, NS(�) = C1Z� C2Z� C3Z� C4Z, and intersetion matrix(Cj:Ck)j;k=1;:::;4 = 0BB� 0 1 2 21 0 1 12 1 0 12 1 1 0 1CCA :(iii) See [HR98℄ p. 4 for examples � = C1 � C2 with �(�) = 3 and intersetionmatrix 0� 0 1 a1 0 1a 1 0 1A ; a 6= 1:6.9 Remark(i) If C1 and C2 are isogenous, then there are irreduible urves B � � with B:Ciarbitrarily large.For this just note, that we have a urve � � � whih is the graph of anisogeny � : C1 ! C2. Denoting by nC2 : C2 ! C2 the morphism indued bythe multipliation with n 2 N, we have a morphism nC2 Æ � whose degree isjust n2 deg(�). But the degree is the intersetion number of the graph withC1. The dual morphism of nC2 Æ � has the the same degree, whih then is theintersetion multipliity of its graph with C2. (f. [Har77℄ Ex. IV.4.7)(ii) If C1 and C2 are isogenous, then � might very well ontain smooth irreduibleellipti urves B whih are neither isomorphi to C1 nor to C2, and heneannot be the graph of an isogeny between C1 and C2. But being an elliptiurve we have B2 = 0 by the adjuntion formula. If now NS(�) =L�(�)i=1 CiZ,where the additional generators are graphs, then B �a P�(�)i=1 niCi with someni < 0. (f. [LB92℄ Ex. 10.6)Throughout the remaining part of the subsetion we will restrit our attention tothe general ase, that is that C1 and C2 are not isogenous. This makes the formulaelook muh nier, sine then NS(�) = C1Z� C2Z.6.10 LemmaLet C1 and C2 be non-isogenous ellipti urves, D 2 Div(�) with D �a aC1 + bC2.(i) D2 = 0 if and only if a = 0 or b = 0.(ii) If D is an irreduible urve, then we are in one of the following ases:(1) a = 0 and b = 1,



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 37(2) a = 1 and b = 0,(3) a; b > 0,and if we are in one of these ases, then there is an irreduible urve alge-braially equivalent to D.(iii) If D is an irreduible urve and D2 = 0, then either D �a C1 or D �a C2.(iv) D is nef if and only if a; b � 0.(v) D is ample if and only if a; b > 0.(vi) D is very ample if and only if a; b � 3.Proof:(i) 0 = D2 = 2ab if and only if a = 0 or b = 0.(ii) Let us �rst onsider the ase that D is irreduible.If a = 0 or b = 0, then D is algebraially equivalent to a multiple of a �breof one of the projetions pri, i = 1; 2. In this situation D2 = 0 and thus theirreduible urve D does not interset any of the �bres properly. Hene it mustbe a union of several �bres, and being irreduible it must be a �bre. That iswe are in one of the �rst two ases.Suppose now that a; b 6= 0. Thus D intersets Ci properly, and 0 < D:C1 = band 0 < D:C2 = a.It now remains to show that the mentioned algebrai systems ontain irre-duible urves, whih is lear for the �rst two of them. Let therefore a and bbe positive. Then obviously the linear system jaC1 + bC2jl ontains no �xedomponent, and being ample by (v) its general element is irreduible aordingto [LB92℄ Theorem 4.3.5.(iii) Follows from (i) and (ii).(iv) By de�nition D is nef if and only if D:D0 � 0 for every irreduible urveD0 � �. Thus the laim is an immediate onsequene of (ii).(v) Sine by the Nakai-Moishezon-Criterion ampleness depends only on the nu-merial lass of a divisor, we may assume that D = aC1 + bC2. Moreover, by[LB92℄ Proposition 4.5.2 D is ample if and only if D2 > 0 and jDjl 6= ;.If a; b > 0, then D2 = 2ab > 0 and the e�etive divisor aC1 + bC2 2 jDjl, thusD is ample. Conversely, if D is ample, then 0 < D2 = 2ab and 0 < D:C1 = b,thus a; b > 0.(vi) By [LB92℄ Corollary 4.5.3 and (v) L = 3C1 + 3C2 is very ample. If a; b � 3,then the system j(a�3)C1+(b�3)C2jl is basepoint free, whih is an immediateonsequene of the existene of the translation morphisms �p, p 2 �. But thenL0 = (a�3)C1+(b�3)C2 is globally generated and D = L+L0 is very ample.Conversely, if a < 3, then D \ C2 is a divisor of degree D:C2 = a < 3 onthe ellipti urve C2 and hene not very ample (f. [Har77℄ Example IV.3.3.3).But then D is not very ample. Analogously if b < 3.



38 THOMAS KEILEN AND ILYA TYOMKIN �In view of (2.5d) and Lemma 6.10 (iv) the Condition (2.6) beomes obsolete, andCorollary 2.2 has the following form, taking Lemma 6.10 (iii) and K� = 0 intoaount.2.2d CorollaryLet C1 and C2 be two non-isogenous ellipti urves, a; b 2 Z be integers satisfying(2.4d) ab �Pri=1(mi + 1)2, and(2.5d) a; b > maxfmi j i = 1; : : : ; rg,then for z1; : : : ; zr 2 � = C1 � C2 in very general position and � > 0H�  Blz(�); a��C1 + b��C2 � rXi=1 miEi! = 0:As for the existene theorem Corollary 4.2 we work with the very ample divisor lassL = 3C1 + 3C2, and we laim that the Conditions (4.9), (4.10) and (4.11) beomeobsolete, while, in view of Lemma 6.10 (iii), (4.7) and (4.8) take the form(4.7d) (a� 3)(b� 3) �Pri=1(mi + 1)2, and(4.8d) (a� 3); (b� 3) > maxfmi j i = 1; : : : ; rg.That is, under these hypotheses there is an irreduible urve in jDjl, for any D �aaC1 + bC2, with preisely r ordinary singular points of multipliities m1; : : : ; mr.(4.9) beomes redundant in view of (4.8d) and Lemma 6.10 (iv), while (4.11) isful�lled in view of (4.12) and K� = 0. It remains to show that D:L�g(L) � mi+mjfor all i; j. However, by the adjuntion formula g(L) = 1+ 12L2 = 10, and by (4.8d)D:L� g(L) > 3(a� 3 + b� 3) > 3(mi +mj) � mi +mj. Thus the laim is proved.From these onsiderations we at one dedue the onditions for the existene of anirreduible urve in jDjl, D �a aC1 + bC2, with presribed singularities of arbitrarytype, i. e. the onditions in Corollary 5.4. They ome down to(5.3d) (a� 3)(b� 3) � 2075 P�(Si)�38�(Si) + 29 P�(Si)�39�p�(Si) + 132p29�2, and(5.4d) (a� 3); (b� 3) > 8<: q2075 p�(S1)� 1; if �(S1) � 38;p29p�(S1) + 112 ; if �(S1) � 39:6.e. Surfaes in P3C . A smooth projetive surfae � in P3C is given by a singleequation f = 0 with f 2 C[w; x; y; z℄ homogeneous, and by de�nition the degree of�, say n, is just the degree of f . For n = 1, � �= P2C , for n = 2, � �= P1C �P1C , and forn = 3, � is isomorphi to P2C blown up in six points in general position. Thus thePiard number �(�), i. e. the rank of the N�eron-Severi group, in these ases is 1, 2,and 7 respetively. Note that these are also preisely the ases where � is rational.



