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2 THOMAS KEILEN AND ILYA TYOMKIN1. Introdu
tionGeneral Assumptions and NotationsThroughout this paper � will be a smooth proje
tive surfa
e over C.Given distin
t points z1; : : : ; zr 2 �, we denote by � : e� = Blz(�) ! � the blowup of � in z = (z1; : : : ; zr), and the ex
eptional divisors ��zi will be denoted by Ei,i = 1; : : : ; r. We shall write eC = Blz(C) for the stri
t transform of a 
urve C � �.For any smooth surfa
e S we will denote by Div(S) the group of divisors on Sand by KS its 
anoni
al divisor. If D is any divisor on S, OS(D) shall be a 
orre-sponding invertible sheaf. jDjl = P�H0�S;OS(D)�� denotes the system of 
urveslinearly equivalent to D, while we use the notation jDja for the system of 
urvesalgebrai
ally equivalent to D (
f. [Har77℄ Ex. V.1.7), that is the redu
tion of the
onne
ted 
omponent of HilbS, the Hilbert s
heme of all 
urves on S, 
ontainingany 
urve algebrai
ally equivalent to D (
f. [Mum66℄ Chapter 15). We will use thenotation Pi
(S) for the Pi
ard group of S, that is Div(S) modulo linear equiva-len
e (denoted by �l), NS(S) for the N�eron-Severi group, that is Div(S) moduloalgebrai
 equivalen
e (denoted by �a), and Num(S) for Div(S) modulo numeri
alequivalen
e (denoted by �n). Note that for all examples of surfa
es � whi
h we
onsider in Se
tion 6 NS(�) and Num(�) 
oin
ide.Given a 
urve C � � we will write pa(C) for its arithmeti
al genus and g(C) for thegeometri
al one.Let Y be a Zariski topologi
al spa
e. We say a subset U � Y is very general if itis an at most 
ountable interse
tion of open dense subsets of Y . Some statement issaid to hold for points z1; : : : ; zr 2 Y (or z 2 Y r) in very general position if there isa suitable very general subset U � Y r, 
ontained in the 
omplement of the 
losedsubvariety Si 6=jfz 2 Y r j zi = zjg of Y r, su
h that the statement holds for all z 2 U .The main results of this paper will only be valid for points in very general position.Given distin
t points z1; : : : ; zr 2 � and non-negative integers m1; : : : ; mr we denotebyX(m; z) = X(m1; : : : ; mr; z1; : : : ; zr) the zero-dimensional subs
heme of � de�nedby the ideal sheaf JX(m;z)=� with stalksJX(m;z)=�;z = � mmi�;zi ; if z = zi; i = 1; : : : ; r;O�;z; else.We 
all a s
heme of the type X(m; z) a generi
 fat point s
heme.For a redu
ed 
urve C � � we de�ne the zero-dimensional subs
heme Xes(C) of �via the ideal sheaf JXes(C)=� with stalksJXes(C)=�;z = Ies(C; z) = fg 2 O�;z j f + "g is equisingular over C["℄=("2)g;where f 2 O�;z is a lo
al equation of C at z. Ies(C; z) is 
alled the equisingularityideal of the singularity (C; z), and it is of 
ourse O�;z whenever z is a smooth point.If x; y are lo
al 
oordinates of � at z, then Ies(C; z)=�f; �f�x ; �f�y � 
an be identi�ed withthe tangent spa
e of the equisingular stratum in the semiuniversal deformation of



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 3(C; z). (
f. [Wah74℄, [DH88℄, and De�nition 5.1) We 
all Xes(C) the equisingularitys
heme of C.If X � � is any zero-dimensional s
heme with ideal sheaf JX and if L � � is any
urve with ideal sheaf L, we de�ne the residue s
heme X : L � � by the ideal sheafJX:L=� = JX : L with stalks JX:L=�;z = JX;z : lz;where lz 2 O�;z is a lo
al equation for L and \:" denotes the ideal quotient. Thisnaturally leads to the de�nition of the tra
e s
heme X \ L � L via the ideal sheafJX\L=L given by the exa
t sequen
e0 // JX:L=�(�L) �L // JX=� // JX\L=L // 0:Given topologi
al singularity types1 S1; : : : ;Sr and a divisor D 2 Div(�), we de-note by VjDj(S1; : : : ;Sr) the lo
ally 
losed subspa
e of jDjl of redu
ed 
urves in thelinear system jDjl having pre
isely r singular points of types S1; : : : ;Sr. Analo-gously, VjDj(m1; : : : ; mr) = VjDj(m) denotes the lo
ally 
losed subspa
e of jDjl of re-du
ed 
urves having pre
isely r ordinary singular points of multipli
itiesm1; : : : ; mr.(
f. [Los98℄ 1.3.2)The spa
es V = VjDj(S1; : : : ;Sr) respe
tively V = VjDj(m) are the main obje
ts ofinterest of this paper. We say V is T-smooth at C 2 V if the germ (V; C) is smoothof the (expe
ted) dimension dim jDjl � deg(X), where X = Xes(C) respe
tivelyX = X(m; z) with Sing(C) = fz1; : : : ; zrg. By [Los98℄ Proposition 2.1 T-smoothnessof V at C is implied by the vanishing of H1��;JX=�(C)�.It is the aim of this paper to give suÆ
ient 
onditions for the non-emptiness of Vin terms of the linear system jDjl and invariants of the imposed singularities. Theresults are generalisations of known results for P2C , and for an overview on these werefer to [Los98℄ Chapter 4.We basi
ally follow the ideas des
ribed in [Los98℄ 4.1.2. The 
ase of ordinary sin-gularities (Corollary 4.2) is treated by applying a vanishing theorem for generi
 fatpoint s
hemes (Theorem 2.1), and the more interesting 
ase of pres
ribed topolog-i
al types S1; : : : ;Sr is then dealt with by gluing lo
al equations into a 
urve withordinary singularities. Upper bounds for the minimal possible degrees of these lo
alequations 
an be taken from the P2C -
ase (
f. [Los98℄ Theorem 4.2).Thus the main results of this paper are the following theorems and their 
orollariesCorollary 4.2 and Corollary 5.4.2.1 TheoremLet m1 � : : : � mr � 0 be non-negative integers, � 2 R with � > 1, k� =max�n 2 N �� n < ���1	 and let D 2 Div(�) be a divisor satisfying the followingthree 
onditions1For the de�nition of a singularity type and more information see [Los98℄ 1.2.



4 THOMAS KEILEN AND ILYA TYOMKIN(2.1) (D �K�)2 � max�� � rPi=1(mi + 1)2; (k� �m1 + k�)2�,(2.2) (D �K�):B � k� � (m1 + 1) for any irredu
ible 
urve B with B2 = 0and dim jBja > 0, and(2.3) D �K� is nef.Then for z1; : : : ; zr 2 � in very general position and � > 0H�  Blz(�); ��D � rXi=1 miEi! = 0:In parti
ular, H���;JX(m;z)=�(D)� = 0:4.1 TheoremGiven m1; : : : ; mr 2 N0, not all zero, and z1; : : : ; zr 2 �, in very general position.Let L 2 Div(�) be very ample over C, and let D 2 Div(�) be su
h that(4.1) h1��;JX(m;z)=�(D � L)� = 0, and(4.2) D:L� 2g(L) � mi +mj for all i; j.Then there exists a 
urve C 2 jDjl with ordinary singular points of multipli
ity miat zi for i = 1; : : : ; r and no other singular points. Furthermore,h1��;JX(m;z)=�(D)� = 0;and in parti
ular, VjDj(m) is T-smooth at C.If in addition (4.3) D2 > Pri=1m2i , then C 
an be 
hosen to be irredu
ible andredu
ed.5.3 Theorem (Existen
e)Let S1; : : : ;Sr be singularity types, and suppose there exists an irredu
ible 
urve C 2jDjl with r + r0 ordinary singular points z1; : : : ; zr+r0 of multipli
ities m1; : : : ; mr+r0respe
tively as its only singularities su
h that mi = s(Si) + 1, for i = 1; : : : ; r, andh1��;JX(m;z)=�(D)� = 0:Then there exists an irredu
ible 
urve eC 2 jDjl with r singular points of typesS1; : : : ;Sr and r0 ordinary singular points of multipli
ities mr+1; : : : ; mr+r0 as itsonly singularities.2Of 
ourse, 
ombining the vanishing theorem Theorem 2.1 with the existen
e theo-rems Theorem 4.1 and Theorem 5.3 we get suÆ
ient numeri
al 
onditions for theexisten
e of 
urves with 
ertain singularities (see Corollaries 4.2 and 5.4, and seeSe
tion 6 for spe
ial surfa
es).2Here, of 
ourse, m = (m1; : : : ;mr+r0) and z = (z1; : : : ; zr+r0). See De�nition 5.1 for the de�nitionof s(Si).



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 5Given any s
heme X and any 
oherent sheaf F on X, we will often write H�(F)instead of H�(X;F) when no ambiguity 
an arise. Moreover, if F = OX(D) isthe invertible sheaf 
orresponding to a divisor D, we will usually use the notationH�(X;D) instead of H��X;OX(D)�. Similarly when 
onsidering tensor produ
tsover the stru
ture sheaf of some s
heme X we may sometimes just write 
 insteadof 
OX .Se
tion 2 is devoted to the proof of the vanishing theorem Theorem 2.1, and Se
tion3 provides an important ingredient in this proof. The following se
tions Se
tion 4and Se
tion 5 are 
on
erned with the existen
e theorems Theorem 4.1 and Theorem5.3, while in Se
tion 6 we 
al
ulate the 
onditions whi
h we have found in the
ase of ruled surfa
es, produ
ts of ellipti
 
urves, surfa
es in P3C , and K3-surfa
es.Finally, in the appendix we gather some well known respe
tively fairly easy fa
tsused throughout the paper for the 
onvenien
e of the reader.2. The Vanishing Theorem2.1 TheoremLet m1 � : : : � mr � 0 be non-negative integers, � 2 R with � > 1, k� =max�n 2 N �� n < ���1	 and let D 2 Div(�) be a divisor satisfying the followingthree 
onditions(2.1) (D �K�)2 � max�� � rPi=1(mi + 1)2; (k� �m1 + k�)2�,(2.2) (D �K�):B � k� � (m1 + 1) for any irredu
ible 
urve B with B2 = 0and dim jBja > 0, and(2.3) D �K� is nef.Then for z1; : : : ; zr 2 � in very general position and � > 0H�  Blz(�); ��D � rXi=1 miEi! = 0:In parti
ular, H���;JX(m;z)=�(D)� = 0:Proof: By the Kawamata{Viehweg Vanishing Theorem (
f. [Kaw82℄ and [Vie82℄)it suÆ
es to show that A = ���D �Pri=1miEi��Ke� is big and nef, i. e. we haveto show:(a) A2 > 0, and(b) A:B0 � 0 for any irredu
ible 
urve B0 in e� = Blz(�).Note that A = ��(D�K�)�Pri=1(mi+1)Ei, and thus by Hypothesis (2.4) we haveA2 = (D �K�)2 � rXi=1 (mi + 1)2 > 0;



6 THOMAS KEILEN AND ILYA TYOMKINwhi
h gives 
ondition (a).For 
ondition (b) we observe that an irredu
ible 
urve B0 on e� is either the stri
ttransform of an irredu
ible 
urve B in � or is one of the ex
eptional 
urves Ei. Inthe latter 
ase we have A:B0 = A:Ei = mi + 1 > 0:We may, therefore, assume that B0 = eB is the stri
t transform of an irredu
ible
urve B on � having multipli
ity multzi(B) = ni at zi, i = 1; : : : ; r. ThenA:B0 = (D �K�):B � rXi=1 (mi + 1)ni;and thus 
ondition (b) is equivalent to(b') (D �K�):B � rPi=1(mi + 1)ni.Sin
e z is in very general position Lemma 3.1 applies in view of Corollary A.2. Usingthe Hodge Index Theorem, Hypothesis (2.4), Lemma 3.1, and the Cau
hy-S
hwarzInequality we get the following sequen
e of inequalities:�(D �K�):B�2 � (D �K�)2 �B2 � � � �Pri=1(mi + 1)2� � �Pri=1 n2i � ni0�= Pri=1(mi + 1)2 �Pri=1 n2i + (�� 1) ��Pri=1(mi + 1)2 � �Pri=1 n2i � ���1 � ni0��� �Pri=1(mi + 1) � ni�2 + (�� 1) � �Pri=1(mi + 1)2 � �Pri=1 n2i � ���1 � ni0��;where i0 2 f1; : : : ; rg is su
h that ni0 = minfni j ni 6= 0g. Sin
e D � K� is nef,
ondition (b') is satis�ed as soon as we haverXi=1 n2i � ���1 � ni0 :If this is not ful�lled, then ni < ���1 for all i = 1; : : : ; r, and thusrXi=1 (mi + 1) � ni � k� � (m1 + 1):Hen
e, for the remaining 
onsiderations (b') may be repla
ed by the worst 
ase(D �K�):B � k� � (m1 + 1):Note that sin
e the zi are in very general position and zi0 2 B we have that B2 � 0and dim jBja > 0 (
f. Corollary A.3). If B2 > 0 then we are done by the HodgeIndex Theorem and Hypothesis (2.4), sin
e D �K� is nef:(D �K�):B �p(D �K�)2 �p(k� �m1 + k�)2 � k� � (m1 + 1):It remains to 
onsider the 
ase B2 = 0 whi
h is 
overed by Hypothesis (2.5).