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 39In general the Piard number �(�) of a surfae in P3C may be arbitrarily large,18but the N�eron-Severi group always ontains a very speial member, namely thelass H 2 NS(�) of a hyperplane setion with H2 = n. And the lass of theanonial divisor is then just (n� 4)H. Moreover, if the degree of � is at least four,that is, if � is not rational, then it is likely that NS(�) = HZ. More preisely,if n � 4, Noether's Theorem says that f� j �(�) = 1; deg(�) = ng is a verygeneral subset of the projetive spae of projetive surfaes in P3C of �xed degree n,i. e. it's omplement is an at most ountable union of lower dimensional subvarieties.(f. [Har75℄ Corollary 3.5 or [IS96℄ p. 146)Sine we onsider the ase of rational surfaes separately the following onsiderationsthus give a full answer for the \general ase" of a surfae in P3C .2.2e CorollaryLet � � P3C be a surfae in P3C of degree n, H 2 NS(�) be the algebrai lass of ahyperplane setion, and d an integer satisfying(2.4e) n(d� n+ 4)2 � 2Pri=1(mi + 1)2, and(2.5e) (d � n + 4) �H:B > maxfmi j i = 1; : : : ; rg for any irreduible urveB with B2 = 0 and dim jBja � 1, and(2.6e) d � n� 4,then for z1; : : : ; zr 2 � in very general position and � > 0H�  Blz(�); d��H � rXi=1 miEi! = 0:6.13 Remark(i) If NS(�) = HZ, then (2.5e) is redundant, sine there are no irreduible urvesB with B2 = 0. Otherwise we would have B �a kH for some k 2 Z andk2n = B2 = 0 would imply k = 0, but then H:B = 0 in ontradition to Hbeing ample.(ii) However, a quadri in P3C or the K3-surfae given by w4 + x4 + y4 + z4 = 0ontain irreduible urves of self-intersetion zero.(iii) IfPri=1(mi+1)2 > n2m2i for all i = 1; : : : ; r then again (2.5e) beomes obsoletein view of (2.4e), sine H:B > 0 anyway. The above inequality is, for instane,ful�lled if the highest multipliity ours at least n2 times.(iv) In the existene theorems the ondition depending on urves of self-intersetionwill vanish in any ase.As for Corollary 4.2 we laim that if NS(�) = HZ, then18E. g. the n-th Fermat surfae, given by wn + xn + yn + zn = 0 has Piard number � � 3(n �1)(n � 2) + 1, with equality if gd(n; 6) = 1. (f. [Shi82℄ Theorem 7, see also [AS83℄ pp. 1f. and[IS96℄ p. 146)



40 THOMAS KEILEN AND ILYA TYOMKIN(4.7e) n(d� n+ 3)2 � 2Pri=1(mi + 1)2,ensures the existene of an irreduible urve C �a dH with preisely r ordinarysingular points of multipliities m1; : : : ; mr and h1��;JX(m;z)=�(dH)� = 0.The role of the very ample divisor L is �lled by a hyperplane setion, and thusg(L) = 1 + L2+L:K�2 = �n�12 �. Therefore, (4.7e) obviously implies (4.7), and (4.10)takes the form n � (d� n+ 3) > mi + 2 for all i = 1; : : : ; r: (6.11)However, from (4.7e) we dedue for any i 2 f1; : : : ; rgn � (d� n+ 3) � pn � p2 � (mi + 1) � mi + 2;unless n = r = m1 = 1, in whih ase we are done by the assumption d � 3. Thus(4.10) is redundant.Moreover, there are no urves of self-intersetion zero on �, and it thus remains toverify (4.9), whih in this situation takes the formd � n� 3;and follows at one from (6.11).With the aid of this result the onditions of Corollary 5.4 for the existene of anirreduible urve C �a dH with presribed singularities Si in this situation thereforeredue to(5.3e) n(d� n+ 3)2 � 4145 P�(Si)�38�(Si) + 58 P�(Si)�39 �p�(Si) + 132p29�2, and6.f. K3-Surfaes. We note that if � is a K3-surfae then the N�eron-Severi groupNS(�) and the Piard group Pi(�) of � oinide, i. e. jDja = jDjl for every divisorD on �. Moreover, an irreduible urve B has self-intersetion B2 = 0 if and onlyif the arithmetial genus of B is one. In that ase jBjl is a penil of ellipti urveswithout base points endowing � with the struture of an ellipti �bration over P1C .(f. [M�er85℄ or Proposition B.1) We, therefore, distinguish two ases.6.f.i. Generi K3-Surfaes. Sine a generi K3-surfae does not possess an ellip-ti �bration the following version of Corollary 2.2 applies for generi K3-surfaes.(f. [FM94℄ I.1.3.7)2.2f.i CorollaryLet � be a K3-surfae whih is not ellipti, and let D a divisor on � satisfying(2.4f) D2 � 2Pri=1(mi + 1)2, and(2.6f) D nef,then for z1; : : : ; zr 2 � in very general position and � > 0H�  Blz(�); ��D � rXi=1 miEi! = 0:



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 41In view of equation (4.12) the onditions in Corollary 4.2 redue to(4.7f) (D � L)2 � 2Pri=1(mi + 1)2,(4.9f) D � L nef, and(4.10f) D:L� 2g(L) � mi +mj for all i; j,and, analogously, the onditions in Corollary 5.4 redue to (5.6),(5.3f) (D � L)2 � 4145 P�(Si)�38�(Si) + 58 P�(Si)�39 �p�(Si) + 132p29�2, and(5.5f) D � L nef.6.f.ii. K3-Surfaes with an Ellipti Struture. The hypersurfae in P3C given by theequation x4+ y4+ z4+ u4 = 0 is an example of a K3-surfae whih is endowed withan ellipti �bration. Among the ellipti K3-surfaes the general one will possess aunique ellipti �bration while there are examples with in�nitely many di�erent suh�brations. (f. [FM94℄ I.1.3.7)2.2f.ii CorollaryLet � be a K3-surfae whih possesses an ellipti �bration, and let D be a divisoron � satisfying(2.4f) D2 � 2Pri=1(mi + 1)2,(2.5f) D:B > maxfmi j i = 1; : : : ; rg for any irreduible urve B with B2 =0, and(2.6f) D nef,then for z1; : : : ; zr 2 � in very general position and � > 0H�  Blz(�); ��D � rXi=1 miEi! = 0:6.16 RemarkIf � is generi among the ellipti K3-surfaes, i. e. admits exatly one ellipti �bra-tion, then Condition (2.5f) means that a urve in jDjl meets a general �bre in atleast k = maxfmi j i = 1; : : : ; rg distint points.The onditions in Corollary 4.2 then redue to (4.7f), (4.9f), (4.10f), and(4.8f) (D � L):B > maxfmi j i = 1; : : : ; rg for any urve B with B2 = 0.Similarly, the onditions in Corollary 5.4 redue to (5.3f), (5.5f), (5.6), and(5.4f) (D � L):B > 8<: q2075 p�(S1)� 1; if �(S1) � 38;p29p�(S1) + 112 ; if �(S1) � 39;



42 THOMAS KEILEN AND ILYA TYOMKINfor any irreduible urve B with B2 = 0.



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 43Appendix A. Very General PositionIt is our �rst aim to show that if there is a urve passing through points z1; : : : ; zr 2 �in very general position with multipliities n1; : : : ; nr then it an be equimultiplydeformed in its algebrai system in a good way - i. e. suitable for Lemma 3.3.A.1 LemmaLet B � � be a urve, and n 2 Nr0. ThenVB;n = �z 2 �r �� 9 C 2 jBja : multzi(C) � ni 8i = 1; : : : ; r	is a losed subset of �r.Proof:Step 1: Show �rst that for n 2 N0XB;n := �(C; z) 2 H � � j multz(C) � n	is a losed subset of H � �, where H := jBja.Being the redution of a onneted omponent of the Hilbert sheme Hilb�, H isa projetive variety endowed with a universal family of urves, giving rise to thefollowing diagram of morphismsC = SC2HfCg � C � � //

((QQQQQQQQQQQQQQQ
H � � pr� // //prH

����

�H;where C is an e�etive Cartier divisor on H � � with CjfCg�� = C.Let s 2 H0�H � �;OH��(C)� be a global setion de�ning C. ThenXB;n = �� = (C; z) 2 H � � �� s� 2 (mn�;z +mH;C) � OH��;�	:We may onsider a �nite open aÆne overing of H � � of the form fHi � Uj j i 2I; j 2 Jg, Hi � H and Uj � � open, suh that C is loally on Hi � Uj given by onepolynomial equation, say si;j(a; b) = 0; for a 2 Hi; b 2 Uj:It suÆes to show that XB;n \ (Hi � Uj) is losed in Hi � Uj for all i; j.However, for � = (C; z) = (a; b) 2 Hi � Uj we haves� 2 �mn�;z +mH;C� � OH��;�if and only if si;j(a; b) = 0 and��si;j�b� (a; b) = 0; for all j�j � n� 1:



44 THOMAS KEILEN AND ILYA TYOMKINThus,XB;n \ (Hi � Uj) = ((a; b) 2 Hi � Uj ����� si;j(a; b) = 0 = ��si;j�b� (a; b); 8 j�j � n� 1)is a losed subvariety of Hi � Uj.Step 2: VB;n is a losed subset of �r.By Step 1 for i = 1; : : : ; r the setXB;n;i := �(z; C) 2 �r �H �� multzi(C) � ni	 �= �r�1 �XB;niis a losed subset of �r �H. Considering nowXB;n := rTi=1XB;n;i � � //�
''NNNNNNNNNNNN

�r �H
�����r;we �nd that VB;n = �(XB;n), being the image of a losed subset under a morphismbetween projetive varieties, is a losed subset of �r (f. [Har77℄ Ex. II.4.4). �A.2 CorollaryThen the omplement of the setV = [B2Hilb� [n2Nr0 �VB;n j VB;n 6= �r	is very general, where Hilb� is the Hilbert sheme of urves on �.In partiular, there is a very general subset U � �r suh that if for some z 2 Uthere is a urve B � � with multzi(B) = ni for i = 1; : : : ; r, then for any z0 2 Uthere is a urve B0 2 jBja with multz0i(B0) � ni.Proof: Fixing some embedding � � PnC and h 2 Q[x℄, Hilbh� is a projetive varietyand has thus only �nitely many onneted omponents. Thus the Hilbert shemeHilb� has only a ountable number of onneted omponents, and we have only aountable number of di�erent VB;n, where B runs through Hilb� and n through Nr.By Lemma A.1 the sets VB;n are losed, hene their omplements �r nVB;n are open.But then U = �r n V = \B2Hilb� \n2Nr0 ��r n VB;n j VB;n 6= �r	is an at most ountable intersetion of open dense subsets of �r, and is hene verygeneral. �In the proof of Theorem 2.1 we use at some plae the result of Corollary A.3. Weould instead use Corollary A.2. However, sine the results are quite nie and simpleto prove we just give them.A.3 Corollary



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 45(i) The number of urves B in � with dim jBja = 0 is at most ountable.(ii) The number of exeptional urves in � (i. e. urves with negative self inter-setion) is at most ountable.(iii) There is a very general subset U of �r, r � 1, suh that for z 2 U no zibelongs to a urve B � � with dim jBja = 0, in partiular to no exeptionalurve.Proof:(i) By de�nition jBja is a onneted omponent of Hilb�, whose number is atmost ountable. If in addition dim jBja = 0, then jBja = fBg whih provesthe laim.(ii) Curves of negative self-intersetion are not algebraially equivalent to anyother urve (f. [IS96℄ p. 153).(iii) Follows from (i). �A.4 Example (Kodaira)Let z1; : : : ; z9 2 P2C be in very general position19 and let � = Blz �P2C � be the blowup of P2C in z = (z1; : : : ; z9). Then � ontains in�nitely many irreduible smoothrational �1-urves, i. e. exeptional urves of the �rst kind.Proof: It suÆes to �nd an in�nite number of irreduible urves C in P2C suh thatd2 � 9Xi=1 m2i = �1; (A.1)and pa(C)� 9Xi=1 mi(mi � 1)2 = 0; (A.2)where mi = multzi(C) and d = deg(C), sine the expression in (A.1) is the selfintersetion of the strit transform eC = Blz(C) of C and (A.2) gives its arithmetialgenus. In partiular eC annot ontain any singularities, sine they would ontributeto the arithmetial genus, and, being irreduible anyway, eC is an exeptional urveof the �rst kind.We are going to dedue the existene of these urves with the aid of quadratiCremona transformations.Claim: If for some d > 0 and m1; : : : ; m9 � 0 with 3d �P9i=1mi = 1 there is anirreduible urve C 2 ��JX(m;z)(d)��l, then T (C) 2 ��JX(m0;z0)(d+ a)��l is an irreduibleurve, where19To be preise, no three of the nine points should be ollinear, and after any �nite number ofquadrati Cremona transformations entred at the zi (respetively the newly obtained entres)still no three should be ollinear. Thus the admissible tuples in (P2C )9 form a very general set,f. [Har77℄ Ex. V.4.15.



46 THOMAS KEILEN AND ILYA TYOMKIN� fi; j; kg � f1; : : : ; 9g are suh that mi +mj +mk < d,� T : P2C 9 9 KP2C is the quadrati Cremona transformation at zi; zj; zk,� z0� = � z�; if � 6= i; j; k;T (z�z�); if f�; �; �g = fi; j; kg;� m0� = � m�; if � 6= i; j; k;m� + a; else, and� a = d� (mi +mj +mk):Note that, 3(d + a) � P9i=1m0i = 1, i. e. we may iterate the proess sine thehypothesis of the laim will be preserved.Sine 3d >P9i=1mi, there must be a triple (i; j; k) suh that d > mi +mj +mk.Let us now onsider the following diagram� = Blzi;zj ;zk(P2C ) = Blz0i;z0j ;z0k(P2C )�
uulllllllllllllllll �0

))RRRRRRRRRRRRRRRRRP2C T //_____________________ P2C ;and let us denote the exeptional divisors of � by Ei and those of �0 by E 0i. More-over, let eC = Blzi;zj ;zk(C) be the strit transform of C under � and let ℄T (C) =Blz0i;z0j ;z0k �T (C)� be the strit transform of T (C) under �0. Then of ourse eC = ℄T (C),and T (C), being the projetion �0� eC� of the strit transform eC of the irreduibleurve C, is of ourse an irreduible urve. Note that the ondition d > mi+mj+mkensures that eC is not one of the urves whih are ontrated. It thus suÆes to verifydeg �T (C)� = d+ a;and m0i = multz0i �T (C)� = � m� ; if � 6= i; j; k;m� + a; else.Sine outside the lines zizj, zizk, and zkzj the transformation T is an isomorphismand sine by hypothesis none of the remaining z� belongs to one of these lines welearly have m0� = m� for � 6= i; j; k. Moreover, we havem0i = ℄T (C):E 0i = eC:Blzi;zj ;zk(zjzk)= (��C �PmlEl):(��zjzk � Ej � Ek)= C:zjzk �mj �mk = d�mj �mk = mi + a:Analogously for m0j and m0k.Finally we �nd deg �T (C)� = T (C):z0iz0j = �0�T (C):�0�z0iz0j= �℄T (C) +Pm0�E 0��:�Ek + E 0i + E 0j�= eC:Ek +Pm0�E 0�:Ek= mk +m0i +m0j = d+ a:This proves the laim.



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 47Let us now show by indution that for any d > 0 there is an irreduible urve C ofdegree d0 � d satisfying (A.1) and (A.2). For d = 1 the line C = z1z2 through z1 andz2 gives the indution start. Given some suitable urve of degree d0 � d the abovelaim then ensures that through points in very general position there is an irreduibleurve of higher degree satisfying (A.1) and (A.2), sine a = d� (m1+m2+m3) > 0.Thus the indution step is done. �The example shows that a smooth projetive surfae � may indeed arry an in�nitenumber of exeptional urves - even of the �rst kind. Aording to Nagata ([Nag60℄Theorem 4a, p. 283) the example is due to Kodaira. For further referenes on theexample see [Har77℄ Ex. V.4.15, [BS95℄ Example 4.2.7, or [Fra41℄. [IS96℄ p. 198Example 3 shows that also P2C blown up in the nine intersetion points of two planeubis arries in�nitely many exeptional urves of the �rst kind.Appendix B. Condition (2.5)B.1 PropositionSuppose that B � � is an irreduible urve with B2 = 0 and dim jBja � 1, then(B.1) jBja is an irreduible projetive urve, and(B.2) there is a �bration f : � ! H whose �bres are just the elements ofjBja, and H is the normalisation of jBja.We are proving the proposition in several steps.B.2 PropositionLet f : Y 0 ! Y be a �nite at morphism of noetherian shemes with Y irreduiblesuh that for some point y0 2 Y the �bre Y 0y0 = f�1(y0) = Y 0 �Y Spe �k(y0)� is asingle redued point.Then the struture map f# : OY �! f�OY 0 is an isomorphism, and hene so is f .Proof: Sine there is at least one onneted redued �bre Y 0y0, semiontinuity ofat, proper morphisms in the version [GD67℄ IV.12.2.4 (vi) implies that there is anopen dense subset U � Y suh that Y 0y is onneted and redued, hene a singleredued point, 8 y 2 U . (U dense in Y is due to the fat that Y is irreduible.)Thus the assumptions are stable under restrition to open subshemes of Y , and sinethe laim that we have to show is loal on Y , we may assume that Y = Spe(A) isaÆne. Moreover, f being �nite, thus aÆne, we have Y 0 = Spe(B) is also aÆne.Sine f is at it is open and hene dominates the irreduible aÆne variety Y and,therefore, indues an inlusion of rings A ,! B. It now suÆes to show:Claim: A ,! B is an isomorphism.By assumption there exists a y = P 2 Spe(A) = Y suh that Y 0y = f�1(y) =Spe(BP=PBP ) is a single point with redued struture. In partiular we have for