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 7For the \in parti
ular" part we just note thatH���;JX(m;z)=�(D)� = H���; rOi=1 JX(mi;zi)=� 
O�(D)� =H�  e�; ��D � rXi=1 miEi! : �Choosing the 
onstant � = 2 in Theorem 2.1, then ���1 = 2 and thus k� = 1. Wetherefore get the following 
orollary, whi
h has the advantage that the 
onditionslook simpler, and that the hypotheses on the \ex
eptional" 
urves are not too hard.2.2 CorollaryLet m1; : : : ; mr 2 N0, and D 2 Div(�) be a divisor satisfying the following three
onditions(2.4) (D �K�)2 � 2 � rPi=1(mi + 1)2,(2.5) (D � K�):B > maxfmi j i = 1; : : : ; rg for any irredu
ible 
urve Bwith B2 = 0 and dim jBja > 0, and(2.6) D �K� is nef.Then for z1; : : : ; zr 2 � in very general position and � > 0H�  Blz(�); ��D � rXi=1 miEi! = 0:In parti
ular, H���;JX(m;z)=�(D)� = 0:2.3 RemarkCondition (2.3) respe
tively Condition (2.6) are in several respe
ts \expe
table".First, Theorem 2.1 is a 
orollary of the Kawamata{Viehweg Vanishing Theorem,and if we take all mi to be zero, our assumptions should basi
ally be the same,i. e. D � K� nef and big. The latter is more or less just (2.1) respe
tively (2.4).Se
ondly, we want to apply the theorem to an existen
e problem. A divisor beingnef means it is somehow 
lose to being e�e
tive, or better its linear system is 
loseto being non-empty. If we want that some linear system jDjl 
ontains a 
urve with
ertain properties, then it seems not to be so unreasonable to restri
t to systemswhere already jD � K�jl, or even jD � L � K�jl with L some �xed divisor, is ofpositive dimension, thus nef.In many interesting examples, su
h as P2C , Condition (2.2) respe
tively (2.5) turnout to be obsolete or easy to handle. So �nally the most restri
tive obstru
tionseems to be (2.1) respe
tively (2.4).



8 THOMAS KEILEN AND ILYA TYOMKINIf we 
onsider the situation where the largest multipli
ity m1 o

urs in a largenumber, more pre
isely, if m1 = : : : = ml� with l� = min�n 2 N �� � �n � k2�	, thenCondition (2.1) 
omes down to(2.1') (D �K�)2 � � � rPi=1(mi + 1)2.2.4 RemarkEven though we said that Condition (2.4) was the really restri
tive 
ondition wewould like to understand better what Condition (2.5) means. We therefore showin Appendix B that an algebrai
 system jBja of dimension greater than zero withB irredu
ible and B2 = 0 gives rise to a �bration f : � ! H of � over a smoothproje
tive 
urve H whose �bres are just the elements of jBja.3. The Lemma of Geng Xu3.1 LemmaLet z = (z1; : : : ; zr) 2 �r be in very general position, n 2 Nr0, and let B � � be anirredu
ible 
urve with multzi(B) � ni, thenB2 � rXi=1 n2i �minfni j ni 6= 0g:3.2 Remark(i) A proof for the above lemma in the 
ase � = P2C 
an be found in [Xu94℄ andin the 
ase r = 1 in [EL93℄. Here we just extend the arguments given there tothe slightly more general situation.(ii) For better estimates of the self interse
tion number of 
urves where one hassome knowledge on equisingular deformations inside the algebrai
 system see[GS84℄.(iii) With the notation of Lemma A.1 respe
tively Corollary A.2 the assumptionin Lemma 3.1 
ould be formulated more pre
isely as \let B � � � PNC be anirredu
ible 
urve su
h that VB;n = �r", or \let z 2 �r n V ".(iv) Note, that one 
annot expe
t to get rid of the \�minfni j ni 6= 0g". E. g. � =Blz �P2C �, the proje
tive plane blown up in a point z, and B � � the stri
ttransform of a line through z. Let now r = 1, n1 = 1 and z1 2 � be anypoint. Then there is of 
ourse a (unique) 
urve B1 2 jBja through z1, butB2 = 0 < 1 = n21.Idea of the proof: Set e1 := n1 � 1 and ei := ni for i 6= 1, where w. l. o. g. n1 =minfnijni 6= 0g. By assumption there is a family fCtgt2C in jBja satisfying therequirements of Lemma 3.3. Setting C := C0 the proof is done in three steps:Step 1: We show that H0�C;JX(e;z)=� � OC(C)� 6= 0. (Lemma 3.3)Step 2: We dedu
e that H0�C; ��O eC��Pri=1 eiEi�
OC(C)� 6= 0. (Lemma 3.4)



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 9Step 3: It follows that deg ���O eC��Pri=1 eiEi�
OC(C)� � 0, but this degree isjust C2 �Pri=1 eini. 23.3 LemmaGiven e1; : : : ; er 2 N0, r � 1. Let fCtgt2C be a non-trivial family of 
urves in �su
h that� C! � : t 7! z1;t 2 Ct is a smooth 
urve,� multz1;t(Ct) � e1 + 1 for all t 2 C,� z2; : : : ; zr 2 Ct for any t 2 C, and� multzi(Ct) � ei for all i = 2; : : : ; r and t 2 C.Then for z1 = z1;0 H0�C;JX(e;z)=� � OC(C)� 6= 0;i. e. there is a non-trivial se
tion of the normal bundle of C, vanishing at zi to theorder of at least ei for i = 1; : : : ; r.Proof: We sti
k to the 
onvention n1 = e1 + 1 and ni = ei for i = 2; : : : ; r, and weset zi;t := zi for i = 2; : : : ; r and t 2 C. Let � � C be a small dis
 around 0 with
oordinate t, and 
hoose 
oordinates (xi; yi) on � around zi su
h that� zi;t = (ai(t); bi(t)) for t 2 � with ai; bi 2 Cftg,� zi = (ai(0); bi(0)) = (0; 0), and� Fi(xi; yi; t) = fi;t(xi; yi) 2 Cfxi; yi; tg, where Ct = ffi;t = 0g lo
ally at zi;t (fort 2 �).We view fCtgt2� as a non-trivial deformation of C, whi
h implies that the im-age of ��t jt=0 2 T0(�) under the Kodaira-Spen
er map is a non-zero se
tion s ofH0�C;OC(C)�. s is lo
ally at zi given by �Fi�t jt=0.Idea: Show that �Fi�t jt=0 2 (xi; yi)ei, whi
h are the stalks of JX(e;z)=� � OC(C) at thezi, and hen
e s is a
tually a global se
tion of the subsheaf JX(e;z)=� � OC(C).Set �i;t(xi; yi) := Fi;t(xi+ ai(t); yi+ bi(t); t) =P1k=0 'i;k(xi; yi) � tk 2 Cfxi; yi; tg. Byassumption for any t 2 � the multipli
ity of �i;t at (0; 0) is at least ni, i. e. �i;t(xi; yi) 2(xi; yi)ni for every �xed 
omplex number t 2 �. Hen
e, 'i;k(xi; yi) 2 (xi; yi)ni forevery k.3On the other hand we have'i;1(xi; yi) = ��i;t(xi;yi)�t jt=0= D��Fi�xi (xi; yi; 0); �Fi�yi (xi; yi; 0); �Fi�t (xi; yi; 0)�; � _ai(0); _bi(0); 1�E= �fi;0�xi (xi; yi) � _ai(0) + �fi;0�yi (xi; yi) � _bi(0) + �Fi�t (xi; yi; 0):Sin
e fi;0 2 (xi; yi)ni, we have �fi;0�xi (xi; yi); �fi;0�yi (xi; yi) 2 (xi; yi)ni�1, and hen
e�Fi�t (xi; yi; 0) 2 (xi; yi)ei. For this note that _ai(0) = _bi(0) = 0, if i 6= 1. �3See Lemma C.1.



10 THOMAS KEILEN AND ILYA TYOMKIN3.4 LemmaGiven e1; : : : ; er 2 N0 and z1; : : : ; zr 2 �, r � 1.The 
anoni
al morphism JX(e1;z1)=�
� � �
JX(er;zr)=�
OC(C) �! JX(e;z)=� �OC(C)indu
es a surje
tive morphism � on the level of global se
tions.If s 2 H0�C;JX(e1;z1)=� 
 � � � 
 JX(er;zr)=� 
 OC(C)�, but not in Ker(�), then sindu
es a non-zero se
tion ~s in H0�C; ��O eC��Pri=1 eiEi�
OC OC(C)�.Proof: Set E := �Pri=1 eiEi.We start with the stru
ture sequen
e for eC:0 // Oe��� eC� // Oe� // O eC // 0:Tensoring with the lo
ally free sheafOe�(E) and then applying �� we get a morphism:��Oe�(E) �! ��O eC(E):Now tensoring by OC(C) over O� we have an exa
t sequen
e:0 // Ker(
) // ��Oe�(E)
O� OC(C) 

// ��O eC(E)
O� OC(C):And �nally taking global se
tions, we end up with:0 // H0��;Ker(
)� // H0��; ��Oe�(E)
OC(C)� � // H0��; ��O eC(E)
OC(C)�:Sin
e the sheaves we look at are a
tually OC -sheaves and sin
e C is a 
losed sub-s
heme of �, the global se
tions of the sheaves as sheaves on � and as sheaves onC 
oin
ide (
f. [Har77℄ III.2.10 - for more details, see Corollary C.3). Furthermore,��Oe�(E) =Nri=1 JX(ei;zi)=�.Thus it suÆ
es to show that Ker (�) � Ker (�).Sin
e �j : e�n(Sri=1Ei)! �nfz1; : : : ; zrg is an isomorphism, we have that supp �Ker(
)� �fz1; : : : ; zrg is �nite.4 Hen
e, by Lemma C.5,Ker(�) = H0��;Ker(
)� � H0��;Tor �Ker(
)��� H0��;Tor�Ori=1 JX(ei;zi)=� 
OC(C)��:Let now t 2 Ker(�) be given. We have to show that �(t) = 0, i. e. �z(tz) = 0 forevery z 2 �. If z 62 fz1; : : : ; zrg, then tz = 0. Thus we may assume z = zk. As wehave shown,tzk 2 Tor �mek�;zk 
O�;zk OC;zk� = Tor �mek�;zk=fzkmek�;zk� = (fzk)=fzkmek�;zk ;where fzk is a lo
al equation of C at zk. Therefore, there exists a 0 6= gzk 2 O�;zksu
h that tzk = fzkgzk �mod fzkmek�;zk� � fzk 
 gzk (note that fzk 2 mnk�;zk � mek�;zk !).But then �zk(tzk) is just the residue 
lass of fzkgzk in mek�;zkOC;zk = mek�;zk=(fzk), andis thus zero. �4See Lemma C.4.



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 11Proof of Lemma 3.1: Using the notation of the idea of the proof given on page 8,we have, by Lemma 3.3, a non-zero se
tion s 2 H0�C;JX(e;z)=� � OC(C)�. This liftsunder the surje
tion � to a se
tion s0 2 H0�C;Nri=1 JX(ei;zi)=�
OC(C)� whi
h is notin the kernel of �. Again setting E := �Pri=1 eiEi, by Lemma 3.4, we have a non-zero se
tion ~s 2 H0�C; ��O eC(E)
OC OC(C)�, where by the proje
tion formula thelatter is just H0�C; ���O eC(E)
O eC ��OC(C)�� =def H0� eC;O eC(E)
O eC ��OC(C)�.Sin
e O eC(E) 
O eC ��OC(C) has a global se
tion and sin
e eC is irredu
ible andredu
ed, we get by Lemma D.2:0 � deg �O eC(E)
O eC ��OC(C)� = E: eC + deg �OC(C)� = rXi=1 �eini + C2: �4. Existen
e Theorem for Generi
 Fat Point S
hemes4.1 TheoremGiven m1; : : : ; mr 2 N0, not all zero, and z1; : : : ; zr 2 �, in very general position.Let L 2 Div(�) be very ample over C, and let D 2 Div(�) be su
h that(4.1) h1��;JX(m;z)=�(D � L)� = 0, and(4.2) D:L� 2g(L) � mi +mj for all i; j.Then there exists a 
urve C 2 jDjl with ordinary singular points of multipli
ity miat zi for i = 1; : : : ; r and no other singular points. Furthermore,h1��;JX(m;z)=�(D)� = 0;and in parti
ular, VjDj(m) is T-smooth at C.If in addition (4.3) D2 > Pri=1m2i , then C 
an be 
hosen to be irredu
ible andredu
ed.Idea of the proof: For ea
h zj �nd a 
urve Cj 2 ��H0�JX(m;z)=�(D)���l with anordinary singular point of multipli
ity mj and show that this linear system hasno other base points than z1; : : : ; zr. Then the generi
 element is smooth outsidez1; : : : ; zr and has an ordinary singularity of multipli
ity mj in zj.Proof: W. l. o. g. mi � 1 for all i = 1 : : : ; r. For the 
onvenien
e of notation we setzr+1 := z1 and mr+1 := m1. Sin
e L is very ample, we may 
hoose smooth 
urvesLj 2 jLjl through zj and zj+1 for j = 1; : : : ; r (
f. Lemma E.3). Writing X forX(m; z) we introdu
e zero-dimensional s
hemes Xj for j = 1; : : : ; r byJXj=�;z = � JX=�;z; if z 6= zj;m�;zj � JX=�;zj ; if z = zj:Step 1: h1�JXj=�(D)� = 0.



12 THOMAS KEILEN AND ILYA TYOMKINBy Condition (4.2) we getdeg �Xj \ Lj� � mj +mj+1 + 1 � D:L+ 1� 2g(L); (4.4)and the exa
t sequen
e0 // JX=� // JXj :Lj=� // mmj+1�1�;zj+1 =mmj+1�;zj+1 // 0implies with the aid of (4.1) h1�JXj :Lj=�(D � L)� = 0: (4.5)(4.4) and (4.5) allow us to apply Lemma E.5 in order to obtainh1�JXj=�(D)� = 0:Step 2: For ea
h j = 1; : : : ; r there exists a 
urve Cj 2 jDjl with an ordinarysingular point of multipli
ity mj at zj and with multzi(Cj) � mi for i 6= j.Consider the exa
t sequen
e0 // JXj=� // JX=� // mmj�;zj=mmj+1�;zj // 0twisted by D and the 
orresponding long exa
t 
ohomology sequen
eH0�JX=�(D)� // mmj�;zj=mmj+1�;zj // H1�JXj=�(D)� //Step 1 H1�JX=�(D)� // 0:0 (4.6)Thus we may 
hoose the Cj to be given by a se
tion in H0�JX=�(D)� where the mjtangent dire
tions at zj are all di�erent.Step 3: The base lo
us of P�H0�JX=�(D)�� is fz1; : : : ; zrg.Suppose w 2 � was an additional base point and de�ne the zero-dimensional s
hemeX [ fwg by JX[fwg=�;z = � JX=�;z; if z 6= w;m�;w � JX=�;w; if z = w:Choosing a generi
, and thus smooth, 
urve Lw 2 jLjl through w we may dedu
e asin Step 1 h1�JX[fwg=�(D)� = 0;and thus as in Step 2 h0�JX=�(D)� = h0�JX[fwg=�(D)�+ 1:But by assumption w is a base point, and thush0�JX=�(D)� = h0�JX[fwg=�(D)�;whi
h gives us the desired 
ontradi
tion.Step 4: 9 C 2 P�H0�JX=�(D)�� � jDjl with an ordinary singular point of multi-pli
ity mi at zi for i = 1; : : : ; r and no other singular points.



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 13Be
ause of Step 2 the generi
 element in P�H0�JX=�(D)�� has an ordinary singularpoint of multipli
ity mi at zi and is by Bertini's Theorem (
f. [Har77℄ III.10.9.2)smooth outside its base lo
us.For two generi
 
urves C;C 0 2 P�H0�JX=�(D)�� the interse
tion multipli
ity in ziis i(C;C 0; zi) = m2i . Thus, if Condition (4.3) is ful�lled then C and C 0 have an addi-tional interse
tion point outside the base lo
us of P�H0�JX=�(D)��, and Bertini'sTheorem (
f. [Wae73℄ x47, Satz 4) implies that the generi
 
urve in P�H0�JX=�(D)��is irredu
ible.Step 5: h1�JX=�(D)� = 0, by Equation (4.6).Step 6: VjDj(m) is T-smooth at C.By [GLS98b℄, Lemma 2.7, we haveJX=� � JXes(C)=�;and thus by Step 5 h1�JXes(C)=�(D)� = 0;whi
h proves the 
laim. �4.2 CorollaryLet m1; : : : ; mr 2 N0, not all zero, r � 1, and let L 2 Div(�) be very ample over C.Suppose D 2 Div(�) su
h that(4.7) (D � L�K�)2 � 2Pri=1(mi + 1)2,(4.8) (D�L�K�):B > maxfm1; : : : ; mrg for any irredu
ible 
urve B � �with B2 = 0 and dim jBja � 1,(4.9) D � L�K� is nef, and(4.10) D:L� 2g(L) � mi +mj for all i; j.Then for z1; : : : ; zr 2 � in very general position there exists a 
urve C 2 jDjl withordinary singular points of multipli
ity mi at zi for i = 1; : : : ; r and no other singularpoints. Furthermore, h1��;JX(m;z)=�(D)� = 0;and in parti
ular, VjDj(m) is T-smooth in C.If in addition (4.11) D2 > Pri=1m2i , then C 
an be 
hosen to be irredu
ible andredu
ed.Proof: Follows from Theorem 4.1 and Corollary 2.2. �4.3 RemarkIn view of Condition (4.7) Condition (4.11) is satis�ed if the following 
ondition isful�lled: D2 + (2D � L�K�):(L+K�) + 4 rXi=1 mi + 2r > 0 (4.12)



14 THOMAS KEILEN AND ILYA TYOMKINProof: Suppose (4.11) was not satis�ed, then2 rXi=1 m2i � 2D2 = D2 + (D � L�K�)2 + (2D � L�K�):(L +K�)� D2 + 2 rXi=1 m2i + 4 rXi=1 mi + 2r + (2D � L�K�):(L +K�):Hen
e, D2 + (2D � L�K�):(L +K�) + 4 rXi=1 mi + 2r � 0;whi
h implies that (4.12) is suÆ
ient. �5. Existen
e Theorem for General Equisingularity S
hemesNotationIn the following we will denote by C[x; y℄d, respe
tively by C[x; y℄�d the C-ve
torspa
es of polynomials of degree d, respe
tively of degree at most d. If f 2 C[x; y℄�dwe denote by fk 2 C[x; y℄k for k = 0; : : : ; d the homogeneous part of degree k of f ,and thus f =Pdk=0 fk. By a = (ak;lj0 � k + l � d) we will denote the 
oordinatesof C[x; y℄�d with respe
t to the basis �xkylj0 � k + l � d	.For any f 2 C[x; y℄�d the tautologi
al familyC[x; y℄�d � C2 � [g2C[x;y℄�dfgg � g�1(0) �! C[x; y℄�dindu
es a deformation of the plane 
urve singularity �f�1(0); 0� whose base spa
e isthe germ �C[x; y℄�d; f� of C[x; y℄�d at f . Given any deformation (X; x) ,! (X ; x)!(S; s) of a plane 
urve singularity (X; x), we will denote by Ses = (Ses; s) the germof the equisingular stratum of (S; s). Thus, �xed an f 2 C[x; y℄�d, C[x; y℄es�d =�C[x; y℄es�d; f� is the (lo
al) equisingular stratum of C[x; y℄�d at f .5.1 De�nition(i) We say the family C[x; y℄�d is T-smooth at f 2 C[x; y℄�d if for any e � d thereexists a � � �(k; l) 2 N20 �� 0 � k + l � d	 with #� = � es su
h that C[x; y℄es�eis given by equationsak;l = �k;l�a(1); a(2)�; (k; l) 2 �;with �k;l 2 C�a(1); a(2)	 where a(0) = (ak;lj(k; l) 2 �), a(1) = (ak;l j 0 �k + l � d; (k; l) 62 �), and a(2) = (ak;l j d + 1 � k + l � e), and where� es = dimC �Cfx; yg=Ies�f�1(0); 0�� is the 
odimension of the equisingularstratum in the base spa
e of the semiuniversal deformation of �f�1(0); 0�.(ii) A polynomial f 2 C[x; y℄�d is said to be a good representative of the singularitytype S in C[x; y℄�d if it meets the following 
onditions:(a) Sing �f�1(0)� = np 2 C2 j f(p) = 0; �f�x(p) = 0; �f�y (p) = 0o = f0g,



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 15(b) �f�1(0); 0� �t S,(
) fd is redu
ed, and(d) C[x; y℄�d is T-smooth at f .(iii) Given a singularity type S we de�ne s(S) to be the minimal number d su
hthat S has a good representative of degree d.5.2 Remark(i) The 
ondition for T-smoothness just means that for any e � d the equisingularstratum C[x; y℄es�e is smooth at the point f of the expe
ted 
odimension in�C[x; y℄�e; f�.(ii) Note that for a polynomial of degree d the highest homogeneous part fd de�nesthe normal 
one, i. e. the interse
tion of the 
urve ff̂ = 0g with the line atin�nity in P2C , where f̂ is the homogenisation of f . Thus the 
ondition \fdredu
ed" in the de�nition of a good representative just means that the line atin�nity interse
ts the 
urve transversally in d di�erent points.(iii) If f 2 C[x; y; z℄d is an irredu
ible polynomial su
h that (0 : 0 : 1) is theonly singular point of the plane 
urve ff = 0g � P2C , then a linear 
hange of
oordinates of the type (x; y; z) 7! (x; y; z+ax+by) will ensure that the deho-mogenisation �f of f satis�es \ �fd redu
ed". Note for this that the 
oordinate
hange 
orresponds to 
hoosing a line in P2C , not passing through (0 : 0 : 1)and meeting the 
urve in d distin
t points. Therefore, the bounds for s(S)given in [Los98℄ Theorem 4.2 and Remark 4.3 do apply here.(iv) For re�ned results using the te
hniques of the following proof we refer to[Shu99℄.5.3 Theorem (Existen
e)Let S1; : : : ;Sr be singularity types, and suppose there exists an irredu
ible 
urve C 2jDjl with r + r0 ordinary singular points z1; : : : ; zr+r0 of multipli
ities m1; : : : ; mr+r0respe
tively as its only singularities su
h that mi = s(Si) + 1, for i = 1; : : : ; r, andh1��;JX(m;z)=�(D)� = 0:Then there exists an irredu
ible 
urve eC 2 jDjl with r singular points of typesS1; : : : ;Sr and r0 ordinary singular points of multipli
ities mr+1; : : : ; mr+r0 as itsonly singularities.5Idea of the proof: The basi
 idea is to glue lo
ally at the zi equations of goodrepresentatives for the Si into the 
urve C. Let us now explain more detailed whatwe mean by this.If gi = Pmi�1k+l=0 ai;fixk;l xki yli, i = 1; : : : ; r, are good representatives of the Si, then weare looking for a family Ft, t 2 (C; 0), in H0��;O�(D)� whi
h in lo
al 
oordinates5Here, of 
ourse, m = (m1; : : : ;mr+r0) and z = (z1; : : : ; zr+r0).