48 THOMAS KEILEN AND ILYA TYOMKINthe multipliity of Y 0y = Spe(BP=PBP ) over fyg = Spe(AP=PAP )1 = �(Y 0y) = lengthAP =PAP (BP=PBP );whih implies that AP=PAP ,! BP=PBPis an isomorphism. Hene by Nakayama's Lemma alsoAP ,! BPis an isomorphism, that is, BP is free of rank 1 over AP . B being loally free overA, with A=p0 an integral domain, thus ful�lsAQ ,! BQis an isomorphism for all Q 2 Spe(A), and hene the laim follows. �B.3 Proposition (Priniple of Connetedness)Let X and Y be noetherian shemes, Y onneted, and let � : X ! Y be a atprojetive morphism suh that for some y0 2 Y the �bre Xy0 = ��1(y0) is reduedand onneted.Then for all y 2 Y the �bre Xy = ��1(y) is onneted.Proof: Considering points in the intersetions of the �nite number of irreduibleomponents of Y we an redue to the ase Y irreduible.Stein Fatorisation (f. [GD67℄ III.4.3.3) gives a fatorisation of � of the form� : X �0 // Y 0 = Spe(��OX) f
// Y;with(1) �0 onneted (i. e. its �bres are onneted),(2) f �nite,(3) f�OY 0 = ��OX loally free over OY , sine � is at, and(4) Y 0y0 = f�1(y0) is onneted and redued, i. e. a single redued point.Beause of (1) it suÆes to show that f is onneted, and we laim that they areredued as well. Sine f is �nite (3) is equivalent to saying that f is at. Hene fful�ls the assumptions of Proposition B.2, and we onlude that OY = f�OY 0 andthe proposition follows from [Har77℄ III.11.3.Alternatively, from [GD67℄ IV.15.5.9 (ii) it follows that there is an open dense subsetU � Y suh that Xy is onneted for all y 2 U . Sine, moreover, by the sametheorem the number of onneted omponents of the �bres is a lower semi-ontinuousfuntion on Y the speial �bres annot have more onneted omponents than thegeneral ones, that is, all �bres are onneted. �B.4 LemmaUnder the hypotheses of Proposition B.1 let C 2 jBja then C is onneted.



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 49Proof: Consider the universal familyjBja � � prjBja
((QQQQQQQQQQQQQQQQQ

SC2jBjafCg � C =: S? _oo � at
��jBja (B.3)

over the onneted projetive sheme jBja � Hilb�.Sine the projetion � is a at projetive morphism, and sine the �bre ��1(B) =fBg �B is onneted and redued, the result follows from Proposition B.3. �B.5 LemmaUnder the hypotheses of Proposition B.1 let C 2 jBja with B � C, then C = B.Proof: Suppose B $ C, then the Hilbert polynomials of B and C are di�erent inontradition to B �a C. �B.6 LemmaUnder the hypotheses of Proposition B.1 let C 2 jBja with C 6= B, then C \B = ;.Proof: Sine B is irreduible by Lemma B.5 B and C do not have a ommonomponent. Suppose B\C = fp1; : : : ; prg, then B2 = B:C � r > 0 in ontraditionto B2 = 0. �B.7 Proposition (Zariski's Lemma)Under the hypotheses of Proposition B.1 let C =Pri=1 niCi 2 jBja, where the Ci arepairwise di�erent irreduible urves, ni > 0 for i = 1; : : : ; r.Then the intersetion matrix Q = (Ci:Cj)i;j=1;:::;r is negative semi-de�nite, and,moreover, C, onsidered as an element of the vetorspaeLri=1Q �Ci, generates theannihilator of Q.In partiular, D2 � 0 for all urves D � C, and, moreover, D2 = 0 if and only ifD = C.Proof: By Lemma B.4 C is onneted. We are going to apply [BPV84℄ I.2.10, andthus we have to verify three onditions.(i') C:Ci = B:Ci = 0 for all i = 1; : : : ; r by Lemma B.6. Thus C is an element ofthe annihilator of Q with ni > 0 for all i = 1; : : : ; r.(ii) Ci:Cj � 0 for all i 6= j.(iii) Sine C is onneted there is no non-trivial partition I [ J of f1; : : : rg suhthat Ci:Cj = 0 for all i 2 I and j 2 J .Thus [BPV84℄ I.2.10 implies that �Q is positive semi-de�nite. �B.8 LemmaUnder the hypotheses of Proposition B.1 let C;C 0 2 jBja be two distint urves, thenC \ C 0 = ;.



50 THOMAS KEILEN AND ILYA TYOMKINProof: Suppose C = A+D and C 0 = A+D0 suh that D and D0 have no ommonomponent.We have 0 = B2 = (A +D)2 = (A+D0)2 = (A+D):(A+D0);and thus (A+D)2 + (A+D0)2 = 2(A+D):(A+D0);whih implies that D2 +D02 = 2D:D0;where eah summand on the left hand side is less than or equal to zero by PropositionB.7, and the right hand side is greater than or equal to zero, sine the urves D andD0 have no ommon omponent. We thus onludeD2 = D02 = D:D0 = 0:But then again Proposition B.7 implies that D = C and D0 = C 0, that is, C and C 0have no ommon omponent.Suppose C \ C 0 = fp1; : : : ; prg, then B2 = C:C 0 � r > 0 would be a ontraditionto B2 = 0. Hene, C \ C 0 = ;. �B.9 LemmaUnder the hypotheses of Proposition B.1 onsider one more the universal family(B.3) together with its projetion onto �,jBja � �prjBja
**

pr�
��S �0 //�

��

3 S

eeKKKKKKKKKKK �jBja:
(B.4)

Then S is an irreduible projetive surfae, jBja is an irreduible urve, and �0 issurjetive.Proof:Step 1: S is an irreduible projetive surfae and �0 is surjetive.The universal property of jBja implies that S is an e�etive Cartier divisor of jBja��, and thus in partiular projetive of dimension at least 2 � dim jBja+dim(�)�1.Sine �0 is projetive, its image is losed in � and of dimension 2, hene it is thewhole of �, sine � is irreduible.By Lemma B.8 the �bres of �0 are all single points, and thus, by [Har92℄ Theorem11.14, S is irreduible.Moreover, dim(S) = dim(�) + dim(�bre) = 2:



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 51Step 2: dim jBja = dim(jBja � �)� dim(�) = dim(S) + 1� 2 = 1:Step 3: jBja is irreduible.Let V be any irreduible omponent of jBja of dimension one, then we have auniversal family over V and the analogue of Step 1 for V shows that the urves inV over �. But then by Lemma B.8 there an be no further urve in jBja, sineany further urve would neessarily have a non-empty intersetion with one of theurves in V . �B.10 LemmaLet's onsider the following ommutative diagram of projetive morphismsS �0 //�
��

�jBja Sred1 Q

bbEEEEEEEEE
'0OO'oo

(B.5)
The map '0 : Sred �! � is birational.Proof: Sine Sred and � are irreduible and redued, and sine '0 is surjetive,we may apply [Har77℄ III.10.5, and thus there is an open dense subset U � Sredsuh that '0j : U ! � is smooth. Hene, in partiular '0j is at and the �bresare single redued points. Sine '0j : U ! '0(U) is projetive and quasi-�nite, it is�nite (f. [Har77℄ Ex. III.11.2), and it follows from Proposition B.2 that '0j is anisomorphism onto its image, i. e. '0 is birational. �B.11 LemmaIf  : � 9 9 K Sred denotes the rational inverse of the map '0 in (B.5), then  isindeed a morphism, i. e. '0 is an isomorphism.Proof: By Lemma B.8 the �bres of '0 over the possible points of indeterminay of'0 are just points, and thus the result follows from [Bea83℄ Lemma II.9. �B.12 LemmaThe map g : �! jBja assigning to eah point p 2 � the unique urve C 2 jBja withp 2 C is a morphism, and is thus a �bration whose �bres are the urves in jBja.Proof: We just have g = ' Æ  . �Proof of Proposition B.1: Let � : H ! jBja be the normalisation of the irre-duible urve jBja. Then H is a smooth irreduible urve.Moreover, sine � is irreduible and smooth, and sine g : �! jBja is surjetive, gfatorises over H, i. e. we have the following ommutative diagram� g

//9f
��

jBjaH: � =={{{{{{{{



52 THOMAS KEILEN AND ILYA TYOMKINThen f is the desired �bration. �Appendix C. Some Fats used in the Proofs of Setion 3In this setion we are, in partiular, writing down some identi�ations of ertainsheaves respetively of their global setions. Doing this we try to be very formal.However, in a situation of the kind X � � i // Y � // Z we usually do not distinguishbetween OX and i�OX , or between � and any restrition of � to X.C.1 LemmaLet '(x; y; t) =P1i=0 'i(x; y) � ti 2 Cfx; y; tg with '(x; y; t) 2 (x; y)m for every �xedt in some small dis � around 0. Then 'i(x; y) 2 (x; y)m for every i 2 N0.Proof: We write the power series as ' =P1�+�=0(P1i=0 �;�;i � ti)x�y�.'(x; y; t) 2 (x; y)m for every t 2 � implies1Xi=0 �;�;i � ti = 0 8 �+ � < m and t 2 �:The identity theorem for power series in C then implies that�;�;i = 0 8 � + � < m and i � 0: �C.2 LemmaLet X be a noetherian sheme, i : C ,! X a losed subsheme, F a sheaf of moduleson C, and G a sheaf of modules on X. Then(C.1) i�F �= i�F 
OX OC ,(C.2) H0(C;F) = H0(X; i�F 
OX OC),(C.3) G 
OX OC �= i�i�(G 
OX OC), and(C.4) H0�C; i�(G 
OX OC)� = H0(X;G 
OX OC).Proof:(C.1) For U � X open, we de�ne�(U; i�F) ! �(U; i�F)
�(U;OX) �(U;OC) � �(U; i�F 
OX OC)s 7! s
 1:This morphism indues on the stalks the isomorphismi�Fx = � Fx; (if x 2 C) = Fx 
OX;x OX;x=IC;x0; (else) = 0
OX;x OX;x=IC;x � �= i�Fx 
OX;x OC;x;where IC;x is the ideal de�ning C in X loally at x.(C.2) The identi�ation (C.1) together with [Har77℄ III.2.10 gives:H0(C;F) = H0(X; i�F) = H0(X; i�F 
OX OC):



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 53(C.3) The adjoint property of i� and i� together with i�i� �= id gives rise to thefollowing isomorphisms:End �i�i�(G 
OC)� �= Hom �i�i�i�(G 
 OC); i�(G 
OC)��= End �i�(G 
 OC)� �= Hom �G 
 OC ; i�i�(G 
OC)�:That means, that the identity morphism on i�i�(G 
OC) must orrespond toan isomorphism from G 
OC to i�i�(G 
 OC) via these identi�ations.(C.4) follows from (C.3) and one more [Har77℄ III.2.10.C.3 CorollaryIn the situation of Lemma 3.4 we have:(C.5) H0�C; ��O eC(E)
OC OC(C)� = H0��; ��O eC(E)
O� OC(C)�, and(C.6) H0�C; ��Oe�(E)
O� OC(C)� = H0��; ��Oe�(E)
O� OC(C)�.Proof: We denote by j : eC ,! e� and i : C ,! � respetively the given embeddings.(C.5) By (C.2) in Lemma C.2 we have:H0�C; ��O eC(E)
OC OC(C)� = H0��; i����O eC(E)
OC OC(C)�
O� OC�:By the projetion formula this is just equal to:H0��; �i���O eC(E)
O� O�(C)�
O� OC� = H0��; ��j�O eC(E)
O� OC(C)�=def H0��; ��O eC(E)
O� OC(C)�:(C.6) Using (C.4) in Lemma C.2 we get:H0�C; ��Oe�(E)
O� OC(C)� =def H0�C; i����Oe�(E)
O� OC(C)�� =H0��; ��Oe�(E)
O� OC(C)�: �C.4 LemmaWith the notation of Lemma 3.4 we show that supp �Ker()� � fz1; : : : ; zrg.Proof: Sine � : e� n �Sri=1Ei� �! � n fz1; : : : ; zrg is an isomorphism, we have forany sheaf F of Oe�-modules and y 2 e� n �Sri=1Ei�:(��F)�(y) = lim�(y)2V F(��1(V )) = limy2U F(U) = Fy:In partiular,���Oe�(E)
O� OC(C)��(y) �= Oe�;y 
O�;�(y) OC;�(y) �= O�;�(y) 
O�;�(y) OC;�(y);and���O eC(E)
O� OC(C)��(y) �= O eC;y 
O�;�(y) OC;�(y) �= OC;�(y) 
O�;�(y) OC;�(y):