16 THOMAS KEILEN AND ILYA TYOMKINxi; yi at zi looks like F it = mi�1Xk+l=0 tmi�1�k�l~aik;l(t)xki yli + h:o:t:;where the ~aik;l(t) should be 
onvergent power series in t with ~aik;l(0) = ai;fixk;l . Repla
-ing gi by some arbitrarily small multiple �igi the 
urve de�ned by F0 is an arbitrarilysmall deformation of C inside some suitable linear system, thus it is smooth outsidez1; : : : ; zr+r0 and has ordinary singular points in z1; : : : ; zr+r0 . For t 6= 0, on the otherhand, F it 
an be transformed, by (xi; yi) 7! (txi; tyi), into a member of some family~F it = mi�1Xk+l=0 ~aik;l(t)xki yli + h:o:t:; t 2 C;with ~F i0 = gi:Using now the T-smoothness property of gi, i = 1; : : : ; r, we 
an 
hoose the ~aik;l(t)su
h that this family is equisingular. Hen
e, for small t 6= 0, the 
urve given by Ftwill have the right singularities at the zi. Finally, the knowledge on the singularitiesof the 
urve de�ned by F0 and the 
onservation of Milnor numbers will ensure thatthe 
urve given by Ft has no further singularities, for t 6= 0 suÆ
iently small.The proof will be done in several steps. First of all we are going to �x some no-tation by 
hoosing a basis of H0��;O�(D)� whi
h re
e
ts the \independen
e" ofthe 
oordinates at the di�erent zi ensured by h1��;JX(m;z)=�(D)� = 0 (Step 1.1),and by 
hoosing good representatives for the Si (Step 1.2). In a se
ond step weare making an \Ansatz" for the family Ft, and, for the lo
al investigation of thesingularity type, we are swit
hing to some other families ~F it , i = 1; : : : ; r (Step 2.1).We, then, redu
e the problem of Ft, for t 6= 0 small, having the right singularities toa question about the equisingular strata of some families of polynomials (Step 2.2),whi
h in Step 2.3 will be solved. The �nal step serves to show that the 
urves Fthave only the singularities whi
h we 
ontrolled in the previous steps.Proof:Step 1.1: Parametrise jDjl = P�H0�O�(D)��.Consider the following exa
t sequen
e:0 �! JX(m;z)=�(D) �! O�(D) �! r+r0Mi=1 O�;zi=mmi�;zi �! 0:Sin
e h1�JX(m;z)=�(D)� = 0, the long exa
t 
ohomology sequen
e givesH0�O�(D)� = r+r0Mi=1 Cfxi; yig=(xi; yi)mi �H0�JX(m;z)=�(D)�;where xi; yi are lo
al 
oordinates of (�; zi).



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 17We, therefore, 
an �nd a basis �sik;l; sj �� j = 1; : : : ; e; i = 1; : : : ; r + r0; 0 � k + l �mi � 1	 of H0�O�(D)�, with e = h0�JX(m;z)=�(D)�, su
h that6� C is the 
urve de�ned by s1,� (sj)zi =Pj�j�mi Bj;i� x�1i y�2i for j = 1; : : : ; e, i = 1; : : : ; r + r0,� �sjk;l�zi = 8><>: xki yli + Pj�j�miAi;i�;k;lx�1i y�2i ; if i = j;Pj�j�miAj;i�;k;lx�1i y�2i ; if i 6= j:Let us now denote the 
oordinates of H0�O�(D)� w. r. t. this basis by (a; b) =�a1; : : : ; ar+r0; b� with ai = �aik;l j 0 � k + l � mi � 1� and b = (bj j j = 1; : : : ; e).Thus the familyF(a;b) = r+r0Xi=1 mi�1Xk+l=0 aik;lsik;l + eXj=1 bjsj; (a; b) 2 CN with N = e+ r+r0Xi=1 �mi + 12 �;parametrises H0�O�(D)�.Step 1.2: By the de�nition of s(Si) and sin
e s(Si) = mi� 1, we may 
hoose goodrepresentatives gi = mi�1Xk+l=0 ai;fixk;l xki yli 2 C[xi; yi℄�mi�1for the Si, i = 1; : : : ; r. Let ai;fix = �ai;fixk;l �� 0 � k + l � mi � 1� and afix =�a1;fix; : : : ; ar;fix�. We should remark here that for any �i 6= 0 the polynomial �igiis also a good representative, and thus, repla
ing gi by �igi, we may assume thatthe ai;fixk;l are arbitrarily 
lose to 0.Step 2: We are going to glue the good representatives for the Si into the 
urve C.More pre
isely, we are 
onstru
ting a subfamily Ft, t 2 (C; 0), in H0�O�(D)� su
hthat, if Ct 2 jDjl denotes the 
urve de�ned by Ft,(1) z1; : : : ; zr+r0 are the only singular points of the irredu
ible redu
ed 
urve C0,and they are ordinary singularities of multipli
ities mi � 1, for i = 1; : : : ; r,and mi, for i = r + 1; : : : ; r + r0 respe
tively,(2) lo
ally in zi, i = 1; : : : ; r, the Ft, for small t 6= 0, 
an be transformed intomembers of a �xed Si-equisingular family,(3) while for i = r + 1; : : : ; r + r0 and t 6= 0 small Ct has an ordinary singularityof multipli
ity mi in zi.Step 2.1: \Ansatz" and �rst redu
tion for a lo
al investigation.Let us make the following \Ansatz":b1 = 1; b2 = : : : = be = 0; ai = 0; for i = r + 1; : : : ; r + r0;aik;l = tmi�1�k�l � ~aik;l; for i = 1; : : : ; r; 0 � k + l � mi � 1:6Throughout this proof we will use the multi index notation � = (�1; �2) 2 N2 and j�j = �1+�2.



18 THOMAS KEILEN AND ILYA TYOMKINThis gives rise to a familyF(t;~a) = s1 + rXi=1 mi�1Xk+l=0 tmi�1�k�l~aik;lsik;l 2 H0�O�(D)�with t 2 C and ~a = �~a1; : : : ; ~ar� where ~ai = �~aik;l j 0 � k + l � mi � 1� 2 CNi withNi = �mi+12 �.Fixing i 2 f1; : : : ; rg, in lo
al 
oordinates at zi the family looks likeF i(t;~a) := �F(t;~a)�zi = mi�1Xk+l=0 tmi�1�k�l~aik;lxki yli + Xj�j�mi 'i�(t; ~a) x�1i y�2i ;with 'i�(t; ~a) = B1;i� + rXj=1 mj�1Xk+l=0 tmj�1�k�l~ajk;lAj;i�;k;l:For t 6= 0 the transformation  it : (xi; yi) 7! (txi; tyi) is indeed a 
oordinate trans-formation, and thus F i(t;~a) is 
onta
t equivalent7 to~F i(t;~a) := t�mi+1 � F i(t;~a)(txi; tyi) = mi�1Xk+l=0 ~aik;lxki yli + Xj�j�mi t1+j�j�mi'i�(t; ~a) x�1i y�2i :Note that for this new family in Cfxi; yig we have~F i(0;afix) = mi�1Xk+l=0 ai;fixk;l xki yli = gi;and hen
e it gives rise to a deformation of �g�1i (0); 0�.Step 2.2: Redu
tion to the investigation of the equisingular strata of 
ertain fam-ilies of polynomials.It is basi
ally our aim to verify the ~a as 
onvergent power series in t su
h that the
orresponding family is equisingular. However, sin
e the ~F i(t;~a) are power series in xiand yi, we 
annot right away apply the T-smoothness property of gi, but we ratherhave to redu
e to polynomials. For this let ei be the determina
y bound8 of Si and7Let f; g 2 On = Cfx1; : : : ; xng be two 
onvergent power series in n indeterminates. We 
all fand g 
onta
t equivalent, if On=(f) �= On=(g), and we write in this 
ase f �
 g. Equivalently, we
ould ask the germs �V (f); 0� and �V (g); 0� to be isomorphi
, that is, ask the singularities to beanalyti
ally equivalent. C. f. [DP00℄ De�nition 9.1.1 and De�nition 3.4.19.8A power series f 2 On = Cfx1; : : : ; xng (respe
tively the singularity �V (f); 0� de�ned by f) is saidto be �nitely determined with respe
t to some equivalen
e relation � if there exists some positiveinteger e su
h that f � g whenever f and g have the same e-jet. If f is �nitely determined, thesmallest possible e is 
alled the determina
y bound. Isolated singularities are �nitely determinedwith respe
t to analyti
al equivalen
e and hen
e, for n = 2, as well with respe
t to topologi
alequivalen
e. C. f. [DP00℄ Theorem 9.1.3 and Footnote 9.



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 19de�neF̂ i(t;~a) := mi�1Xk+l=0 ~aik;lxki yli + eiXj�j=mi t1+j�j�mi'i�(t; ~a) x�1i y�2i � ~F i(t;~a)�mod (xi; yi)ei+1�:Thus F̂ i(t;~a) is a family in C[xi; yi℄�ei, and stillF̂ i(0;afix) = ~F i(0;afix) = gi:We 
laim that it suÆ
es to �nd ~a(t) 2 Cftg with ~a(0) = �ai;fixk;l �� i = 1; : : : ; r; 0 �k+l � mi�1�, su
h that the families F̂ it := F̂ i(t;~a(t)), t 2 (C; 0), are in the equisingularstrata C[xi; yi℄es�ei, for i = 1; : : : ; r.Sin
e then we have, for small9 t 6= 0,gi = F̂ i0 � F̂ it � ~F i(t;~a(t)) � F i(t;~a(t)) = �F(t;~a(t))�zi(t);by the ei-determina
y and sin
e  it is a 
oordinate 
hange for t 6= 0, whi
h proves
ondition (2). Note that the singular points zi will move with t.It remains to verify 
onditions (1) and (3). Setting Ft := F(t;~a(t)) 2 H0�O�(D)�, fort 2 (C; 0), we �nd that F0 = s1 + rXj=1 Xk+l=mj�1 aj;fixk;l sjk;lis an element inside the linear system D = f�0s1 +Prj=1 �jsj j (�0 : : : : : �r) 2PrC g, where sj = Pk+l=mj�1 aj;fixk;l sjk;l. Lo
ally at zi, i = 1; : : : ; r + r0, D indu
es adeformation of (C; zi) with equations�i � �gi�mi�1 + h:o:t:; if i = 1; : : : ; r;and�0 �0� Xj�j=miB1;i� x�1i y�2i 1A + rXj=1 �j �0� Xk+l=mj�1 aj;fixk;l Xj�j=miAj;i�;k;lx�1i y�2i 1A + h:o:t:;if i = r + 1; : : : ; r + r0;respe
tively. Thus any element of D has ordinary singularities of multipli
itymi�1at zi for i = 1; : : : ; r, and sin
e s1 has an ordinary singularity of multipli
ity miat zi for i = r + 1; : : : ; r + r0, so has a generi
 element of D. Moreover, a generi
element of D has not more singular points than the spe
ial element s1 and has thussingularities pre
isely in fz1; : : : ; zr+r0g. Repla
ing the gi by some suitable multiples,we may assume that the 
urve de�ned by F0 is a generi
 element of D, whi
h proves9 Here f �t g, for two 
onvergent power series f; g 2 O2 = Cfx; yg, means that the singularities�V (f); 0� and �V (g); 0� are topologi
ally equivalent, that is, there exists a homeomorphism � :�C2; 0� ! �C2; 0� with ��V (f); 0� = �V (g); 0�, whi
h of 
ourse means, that this is 
orre
t forsuitably 
hosen representatives. Note that if f and g are 
onta
t equivalent, then there exists evenan analyti
al 
oordinate 
hange �, that is, f �
 g implies f �t g.



20 THOMAS KEILEN AND ILYA TYOMKIN(1). Similarly, we note that Ft in lo
al 
oordinates at zi, for i = r + 1; : : : ; r + r0,looks likeXj�j=miB1;i� x�1i y�2i + rXj=1 mj�1Xk+l=0 tmj�1�k�l~ajk;l(t) Xj�j=miAj;i�;k;lx�1i y�2i + h:o:t:= Xj�j=mi B1;i� + rXj=1 mj�1Xk+l=0 tmj�1�k�l~ajk;l(t)Aj;i�;k;l! x�1i y�2i + h:o:t:;and thus, for t 6= 0 suÆ
iently small, the singularity of Ft at zi will be an ordinarysingularity of multipli
ity mi, whi
h gives (3).Step 2.3: Find ~a(t) 2 Cftgn with ~a(0) = �ai;fixk;l , i = 1; : : : ; r; 0 � k + l �mi � 1�, n = Pri=1 �mi+12 �, su
h that the families F̂ it = F̂ i(t;~a(t)), t 2 (C; 0), arein the equisingular strata C[xi; yi℄es�ei, for i = 1; : : : r.In the sequel we adopt the notation of de�nition 5.1 adding indi
es i in the obviousway.Sin
e C[xi; yi℄�mi�1 is T-smooth at gi, for i = 1; : : : ; r, there exist �i � f(k; l) j 0 �k + l � mi � 1g and power series �ik;l 2 C�~ai(1); ~ai(2)	, for (k; l) 2 �i, su
h that theequisingular stratum C[xi; yi℄es�ei is given by the � es;i = #�i equations~aik;l = �ik;l�~ai(1); ~ai(2)�; for (k; l) 2 �i:Setting � = Srj=1fjg��j we use the notation ~a(0) = �~a1(0); : : : ; ~ar(0)� = �~aik;l �� (i; k; l) 2�� and, similarly ~a(1), ~a(2), ai;fix(1) , afix(0) , and afix(1) . Moreover, setting ~'i�t; ~a(0)� =�tj�j�mi'i��t; ~a(0); afix(1) � �� mi � j�j � ei�, we de�ne an analyti
al map germ� : �C� C�es;1 � � � � � C�es;r ; �0; afix(0) ��! �C�es;1 � � � � � C�es;r ; 0�by �ik;l�t; ~a(0)� = ~aik;l � �ik;l�ai;fix(1) ; t � ~'i�t; ~a(0)��; for (i; k; l) 2 �;and we 
onsider the system of equations�ik;l�t; ~a(0)� = 0; for (i; k; l) 2 �:One easily veri�es that ��ik;l�~aj�;� �0; afix(0) �!(i;k;l);(j;�;�)2� = idCn :Thus by the Inverse Fun
tion Theorem there exist ~aik;l(t) 2 Cftg with ~aik;l(0) = ai;fixk;lsu
h that ~aik;l(t) = �ik;l�ai;fix(1) ; t � ~'i�t; ~a(0)(t)��; (i; k; l) 2 �:Now, setting ~a(1)(t) � afix(1) , the families F̂ it = F̂ i(t;~a(t)) are in the equisingular strataC[xi; yi℄es�ei, for i = 1; : : : ; r.



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 21Step 3: It �nally remains to show that Ft, for small t 6= 0, has no other singularpoints than z1(t); : : : ; zr(t); zr+1; : : : ; zr+r0.Sin
e for any i = 1; : : : ; r+ r0 the family Ft, t 2 (C; 0), indu
es a deformation of thesingularity (C0; zi) there are, by the Conservation of Milnor Numbers10 (
f. [DP00℄,Chapter 6), (Eu
lidean) open neighbourhoods U(zi) � � and V (0) � C su
h thatfor any t 2 V (0)(5.1) Sing(Ct) � Sr+r0i=1 U(zi), i. e. singular points of Ct 
ome from singularpoints of C0,(5.2) �(C0; zi) =Pz2Sing(F it )\U(zi) ��F it ; z�, i = 1; : : : ; r + r0.For i = r + 1; : : : ; r + r0 
ondition (5.2) implies(mi � 1)2 = �(C0; zi) � ��F it ; zi� = (mi � 1)2;and thus zi must be the only 
riti
al point of F it in U(zi), in parti
ular,Sing(Ct) \ U(zi) = fzig:Let now i 2 f1; : : : ; rg. For t 6= 0 �xed, we 
onsider the transformation de�ned bythe 
oordinate 
hange  it,C2 � U(zi) �! Ut(zi) � C22 2(xi; yi) 7! �1txi; 1t yi�;and the transformed equations~F it (xi; yi) = t�mi+1F it (txi; tyi) = 0:Condition (5.2) then implies,(mi � 2)2 = �(C0; zi) = Xz2Sing(F it )\U(zi)��F it ; z� = Xz2Sing( ~F it )\Ut(zi)�� ~F it ; z�:For t 6= 0 very small Ut(zi) be
omes very large, so that, by shrinking V (0) we maysuppose that for any 0 6= t 2 V (0)Sing(gi) � Ut(zi);and that for any z 2 Sing(gi) there is an open neighbourhood U(z) � Ut(zi) su
hthat �(gi; z) = Xz02Sing( ~F it )\U(z)�� ~F it ; z0�:10Re
all the de�nition of the Milnor number of a holomorphi
 map f 2 O(U) respe
tively off�1�f(z)� at a point z 2 U � C2: �(f; z) = ��f�1�f(z)�; z� = dimC �OU;zÆ��f�x (z); �f�y (z)��:



22 THOMAS KEILEN AND ILYA TYOMKINIf we now take into a

ount that gi has pre
isely one 
riti
al point, zi, on its zerolevel, and that the 
riti
al points on the zero level of ~F it all 
ontribute to the Milnornumber �(gi; zi), then we get the following sequen
e of inequalities:(mi � 2)2 � �(Si) = Xz2Sing(gi)�(gi; z)� Xz2Sing(g�1i (0)) �(gi; z)� Xz2Sing( ~F it )\Ut(zi)�� ~F it ; z�� Xz2Sing(( ~F it )�1(0))\Ut(zi)�� ~F it ; z�= Xz2Sing(F it )\U(zi) �(F it ; z)� Xz2Sing((F it )�1(0))\U(zi)�(F it ; z)� �(C0; zi)� ��F it ; zi� = (mi � 2)2 � �(Si):Hen
e all inequalities must have been equalities, and, in parti
ular,Sing(Ct) \ U(zi) = Sing �(F it )�1(0)� \ U(zi) = fzig;whi
h in view of Condition (5.1) �nishes the proof.Note that Ct, being a small deformation of the irredu
ible redu
ed 
urve C0, willagain be irredu
ible and redu
ed. �5.4 CorollaryLet L 2 Div(�) be very ample over C. Suppose that D 2 Div(�) and S1; : : : ;Sr aretopologi
al singularity types with �(S1) � : : : � �(Sr) su
h that(5.3) (D � L�K�)2 � 4145 P�(Si)�38 �(Si) + 58 P�(Si)�39 �p�(Si) + 132p29�2,(5.4) (D � L�K�):B > 8<: q2075 p�(S1)� 1; if �(S1) � 38;p29p�(S1) + 112 ; if �(S1) � 39;for any irredu
ible 
urve B with B2 = 0 and dim jBja > 0,(5.5) D � L�K� is nef,
(5.6) D:L�2g(L) � 8>>>>>>><>>>>>>>:

q2075 �p�(S1) +p�(S2)�� 2; if �(S1) � 38;q2075 p�(S1) +p29p�(S1) + 92 ; if �(S1) � 39& �(S2) � 38;p29�p�(S1) +p�(S2)�+ 11; if �(S2) � 39;(5.7) D2 � 2075 P�(Si)�38�p�(Si)�q 5207�2 + 29 P�(Si)�39�p�(Si) + 112p29�2,then there is an irredu
ible redu
ed 
urve C in jDjl with r singular points of topo-logi
al types S1; : : : ;Sr as its only singularities.



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 23Proof: This follows right away from Corollary 4.2, Theorem 5.3, and [Los98℄ The-orem 4.2. �5.5 RemarkOne 
ould easily simplify the above formulae by not distinguishing the 
ases �(Si) �39 and �(Si) � 38. However, one would loose information.On the other hand, knowing something more about the singularity type one 
oulda
hieve mu
h better results, applying the 
orresponding bounds for the s(Si). Weleave it to the reader to apply the bounds. (Cf. [Los98℄ Remarks 4.3, 4.8, and 4.15)As we have already mentioned earlier the most restri
tive of the above suÆ
ient
onditions is (5.3), whi
h 
ould be 
hara
terised as a 
ondition of the typerXi=1 �(Si) � �D2 + �D:K + 
;where K is some �xed divisor 
lass, �; � and 
 are some 
onstants.There are also ne
essary 
onditions of this type, e. g.rXi=1 �(Si) � D2 +D:K� + 2;whi
h follows from the genus formula.11See [Los98℄ Se
tion 4.1 for 
onsiderations on the asymptoti
al optimality of the
onstant �. 6. ExamplesIn this se
tion we are going to examine the 
onditions in the vanishing theorem(Corollary 2.2) and in the 
orresponding existen
e results for various types of sur-fa
es. Unless otherwise stated, r � 1 is a positive integer, and m1; : : : ; mr 2 N0 arenon-negative, while at least one mi is positive whenever we 
onsider 
onditions forexisten
e theorems.11If D is an irredu
ible 
urve with pre
isely r singular points of types S1; : : : ;Sr and � : eD ! Dits normalisation, then pa(D) = g� eD� + Æ(D) � Æ(D), where Æ(D) = dimC ���O eD=OD� is thedelta-invariant of D (
f. [BPV84℄ II.11). Moreover, by de�nition Æ(D) =Pz2Sing(D) Æ(D; z) whereÆ(D; z) = dimC ���O eD=OD�z is the lo
al delta-invariant at z, and it is well known that 2Æ(D; z) =�(D; z) + r(D; z)� 1 � �(D; z), where r(D; z) is the number of bran
hes of the 
urve singularity(D; z) and �(D; z) is its Milnor number (
f. [Mil68℄ Chapter 10). Using now the genus formula weget D2 +D:K� + 2 = 2pa(D) � 2 rXi=1 Æ(Si) � rXi=1 �(Si):



24 THOMAS KEILEN AND ILYA TYOMKIN6.a. The Classi
al Case - � = P2C . Sin
e in P2C there are no irredu
ible 
urvesof self-interse
tion number zero, Condition (2.5) is redundant. Moreover, Condition(2.6) takes in view of (2.4) the form d + 3 � p2. Corollary 2.2 thus takes thefollowing form, where L 2 jOP2C (1)jl is a generi
 line.2.2a CorollaryLet d be any integer su
h that(2.4a) (d+ 3)2 � 2Pri=1(mi + 1)2,(2.6a) d � �1.Then for z1; : : : ; zr 2 P2C in very general position and � > 0H�  Blz �P2C �; d��L� rXi=1 miEi! = 0:Now turning to the existen
e theorem Corollary 4.2 for generi
 fat point s
hemes,we, of 
ourse, �nd that Condition (4.8) is obsolete, and so is (4.9), taking intoa

ount that (4.10) implies d > 0. But then Conditions (4.10) and (4.11) be
omealso redundant in view of Condition (4.7) and equation (4.12).Thus the 
onditions in Corollary 4.2 redu
e to d > 0 and(4.7a) (d+ 2)2 � 2Pri=1(mi + 1)2,and, similarly, the 
onditions in Corollary 5.4 redu
e to d > 7 and(5.3a) (d+ 2)2 � 4145 P�(Si)�38 �(Si) + 58 P�(Si)�39 �p�(Si) + 132p29�2.These results are mu
h weaker than the previously known ones (e. g. [Los98℄ Propo-sition 4.11, where the fa
tor 2 is repla
ed by 109 ) whi
h use the Vanishing Theorem ofGeng Xu (
f. [Xu95℄ Theorem 3), parti
ularly designed for P2C . { Using L 2 jO�(l)jlwith l > 1 instead of O�(1) in Corollary 4.2 does not improve the 
onditions.6.b. Geometri
ally Ruled Surfa
es. Let � = P(E) � // C be a geometri
allyruled surfa
e with normalised bundle E (in the sense of [Har77℄ V.2.8.1). The N�eron-Severi group of � is NS(�) = C0Z� FZ;with interse
tion matrix � �e 11 0 � ;where F �= P1C is a �bre of �, C0 a se
tion of � with O�(C0) �= OP(E)(1), ande = � deg(�2E) � �g.12 For the 
anoni
al divisor we haveK� �a �2C0 + (2g � 2� e)F;12By [Nag70℄ Theorem 1 there is some se
tion D �a C0 + bF with g � D2 = 2b� e. Sin
e D isirredu
ible, by [Har77℄ V.2.20/21 b � 0, and thus �g � e.