54 THOMAS KEILEN AND ILYA TYOMKINMoreover, the morphism �(y) beomes under these identi�ations just the morphismgiven by a
 b = 1
 ab 7! a
 b = 1
 ab, whih is injetive. Thus, 0 = Ker(�(y)) =Ker()�(y), and �(y) 62 supp(Ker()). �C.5 LemmaLet X be an irreduible noetherian sheme, F a oherent sheaf on X, and s 2H0(X;F) suh that dim � supp(s)� < dim(X). Then s 2 H0�X;Tor(F)�.Proof: The multipliation by s gives rise to the following exat sequene:0 // Ker(�s) // OX �s // F :Sine OX and F are oherent, so is Ker(�s), and hene supp �Ker(�s)� is losed inX. Now, supp(Ker(�s)) = fz 2 X j 9 0 6= rz 2 OX;z : rz � sz = 0g= fz 2 X j sz 2 Tor(Fz)g:But then the omplement fz 2 Xjsz 62 Tor(Fz)g is open and is ontained in supp(s)(sine sz = 0 implies that sz 2 Tor(Fz)), and is thus empty sine X is irreduibleand supp(s) of lower dimension. �Appendix D. The Degree of a Line Bundle on a CurveD.1 RemarkLet C = C1 [ : : : [ Ck be a redued urve on a smooth projetive surfae � overC, where the Ci are irreduible, and let L be a line bundle on C. Then we de�nethe degree of L with the aid of the normalisation � : C 0 ! C. We have H2(C;Z) �=Lki=1H2(C 0i;Z) = Zk, and thus the image of L in H2(C;Z), whih is the �rst Chernlass of L, an be viewed as a vetor (l1; : : : ; lk) of integers, and we may de�ne thedegree of L by deg(L) := l1 + � � �+ lk:In partiular, if C is irreduible, we get:deg(L) = deg(��L) = 1(��L):Sine H0(C;L) 6= 0 implies that H0(C 0; ��L) 6= 0, and sine the existene of anon-vanishing global setion of ��L on the smooth urve C 0 implies that the orre-sponding divisor is e�etive, we get the following lemma. (f. [BPV84℄ Setion II.2)D.2 LemmaLet C be an irreduible redued urve on a smooth projetive surfae �, and let L bea line bundle on C. If H0(C;L) 6= 0, then deg(L) � 0.



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 55Appendix E. Two Results used in the Proof of Theorem 4.1E.1 RemarkLet � � PnC be a (not neessarily) smooth projetive surfae and let z 2 � be �xed.We onsider the seant varietybSz := �(z0; r) 2 �� PnC �� z0 6= z; r 2 z; z0	;whih is loally losed in ��PnC , together with the to projetions bSz ! � nfzg andbSz ! Sz := Sz 6=z02� zz0 � PnC . The isomorphism�� n fzg�� P1C // bSz�z0; (a : b)� � // (z0; a � z + b � z0)shows that bSz is an irreduible P1C -bundle. But thus also Sz is irreduible. Moreover,sine bSz has dimension 3, the dimension of Sz is at most 3, and sine � \ Sz = �is losed in the irreduible variety Sz we have either dim(Sz) = 3 or Sz = �. Thelatter happens if � is linear in PnC , and might happen when z is a singular point, e.g. � = fx0x1 � x2 = 0g � P3C and z = (0 : 0 : 0 : 1).E.2 LemmaLet � � PnC a non-linear projetive surfae.(i) If z 2 � is not singular, then a generi seant line through z is not ontainedin �. In partiular, dim(Sz) = 3.(ii) If � is smooth, there is a very general subset U � ��� suh that for (z; z0) 2 Uthe seant line zz0 6� �.Proof: Part b. is an immediate onsequene of Part a. Sine z 2 � is regular,O�;z �=OPnC =(f1; : : : ; fn�2), where (f1; : : : ; fn�2) is a regular sequene in OPnC . For generilinear forms l; l0 2 C[x0; : : : ; xn℄1 through the point z, the sequene (f1; : : : ; fn�2; l; l0)will then be regular. This in partiular means that the linear n�2-spaeH = V (l; l0)intersets � in z transversally, i. e. with intersetion multipliity 1 and z is an isolatedpoint of H \ �. Sine � is not linear H intersets � in at least one more point z0by the Theorem of B�ezout, and then zz0 6� �. This proves the �rst assertion, andby Remark E.1 we also know that dim(Sz) = 3. �E.3 LemmaLet L be very ample over C on the smooth projetive surfae �.There is a very general subset U � ��� suh that for �z; z0) 2 U , there is a smoothonneted urve through z and z0 in jLjl. Indeed, a generi urve in jLjl through zand z0 will be so.Proof: Considering the embedding � � PnC de�ned by L the urves in jLjl are inone-to-one orrespondene with the hyperplane setions.



56 THOMAS KEILEN AND ILYA TYOMKINBy the Theorems of Bertini (f. [Har77℄ II.8.18 and III.9.9.1) we know that thereis an open dense subset of the linear system of all hyperplane setions of � whihare irreduible and smooth. Moreover, the linear systems Lz = �C 2 jLjl �� z 2 C	forms a subsystem of odimension one for any z 2 �. Thus for all but possiblya �nite number of points z1; : : : ; zs the linear system Lz has an open dense subsetwhih onsists of irreduible and smooth urves. Note that the linear system Lz;z0 =�C 2 jLjl �� z; z0 2 C	 forms a linear subsystem of Lz of odimension one, and thatLz;z0 = Lz;z00 only if z, z0 and z00 are ollinear. Thus �xing a point z 2 �nfz1; : : : ; zsgwe �nd that for all z0 but those in a �nite number of lines l1;z; : : : ; lsz;z the systemLz;z0 ontains an irreduible and smooth urve. This proves the laim. �E.4 RemarkA slightly loser investigation shows that for two points z; z0 2 � the linear systemjLjl in Lemma E.3 does not ontain a smooth and irreduible urve C trough z andz0 if and only if the linear system has a �x omponent through z and z0. Havingembedded the surfae � into PnC via L this means that the seant line through z andz0 lies in �. Therefore, Lemma E.2 also implies the result of Lemma E.3, Part a.If we onsider e. g. � = P1C �P1C with L = O�(1; 1), then for two points on the linesp � P1C respetively on P1C � fpg there is no smooth urve in jLjl through the twopoints.E.5 LemmaLet L � � be a smooth urve and X � � a zero-dimensional sheme. If D 2 Div(�)suh that(E.1) h1��;JX:L=�(D � L)� = 0, and(E.2) deg(X \ L) � D:L + 1� 2g(L),then h1��;JX=�(D)� = 0:Proof: Condition (E.2)) implies2g(L)� 2 < D:L� deg(X \ L) = deg �OL(D)�+ deg �JX\L=L�= deg �JX\L=L(D)�;and thus by Riemann-Roh (f. [Har77℄ IV.1.3.4)h1�JX\L=L(D)� = 0:Consider now the exat sequene0 // JX:L=�(D � L) �L // JX=�(D) // JX\L=L(D) // 0:The result then follows from the orresponding long exat ohomology sequene0 = H1�JX:L=�(D � L)� // H1�JX=�(D)� // H1�JX\L=L(D)� = 0:



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 57�Appendix F. Produt SurfaesThrougout this setion we stik to the notation of Setion 6. and 6.d. Let C1 andC2 be two smooth projetive urves of genus g1 � 0 and g2 � 0 respetively, and let� = C1 � C2.Supposed that one of the urves is rational, the surfae is geometrially ruled andthe Piard number of � is two. Whereas, if both C1 and C2 are of stritly positivegenus, this need no longer be the ase as we have seen in Remark 6.9. Thus thefollowing proposition is the best we may expet.F.1 PropositionFor a generi hoie of smooth projetive urves C1 and C2 the Neron-Severi groupof � = C1 � C2 is NS(�) �= C1Z� C2Z.More preisely, �xing g1 and g2 there is a very general subset U � Mg1 �Mg2 suhthat for any (C1; C2) 2 U the Piard number of C1 � C2 is two, where Mgi denotesthe moduli spae of smooth projetive urves of genus gi, i = 1; 2.Proof: As already mentioned, if either g1 or g2 is zero, then we may take U =Mg1 �Mg2 .Suppose that g1 = g2 = 1. Given an ellipti urve C1 there is a ountable unionV of proper subvarieties of M1 suh that for any C2 2 M1 n V the Piard numberof C1 � C2 is two - namely, if �1 and �2 denote the periods as in Setion 6.d, thenwe have to require that there exists no invertible integer matrix ( z1 z2z3 z4 ) suh that�2 = z4�z3�1z2�z1�1 . (Compare also [GH94℄ p. 286.)We, therefore, may assume that g1 � 2 and g2 � 1. The laim then follows fromLemma F.2, whih is due to Denis Gaitsgory. �F.2 Lemma (Denis Gaitsgory)Let C2 be any smooth projetive urve of genus g2 � 1. Then for any g1 � 2 thereis a very general subset U of the moduli spae Mg1 of smooth projetive urves ofgenus g1 suh that the Piard number of C1 � C2 is two for any C1 2 U .Proof: We note that a urve B � � = C1 � C2 with C1 6�a B 6�a C2 indues anon-trivial morphism �B : C1 ! Pi(C2) : p 7! pr2� �pr�1(p)�, where pri : � ! Ci,i = 1; 2, denote the anonial projetions. It thus makes sense to study the moduliproblem of (non-trivial) maps from urves of genus g1 into Pi(C2).More preisely, let k 2 N and let 0 6= � 2 H2�Pik(C2);Z� = Z2g2 be given, wherePik(C2) is the Piard variety of divisors of degree k on C2. Following the notationof [FP97℄ we denote by Mg1;0�Pik(C2); �� the moduli spae of pairs (C1; �), whereC1 is a smooth projetive urve of genus g1 and � : C1 ! Pik(C2) a morphism with���[C1℄� = �. We then have the anonial morphismFk;� :Mg1;0�Pik(C2); ��!Mg1 : (C1; �) 7! C1;



58 THOMAS KEILEN AND ILYA TYOMKINjust forgetting the map �, and the proposition redues to the following laim:Claim: For no hoie of k 2 N and 0 6= � 2 H2�Pik(C2);Z� the morphism Fk;� isdominant.Let � : C1 ! Pik(C2) be any morphism with ���[C1℄� = �. Then � is not aontration and the image of C1 is a projetive urve in the abelian variety Pik(C2).Moreover, we have the following exat sequene of sheaves0 // TC1 d�
// ��TPik(C2) = Og2C1 // N� := oker(d�) // 0: (F.1)Sine d� is a non-zero inlusion, its dual d�_ : (��TPik(C2))_ = Og2C1 ! 
C1 = !C1 isnot zero on global setions, that isH0�d�_� : H0�C1;Og2C1� = HomOC1 �Og2C1 ;OC1�! H0(C1; !C1) = HomOC1 �TC1 ;OC1�is not the zero map. Sine g1 � 2 we have h0(C1; !C1) = 2g1�2 > 0, and thus !C1 hasglobal setions. Therefore, the indued mapH0�C1; !C1
Og2C1�! H0(C1; !C1
!C1)is not the zero map, whih by Serre duality gives that the mapH1(d�) : H1(C1; TC1)! H1�C1; ��TPik(C2)�from the long exat ohomology sequene of (F.1) is not zero. Hene the oboundarymap Æ : H0(C1;N�)! H1(C1; TC1)annot be surjetive. Aording to [Har98℄ p. 96 we haveÆ = dFk;� : TMg1;0(Pik(C2);�) = H0(C1;N�) �! TMg1 = H1(C1; TC1):But if the di�erential of Fk;� is not surjetive, then Fk;� itself annot be dominant.�Referenes[AM69℄ Mihael F. Atiyah and Ian G. MaDonald, Introdution to ommutative algebra,Addison-Wesley, 1969.[AS83℄ Noboru Aoki and Tetsuji Shioda, Generators of the N�eron-Severi group of a Fermatsurfae, Arithmeti and Geometry (Mihael Artin et al., ed.), vol. I, Progress in Math-ematis, no. 35, Birkh�auser, 1983, pp. 1{12.[Bea83℄ Arnaud Beauville, Complex algebrai surfaes, LMS LNS, no. 68, CUP, 1983.[BPV84℄ Wolf Barth, Christian Peters, and Antonius Van de Ven, Compat omplex surfaes,Springer, 1984.[BS95℄ Mauro C. Beltrametti and Andrew J. Sommese, The adjuntion theory of omplex pro-jetive varieties, Walter de Gruyter, 1995.[DH88℄ Steven Diaz and Joe Harris, Ideals assoiated to deformations of singular plane urves,Trans. AMS 309 (1988), 433{468.[DP00℄ Theo De Jong and Gerhard P�ster, Loal analyti geometry, Vieweg, 2000.[EL93℄ Lawrene Ein and Robert Lazarsfeld, Sheshadri onstants on smooth surfaes, Journ�eesde G�eom�etrie Alg�ebrique d'Orsay: Juillet 1992, Ast�erisque, no. 218, SMF, 1993, pp. 177{186.[FM94℄ Robert Friedman and John W. Morgan, Smooth four-manifolds and omplex surfaes,vol. 3, Ergebnisse der Mathematik und ihrer Grenzgebiete, no. 27, Springer, 1994.
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