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 25where g = g(C) is the genus of the base 
urve C.In order to understand Condition (2.5) we have to examine spe
ial irredu
ible 
urveson �.6.2 LemmaLet B 2 jaC0 + bF ja be an irredu
ible 
urve with B2 = 0 and dim jBja � 1. Thenwe are in one of the following 
ases(6.1) a = 0, b = 1, and B �a F ,(6.2) e = 0, a � 1, b = 0, and B �a aC0, or(6.3) e < 0, a � 2, b = a2e < 0, and B �a aC0 + a2eF .Moreover, if a = 1, then � �= C0 � P1C .Proof: Sin
e B is irredu
ible, we have0 � B:F = a and 0 � B:C0 = b� ae: (6.4)If a = 0, then jBja = jbF ja, but sin
e the general element of jBja is irredu
ible, bhas to be one, and we are in 
ase (6.1).We, therefore, may assume that a � 1. Sin
e B2 = 0 we have0 = B2 = 2a �b� a2e� ; hen
e b = a2e: (6.5)Combining this with (6.4) we get e � 0.Moreover, if e = 0, then of 
ourse b = 0, while, if e < 0, then a � 2 by [Har77℄V.2.21, sin
e otherwise b would have to be non-negative. This brings us down tothe 
ases (6.2) and (6.3).It remains to show, that B:F = a = 1 implies � �= C0 � P1C . But by assumptionthe elements of jBja are disjoint se
tions of the �bration �. Thus, by Lemma 6.3,� �= C � P1C . �6.3 LemmaIf � : � ! C has three disjoint se
tions, then � is isomorphi
 to C � P1C as aruled surfa
e, i. e. there is an isomorphism � : �! C � P1C su
h that the followingdiagram is 
ommutative: � � //�
��:

:
:

:
:

:
:

C � P1Cpr
}}zz

zz
zz

zzC:Proof: See [IS96℄ p. 229.



26 THOMAS KEILEN AND ILYA TYOMKIN� is a lo
ally trivial P1C -bundle, thus C is 
overed by a �nite number of open aÆnesubsets Ui � C with trivialisations��1(Ui) �='i //�
""D

DD
DD

DD
D

Ui � P1Cpr
||zz

zz
zz

zzUi;whi
h are linear on the �bres.The three disjoint se
tions on �, say S0, S1, and S1, give rise to three se
tions Si0, Si1,and Si1 on Ui�P1C . For ea
h point z 2 Ui there is a unique linear proje
tivity on the�bre fzg�P1C mapping the three points p0;z = Si0\�fzg�P1C �, p1;z = Si1\�fzg�P1C �,and p1;z = Si1 \ �fzg � P1C � to the standard basis 0 � �z; (1 : 0)�, 1 � �z; (1 : 1)�,and 1 � �z; (0 : 1)� of P1C �= fzg � P1C . If p0;z = �z; (x0 : y0)�, p1;z = �z; (x1 : y1)�,and p1;z = �z; (x1 : y1)�, the proje
tivity is given by the matrixA =  (x0y1�y0x1)y1y0y1x21�y0x1x1y1�x0y1x1y1+x0x1y1 (x0y1�y0x1)x1y0y1x21�y0x1x1y1�x0y1x1y1+x0x1y1y0x0y1�y0x1 x0x0y1�y0x1 ! ;whose entries are rational fun
tions in the 
oordinates of p0;z, p1;z, and p1;z. In-serting for the 
oordinates lo
al equations of the se
tions, A �nally gives rise to anisomorphism of P1C -bundles �i : Ui � P1C ! Ui � P1Cmapping the se
tions Si0, Si1, and Si1 to the trivial se
tions.The transition mapsUij � P1C ��1ij
// Uij � P1C '�1ij

// ��1(Uij) 'jj
// Uij � P1C �jj

// Uij � P1C ;with Uij = Ui \ Uj, are linear on the �bres and �x the three trivial se
tions. Thusthey must be the identity maps, whi
h implies that the �i Æ 'i, i = 1; : : : ; r, gluetogether to an isomorphism of ruled surfa
es:� � //�
��:

:
:

:
:

:
:

C � P1Cpr
}}zz

zz
zz

zzC: �Knowing the algebrai
 equivalen
e 
lasses of irredu
ible 
urves in � whi
h satisfythe assumptions in Condition (2.5) we 
an give a better formulation of the vanishingtheorem in the 
ase of geometri
ally ruled surfa
es.In order to do the same for the existen
e theorems, we have to study very ampledivisors on �. These, however, depend very mu
h on the stru
ture of the base 
urveC, and the general results whi
h we give may be not the best possible. Only in the
ase C = P1C we 
an give a 
omplete investigation.



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 27The geometri
ally ruled surfa
es with base 
urve P1C are, up to isomorphism, just theHirzebru
h surfa
es Fe = P�OP1C � OP1C (�e)�, e � 0. Note that Pi
(Fe) = NS(Fe),that is, algebrai
 equivalen
e and linear equivalen
e 
oin
ide. Moreover, by [Har77℄V.2.18 a divisor 
lass L = �C0 + �F is very ample over C if and only if � > 0 and� > �e. The 
onditions throughout the existen
e theorems turn out to be optimalif we work with L = C0 + (e + 1)F , while for other 
hoi
es of L they be
ome morerestri
tive.13In the 
ase C 6�= P1C , we may 
hoose an integer l � maxfe + 1; 2g su
h that thealgebrai
 equivalen
e 
lass jC0+ lF ja 
ontains a very ample divisor L, e. g. l = e+3will do, if C is an ellipti
 
urve.14 In parti
ular, l � 2 as soon as � 6�= P1C � P1C .With the above 
hoi
e of L we have g(L) = 1+ L2+L:K�2 = 1+ (�e+2l)+(e�2l+2g�2)2 = g,and hen
e the generi
 
urve in jLjl is a smooth 
urve whose genus equals the genusof the base 
urve.2.2b CorollaryGiven two integers a; b 2 Z satisfying(2.4b) a�b� �a2 � 1�e� �Pri=1(mi + 1)2,(2.5b.i) a > maxfmi j i = 1; : : : ; rg,(2.5b.ii) b > maxfmi j i = 1; : : : ; rg, if e = 0,(2.5b.iii) 2�b� �a2 � 1�e� > maxfmi j i = 1; : : : ; rg, if e < 0, and(2.6b) b � (a� 1)e, if e > 0.For z1; : : : ; zr 2 � in very general position and � > 0H�  Blz(�); (a� 2) � ��C0 + (b� 2 + 2g)��F � rXi=1 miEi! = 0:Proof: Note that if the invariant e is non-positive, then �b� �a2 � 1�e� > 0 impliesb � (a� 1)e; (6.6)so that this inequality is ful�lled for any 
hoi
e of e.13 Let L0 = �C0 + �F , then D � L0 �KFe = (a + 1 � �)C0 + (b + 1 + e � �)F , and thus theoptimality of the 
onditions follows from(4.7b.i/ii) (D � L0 �KFe)2 = (a+ 1� �)�2(b+ 1 + e� �) � (a + 1� �)e� � a�(2b� ae) +(�e+ e+ 2� 2�)� � a(2b� ae) = (D � L�KFe)2,(4.8b.i/ii) (D � L0 �KFe):F = a+ 1� � � a = (D �L�KFe):F , and for e = 0, (D �L0 �KFe):C0 = b+ 1� � � b = (D � L�KFe):C0, and(4.9b.ii) b+ 1 + e� � � e(a+ 1� �) implies b � b+ e�+ 1� � � ae.14l will be the degree of a suitable very ample divisor d on C. Now d de�nes an embedding of Cinto some PNC su
h that the degree of the image C 0 is just deg(d). Therefore deg(d) � 2, unless C 0is linear, whi
h implies C �= P1C .



28 THOMAS KEILEN AND ILYA TYOMKINSetting D = (a� 2)C0 + (b� 2 + 2g)F we have(D �K�)2 = �aC0 + (b + e)F �2 = 2a�b� �a2 � 1�e� � 2 rXi=1 (mi + 1)2;whi
h is just (2.4). Similarly, by (2.5b.i/ii/iii) and Lemma 6.2 Condition (2.5) issatis�ed.15 Finally Condition (2.6b) implies that D �K� is nef.In order to see the last statement, we have to 
onsider two 
ases.Case 1: e � 0.If B 2 ja0C0 + b0F ja is irredu
ible, then we are in one of the following situations, by[Har77℄ V.2.20:(i) a0 = 0 and b0 = 1, whi
h, 
onsidering (2.5b.i), implies(D �K�):B = a > 0:(ii) a0 = 1 and b0 = 0, whi
h by (6.6) leads to(D �K�):B = b� (a� 1)e � 0:(iii) a0 > 0 and b0 � a0e, whi
h in view of (2.5b.i), (6.6), and e � 0 gives(D �K�):B = �aa0e+ ab0 + (b + e)a0 � (b + e)a0 � 0:Hen
e, D �K� is nef.Case 2: e < 0.In this 
ase we may apply [Har77℄ V.2.21 and �nd that if B 2 ja0C0 + b0F ja isirredu
ible, then we are in one of the following situations:(i) a0 = 0 and b0 = 1, whi
h is treated as in Case 1.(ii) a0 = 1 and b0 � 0, whi
h, 
onsidering (2.5b.i) and (6.6), implies(D �K�):B = b� (a� 1)e + ab0 � 0:(iii) a0 � 2 and b0 � 12a0e, whi
h in view of (2.5b.iii) leads to(D �K�):B = �aa0e + ab0 + (b+ e)a0 � �12aa0e+ (b + e)a0= �b� �a2 � 1�e�a0 > 0:Hen
e, D �K� is nef. �15To see this, let B �a a0C0 + b0F be an irredu
ible 
urve with B2 = 0. Then by Lemma 6.2either a0 = 0 and b0 = 1, or e = 0, a0 � 1 and b0 = 0, or e < 0, a0 � 2, and b0 = a02 e < 0.In the �rst 
ase, (D � K�):B = a > maxfmi j i = 1; : : : ; rg by (2.5b.i). In the se
ond 
ase,(D �K�):B = ba0 � b > maxfmi j i = 1; : : : ; rg by (2.5b.ii). And �nally, in the third 
ase, wehave (D �K�):B = a0 � �b� �a2 � 1�e)� > maxfmi j i = 1; : : : ; rg by (2.5b.iii).



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 29In order to obtain ni
e formulae we 
onsidered D = (a � 2)C0 + (b � 2 + 2g)F inthe formulation of the vanishing theorem. For the existen
e theorems it turns outthat the formulae look best if we work with D = (a� 1)C0 + (b+ l + 2g � 2� e)Finstead. In the 
ase of Hirzebru
h surfa
es this is just D = (a� 1)C0 + (b� 1)F .4.2b CorollaryGiven integers a; b 2 Z satisfying(4.7b) a�b� a2e� �Pri=1(mi + 1)2,(4.8b.i) a > maxfmi j i = 1; : : : ; rg,(4.8b.ii) b > maxfmi j i = 1; : : : ; rg, if e = 0,(4.8b.iii) 2�b� a2e� > maxfmi j i = 1; : : : ; rg, if e < 0, and(4.9b) b � ae, if e > 0,then for z1; : : : ; zr 2 � in very general position there is an irredu
ible redu
ed 
urveC 2 j(a� 1)C0 + (b+ l+ 2g� 2� e)F ja with ordinary singularities of multipli
itiesmi at the zi as only singularities. Moreover, VjCj(m) is T-smooth at C.Proof: Note that by (4.7b) and (4.8b.i) b > a2e � ae, if e � 0, and thus theinequality b � ae; (6.7)is ful�lled no matter what e is.Noting that D � L � K� �a aC0 + bF , it is in view of Lemma 6.2 
lear, that theConditions (4.7) and (4.8) take the form (4.7b) respe
tively (4.8b). It, therefore,remains to show that (4.10) and (4.11) are obsolete, and that (4.9) takes the form(4.9b), whi
h in parti
ular means that it is obsolete in the 
ase � �= C � P1C .Step 1: (4.10) is obsolete.If � 6�= P1C �P1C , then l � 2. Sin
e, moreover, g(L) = g and D:L = a(l�e)+b+2g�2,Condition (4.8b.i) and (6.7) imply (4.10), i. e. for all i; jD:L� 2g(L) = a(l � e) + b� 2 � � a+ b� 2 � mi +mj; if � �= P1C � P1C ;2a+ (b� ae)� 2 � mi +mj; else.Step 2: (4.9) takes the form (4.9b).We have to 
onsider two 
ases.Case 1: e � 0.If B 2 ja0C0 + b0F ja is irredu
ible, then we are in one of the following situations, by[Har77℄ V.2.20:(i) a0 = 0 and b0 = 1, whi
h, 
onsidering (4.8b.i), implies(D � L�K�):B = a > 0:



30 THOMAS KEILEN AND ILYA TYOMKIN(ii) a0 = 1 and b0 = 0, whi
h by (6.7) leads to(D � L�K�):B = b� ae � 0:(iii) a0 > 0 and b0 � a0e, whi
h in view of (4.8b.i), (6.7), and e � 0 gives(D � L�K�):B = �aa0e+ ab0 + ba0 � ba0 � 0:Hen
e, D � L�K� is nef.Case 2: e < 0.In this 
ase we may apply [Har77℄ V.2.21 and �nd that if B 2 ja0C0 + b0F ja isirredu
ible, then we are in one of the following situations:(i) a0 = 0 and b0 = 1, whi
h is treated as in Case 1.(ii) a0 = 1 and b0 � 0, whi
h, 
onsidering (4.8b.i) and (6.7), implies(D � L�K�):B = b� ae+ ab0 � 0:(iii) a0 � 2 and b0 � 12a0e, whi
h in view of (4.8b.iii) leads to(D � L�K�):B = �aa0e+ ab0 + ba0 � �12aa0e + ba0 = �b� a2e�a0 > 0:Hen
e, D � L�K� is nef.Step 3: (4.12) is satis�ed, and thus (4.11) is obsolete.We have D2 = �e(a� 1)2 + 2(a� 1)(b+ l + 2g � 2� e);and (2D � L�K�):(L +K�) = e + 2al + 4ag + 4� 2b� 4a� 4g � 2l:Hen
e Condition (4.12) is equivalent to4b+ 8a + 4l + a2e + 8g < 2ab + 4al + 2e+ 8ag + 8 + 4 rXi=1 mi + 2r: (6.8)If � �= P1C �P1C , then the situation is symmetri
 and we may w. l. o. g. assume thatb � a. Sin
e by (4.8b.i) a � 2 we have to 
onsider the following 
ases:a � 4: g = 0; e = 0: Then � �= P1C � P1C , and by assumption b � a � 4 and l =e+1 = 1. We thus have 2ab+4al = ab+ ab+4a � 4b+8a and 8 > 4l,whi
h implies (6.8).g = 0; e > 0 or g � 1; e � 0: By (6.7) we get 2ab � 4b+ ab � 4b+ a2e.g = 0; e 2 f1; 2g: Then l = e+ 1, and hen
e 4al � 8a and 8 + 2e � 4l.g = 0; e � 3: Thus l = e+ 1 � 4, whi
h implies 2al � 8a and 2al � 4l.g � 1: Then l � 2, and thus 2al + 4ag � 8a, 2al � 4l, and 4ag � 8g.In any of the above 
ases (6.8) is satis�ed.g � 1; e < 0: Then l � 2 and 2ag � 8g. We therefore 
onsider the following
ases:b � 0: Thus 2ab � 4b, 2al + 4ag � 8a, 2al � 4l, and 2e � a2e.



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 31b < 0: By (4.8b.i) and (4.8b.iii) 2ab � a2e, and of 
ourse 0 > 4b.Moreover, sin
e e � �g, we have ag + 2e � 0. And �nally,3al + 5ag � 8a and al � 4l.These 
onsiderations together ensure that (6.8) is ful�lled.a = 3: In this 
ase (6.8) 
omes down to16 + 7e < 2b + 8l + 16g + 4 rXi=1 mi + 2r: (6.9)e > 0, or e = 0 and g = 0: Then b � a = 3. Thus 2b + 8l + 4Pri=1mi �6 + 8(e + 1) + 4 > 16 + 7e, so that the inequality (6.9) is 
ertainlysatis�ed.e < 0, or e = 0 and g � 1: Then g � 1 and 16g � 16 + 7e, so that again theinequality (6.9) is ful�lled.a = 2: (6.8) reads just 8 + 2e < 4l + 8g + 4 rXi=1 mi + 2r: (6.10)e < 0: Then g � 1, and thus 8g � 8 + 2e, whi
h implies (6.10).e � 0: Then 4l + 4Pri=1mi � 4(e + 1) + 4 � 8 + 2e, and hen
e (6.10) isful�lled. �With the same D and L as above the 
onditions in the existen
e theorem Corollary5.4 redu
e to(5.3b) a(b� a2e) � 2075 P�(Si)�38 �(Si) + 29 P�(Si)�39 �p�(Si) + 132p29�2,(5.4b.i) a > 8<: q2075 p�(S1)� 1; if �(S1) � 38;p29p�(S1) + 112 ; if �(S1) � 39;(5.4b.ii) b > 8<: q2075 p�(S1)� 1; if �(S1) � 38;p29p�(S1) + 112 ; if �(S1) � 39; if e = 0,(5.4b.iii) 2�b� a2e� > 8<: q2075 p�(S1)� 1; if �(S1) � 38;p29p�(S1) + 112 ; if �(S1) � 39; if e < 0, and(5.5b) b � ae, if e > 0.6.
. Produ
ts of Curves. Let C1 and C2 be two smooth proje
tive 
urves ofgenuses g1 � 1 and g2 � 1 respe
tively. The surfa
e � = C1 � C2 is naturallyequipped with two �brations pri : � ! Ci, i = 1; 2, and by abuse of notation wedenote two generi
 �bres pr�12 (p2) = C1 � fp2g resp. pr�11 (p1) = fp1g � C2 again byC1 resp. C2.



32 THOMAS KEILEN AND ILYA TYOMKINOne 
an show that for a generi
 
hoi
e of the 
urves C1 and C2 the Neron-Severigroup NS(�) = C1Z� C2Z of � is two-dimensional16 with interse
tion matrix(Ci:Cj)i;j = � 0 11 0 � :Thus, the only irredu
ible 
urves B � � with sel�nterse
tion B2 = 0 are the �bresC1 and C2, and for any irredu
ible 
urve B �a aC1 + bC2 the 
oeÆ
ients a and bmust be non-negative. Taking into a

ount that K� �a (2g2 � 2)C1 + (2g1 � 2)C2Corollary 2.2 
omes down to the following.2.2
 CorollaryLet C1 and C2 be two generi
 
urves with g(Ci) = gi � 1, i = 1; 2, and let a; b 2 Zbe integers satisfying(2.4
) (a� 2g2 + 2)(b� 2g1 + 2) �Pri=1(mi + 1)2, and(2.5
) (a� 2g2 + 2); (b� 2g1 + 2) > maxfmi j i = 1; : : : ; rg,then for z1; : : : ; zr 2 � = C1 � C2 in very general position and � > 0H�  Blz(�); a��C1 + b��C2 � rXi=1 miEi! = 0:We know that C1 + C2 has positive self-interse
tion and interse
ts any irredu
ible
urve positive, is thus ample by Nakai-Moishezon. But then we may �nd someinteger l � 3 su
h that L = lC1 + lC2 is very ample. We 
hoose l minimal with thisproperty for the existen
e theorem Corollary 4.2, and we 
laim that the Conditions(4.9), (4.10) and (4.11) be
ome obsolete, while (4.7) and (4.8) take the form(4.7
) (a� l � 2g2 + 2)(b� l � 2g1 + 2) �Pri=1(mi + 1)2, and(4.8
) (a� l � 2g2 + 2); (b� l � 2g1 + 2) > maxfmi j i = 1; : : : ; rg.That is, under these hypotheses there is an irredu
ible 
urve in jDjl, for any D �aaC1 + bC2, with pre
isely r ordinary singular points of multipli
ities m1; : : : ; mr.(4.9) be
omes redundant in view of (4.8
) and sin
e an irredu
ible 
urve B �aa0C1 + b0C2 has non-negative 
oeÆ
ients a0 and b0. For (4.11) we look at (4.12),whi
h in this 
ase takes the form2ab + �(2a� l � 2g2 + 2)(l + 2g1 � 2) + (2b� l � 2g1 + 2)(l + 2g2 � 2)�+4 rXi=1 mi + 2r > 0:However, in view of (4.8
) the fa
tors and summands on the left-hand side are allpositive, so that the inequality is ful�lled.16In the 
ase that C1 and C2 are ellipti
 
urves, generi
 means pre
isely, that they are not isogenous- see Se
tion 6.d. For a further investigation of the Neron-Severi group of a produ
t of two 
urveswe refer to Appendix F.



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 33It remains to show thatD:L�g(L) � mi+mj for all i; j. However, by the adjun
tionformula g(L) = 1+ 12(L2+L:K�) = 1+ l �(l+g1+g2�2), and by (4.8
) D:L�g(L) >l � �(a� l � 2g2 + 2) + (b� l � 2g1 + 2)� > 3(mi +mj) � mi +mj. Thus the 
laimis proved.From these 
onsiderations we at on
e dedu
e the 
onditions for the existen
e of anirredu
ible 
urve in jDjl, D �a aC1 + bC2, with pres
ribed singularities of arbitrarytype, i. e. the 
onditions in Corollary 5.4. They 
ome down to(5.3
) (a�l�2g2+2)(b�l�2g1+2) � 2075 P�(Si)�38�(Si)+29P�(Si)�39�p�(Si)+ 132p29�2,and(5.4
) (a� l�2g2+2); (b� l�2g1+2) > 8<: q2075 p�(S1)� 1; if �(S1) � 38;p29p�(S1) + 112 ; if �(S1) � 39:6.d. Produ
ts of Ellipti
 Curves. Let C1 = C=�1 and C2 = C=�2 be two ellipti

urves, where �i = Z � �iZ � C is a latti
e and �i is in the upper half plane ofC. We denote the natural group stru
ture on ea
h of the Ci by + and the neutralelement by 0.Our interest lies in the study of the surfa
e � = C1 � C2. This surfa
e is naturallyequipped with two �brations pri : � ! Ci, i = 1; 2, and by abuse of notation wedenote the �bres pr�12 (0) = C1�f0g resp. pr�11 (0) = f0g�C2 again by C1 resp. C2.The group stru
tures on C1 and C2 extend to � so that � itself is an abelian variety.Moreover, for p = (p1; p2) 2 � the mapping �p : �! � : (a; b) 7! (a + p1; b + p2) isan automorphism of abelian varieties. Due to these translation morphisms we knowthat for any 
urve B � � the algebrai
 family of 
urves jBja 
overs the whole of �,and in parti
ular dim jBja � 1. This also implies B2 � 0.Sin
e � is an abelian surfa
e, NS(�) = Num(�), K� = 0, and the Pi
ard number� = �(�) � 4 (
f. [LB92℄ 4.11.2 and Ex. 2.5). But the N�eron-Severi group of �
ontains the two independent elements C1 and C2, so that � � 2. The general 
ase17is indeed � = 2, however � might also be larger (see Example 6.8), in whi
h 
ase theadditional generators may be 
hosen to be graphs of surje
tive morphisms from C1to C2 (
f. [IS96℄ 3.2 Example 3). That is, �(�) = 2 if and only if C1 and C2 are notisogenous.6.7 LemmaLet B � � be an irredu
ible 
urve, B 6�a Ck, k = 1; 2, and fi; jg = f1; 2g.(i) If B2 = 0, then B is smooth, g(B) = 1, and prij : B ! Ci is an unrami�ed
overing of degree B:Cj.17The abelian surfa
es with � � 2 possessing a prin
iple polarisation are parametrized by a 
ount-able number of surfa
es in a three-dimensional spa
e, and the Pi
ard number of su
h an abeliansurfa
e is two unless it is 
ontained the interse
tion of two or three of these surfa
es (
f. [IS96℄11.2). See also [GH94℄ p. 286 and Proposition F.1.



34 THOMAS KEILEN AND ILYA TYOMKIN(ii) If B2 = 0, then #�B \ �p(Ci)� = B:Cj for any p 2 �, and if q; q0 2 B, then�q�q0(B) = B.(iii) If B2 = 0, then the base 
urve H in the �bration � : � ! H with �bre B,whi
h exists a

ording to Proposition B.1, is an ellipti
 
urve.(iv) If B:Ci = 1, then B2 = 0 and Cj �= B.(v) If B:Ci = 1 = B:Cj, then C1 �= C2.(vi) If B is the graph of a morphism � : Ci ! Cj, then B:Cj = 1 and B2 = 0.Proof:(i) The adjun
tion formula givespa(B) = 1 + B2 +K�:B2 = 1:Sin
e jC2ja 
overs the whole of � and B 6�a C2, the two irredu
ible 
urvesB and C2 must interse
t properly, that is, B is not a �bre of pr1. But thenthe mapping pr1j : B ! C1 is a �nite surje
tive morphism of degree B:C2.If B was a singular 
urve its normalisation would have to have arithmeti
algenus 0 and the 
omposition of the normalisation with pr1j would give rise toa surje
tive morphism from P1C to an ellipti
 
urve, 
ontradi
ting Hurwitz'sformula. Hen
e, B is smooth and g(B) = pa(B) = 1. We thus may apply theformula of Hurwitz to pr1j and the degree of the rami�
ation divisor R turnsout to be deg(R) = 2�g(B)� 1 + (g(C1)� 1) deg(pr1j)� = 0:The remaining 
ase is treated analogously.(ii) W. l. o. g. i = 2. For p = (p1; p2) 2 � we have �p(C2) = pr�11 (p1) is a �bre ofpr1, and sin
e pr1j is unrami�ed, #�B \ �p(C2)� = deg(pr1j) = B:C2.Suppose q; q0 2 B with �q�q0(B) 6= B. Then q = �q�q0(q0) 2 B \ �q�q0(B), andhen
e B2 = B:�q�q0(B) > 0, whi
h 
ontradi
ts the assumption B2 = 0.(iii) Sin
e �(�) = 0, [FM94℄ Lemma I.3.18 and Proposition I.3.22 imply thatg(H) = pg(�) = h0(�; K�) = 1.(iv) W. l. o. g. B:C2 = 1. Let 0 6= p 2 C2. We 
laim that B \ �p(B) = ;, andhen
e B2 = B:�p(B) = 0.Suppose (a; b) 2 B \ �p(B), then there is an (a0; b0) 2 B su
h that (a; b) =�p(a0; b0) = (a0; b0 + p), i. e. a = a0 and b = b0 + p. Hen
e, (0; b); (0; b0) 2��a(B) \ C2. But, ��a(B):C2 = B:C2 = 1, and thus b0 = b = b0 + p in
ontradi
tion to the 
hoi
e of p.C1 �= B via pr1j follows from (i).(v) By (iv) we have C1 �= B �= C2.



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 35(vi) prij : B ! Ci is an isomorphism, and has thus degree one. But deg(prij) =B:Cj. Thus we are done with (iv). �6.8 Example(i) Let C1 = C2 = C = C=� with � = Z��Z, and � = C1�C2 = C�C. The Pi-
ard number �(�) is then either three or four, depending on whether the groupEnd0(C) of endomorphisms of C �xing 0 is just Z or larger. Using [Har77℄Theorem IV.4.19 and Exer
ise IV.4.11 we �nd the following 
lassi�
ation.Case 1: 9 d 2 N su
h that � 2 Q[p�d℄, i. e. Z $ End0(C).Then �(�) = 4 and NS(�) = C1Z�C2Z�C3Z�C4Z where C3 is the diagonalin � and C4 is the graph of the morphism � : C ! C : p 7! (b�) � p of degreejb� j2, where 0 6= b 2 N minimal with b(� + � ) 2 Z and b�� 2 Z. Settinga := C3:C4 � 1, the interse
tion matrix is(Cj:Ck)j;k=1;:::;4 = 0BB� 0 1 1 jb� j21 0 1 11 1 0 ajb� j2 1 a 0 1CCA :If e. g. � = i, then C4 = �(
; i
) j 
 2 C	 and(Cj:Ck)j;k=1;:::;4 = 0BB� 0 1 1 11 0 1 11 1 0 11 1 1 0 1CCA :Case 2: �d 2 N su
h that � 2 Q[p�d℄, i. e. Z = End0(C).Then �(�) = 3 and NS(�) = C1Z�C2Z�C3Z where again C3 is the diagonalin �. The interse
tion matrix in this 
ase is(Cj:Ck)j;k=1;2;3 = 0� 0 1 11 0 11 1 0 1A :(ii) Let C1 = C=�1 and C2 = C=�2 with �1 = Z� �1Z, �1 = i, and �2 = Z� �2Z,�2 = 12 i. Then C1 6�= C2.We 
onsider the surje
tive morphisms �j : C1 ! C2, j = 3; 4, indu
ed bymultipli
ation with the 
omplex numbers �3 = 1 and �4 = i respe
tively.Denoting by Cj the graph of �j, we 
laim, C1:C3 = deg(�3) = 2 and C1:C4 =deg(�4) = 2. �j being an unrami�ed 
overing, we 
an 
al
ulate its degree by
ounting the preimages of 0. If p = [a + ib℄ 2 C=�1 = C1 with 0 � a; b < 1,then �3(p) = 0, a+ ib = �3 � (a+ ib) 2 �2, 9 r; s 2 Z : a = r and b = 12s, a = 0 and b 2 �0; 12	:



36 THOMAS KEILEN AND ILYA TYOMKINand �4(p) = 0, ia� b = �4 � (a+ ib) 2 �2, 9 r; s 2 Z : �b = r and a = 12s, b = 0 and a 2 �0; 12	:Moreover, the graphs C3 and C4 interse
t only in the point (0; 0) and theinterse
tion is obviously transversal, so C3:C4 = 1.Thus � = C1�C2 is an example for a produ
t of non-isomorphi
 ellipti
 
urveswith �(�) = 4, NS(�) = C1Z� C2Z� C3Z� C4Z, and interse
tion matrix(Cj:Ck)j;k=1;:::;4 = 0BB� 0 1 2 21 0 1 12 1 0 12 1 1 0 1CCA :(iii) See [HR98℄ p. 4 for examples � = C1 � C2 with �(�) = 3 and interse
tionmatrix 0� 0 1 a1 0 1a 1 0 1A ; a 6= 1:6.9 Remark(i) If C1 and C2 are isogenous, then there are irredu
ible 
urves B � � with B:Ciarbitrarily large.For this just note, that we have a 
urve � � � whi
h is the graph of anisogeny � : C1 ! C2. Denoting by nC2 : C2 ! C2 the morphism indu
ed bythe multipli
ation with n 2 N, we have a morphism nC2 Æ � whose degree isjust n2 deg(�). But the degree is the interse
tion number of the graph withC1. The dual morphism of nC2 Æ � has the the same degree, whi
h then is theinterse
tion multipli
ity of its graph with C2. (
f. [Har77℄ Ex. IV.4.7)(ii) If C1 and C2 are isogenous, then � might very well 
ontain smooth irredu
ibleellipti
 
urves B whi
h are neither isomorphi
 to C1 nor to C2, and hen
e
annot be the graph of an isogeny between C1 and C2. But being an ellipti

urve we have B2 = 0 by the adjun
tion formula. If now NS(�) =L�(�)i=1 CiZ,where the additional generators are graphs, then B �a P�(�)i=1 niCi with someni < 0. (
f. [LB92℄ Ex. 10.6)Throughout the remaining part of the subse
tion we will restri
t our attention tothe general 
ase, that is that C1 and C2 are not isogenous. This makes the formulaelook mu
h ni
er, sin
e then NS(�) = C1Z� C2Z.6.10 LemmaLet C1 and C2 be non-isogenous ellipti
 
urves, D 2 Div(�) with D �a aC1 + bC2.(i) D2 = 0 if and only if a = 0 or b = 0.(ii) If D is an irredu
ible 
urve, then we are in one of the following 
ases:(1) a = 0 and b = 1,



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 37(2) a = 1 and b = 0,(3) a; b > 0,and if we are in one of these 
ases, then there is an irredu
ible 
urve alge-brai
ally equivalent to D.(iii) If D is an irredu
ible 
urve and D2 = 0, then either D �a C1 or D �a C2.(iv) D is nef if and only if a; b � 0.(v) D is ample if and only if a; b > 0.(vi) D is very ample if and only if a; b � 3.Proof:(i) 0 = D2 = 2ab if and only if a = 0 or b = 0.(ii) Let us �rst 
onsider the 
ase that D is irredu
ible.If a = 0 or b = 0, then D is algebrai
ally equivalent to a multiple of a �breof one of the proje
tions pri, i = 1; 2. In this situation D2 = 0 and thus theirredu
ible 
urve D does not interse
t any of the �bres properly. Hen
e it mustbe a union of several �bres, and being irredu
ible it must be a �bre. That iswe are in one of the �rst two 
ases.Suppose now that a; b 6= 0. Thus D interse
ts Ci properly, and 0 < D:C1 = band 0 < D:C2 = a.It now remains to show that the mentioned algebrai
 systems 
ontain irre-du
ible 
urves, whi
h is 
lear for the �rst two of them. Let therefore a and bbe positive. Then obviously the linear system jaC1 + bC2jl 
ontains no �xed
omponent, and being ample by (v) its general element is irredu
ible a

ordingto [LB92℄ Theorem 4.3.5.(iii) Follows from (i) and (ii).(iv) By de�nition D is nef if and only if D:D0 � 0 for every irredu
ible 
urveD0 � �. Thus the 
laim is an immediate 
onsequen
e of (ii).(v) Sin
e by the Nakai-Moishezon-Criterion ampleness depends only on the nu-meri
al 
lass of a divisor, we may assume that D = aC1 + bC2. Moreover, by[LB92℄ Proposition 4.5.2 D is ample if and only if D2 > 0 and jDjl 6= ;.If a; b > 0, then D2 = 2ab > 0 and the e�e
tive divisor aC1 + bC2 2 jDjl, thusD is ample. Conversely, if D is ample, then 0 < D2 = 2ab and 0 < D:C1 = b,thus a; b > 0.(vi) By [LB92℄ Corollary 4.5.3 and (v) L = 3C1 + 3C2 is very ample. If a; b � 3,then the system j(a�3)C1+(b�3)C2jl is basepoint free, whi
h is an immediate
onsequen
e of the existen
e of the translation morphisms �p, p 2 �. But thenL0 = (a�3)C1+(b�3)C2 is globally generated and D = L+L0 is very ample.Conversely, if a < 3, then D \ C2 is a divisor of degree D:C2 = a < 3 onthe ellipti
 
urve C2 and hen
e not very ample (
f. [Har77℄ Example IV.3.3.3).But then D is not very ample. Analogously if b < 3.



38 THOMAS KEILEN AND ILYA TYOMKIN �In view of (2.5d) and Lemma 6.10 (iv) the Condition (2.6) be
omes obsolete, andCorollary 2.2 has the following form, taking Lemma 6.10 (iii) and K� = 0 intoa

ount.2.2d CorollaryLet C1 and C2 be two non-isogenous ellipti
 
urves, a; b 2 Z be integers satisfying(2.4d) ab �Pri=1(mi + 1)2, and(2.5d) a; b > maxfmi j i = 1; : : : ; rg,then for z1; : : : ; zr 2 � = C1 � C2 in very general position and � > 0H�  Blz(�); a��C1 + b��C2 � rXi=1 miEi! = 0:As for the existen
e theorem Corollary 4.2 we work with the very ample divisor 
lassL = 3C1 + 3C2, and we 
laim that the Conditions (4.9), (4.10) and (4.11) be
omeobsolete, while, in view of Lemma 6.10 (iii), (4.7) and (4.8) take the form(4.7d) (a� 3)(b� 3) �Pri=1(mi + 1)2, and(4.8d) (a� 3); (b� 3) > maxfmi j i = 1; : : : ; rg.That is, under these hypotheses there is an irredu
ible 
urve in jDjl, for any D �aaC1 + bC2, with pre
isely r ordinary singular points of multipli
ities m1; : : : ; mr.(4.9) be
omes redundant in view of (4.8d) and Lemma 6.10 (iv), while (4.11) isful�lled in view of (4.12) and K� = 0. It remains to show that D:L�g(L) � mi+mjfor all i; j. However, by the adjun
tion formula g(L) = 1+ 12L2 = 10, and by (4.8d)D:L� g(L) > 3(a� 3 + b� 3) > 3(mi +mj) � mi +mj. Thus the 
laim is proved.From these 
onsiderations we at on
e dedu
e the 
onditions for the existen
e of anirredu
ible 
urve in jDjl, D �a aC1 + bC2, with pres
ribed singularities of arbitrarytype, i. e. the 
onditions in Corollary 5.4. They 
ome down to(5.3d) (a� 3)(b� 3) � 2075 P�(Si)�38�(Si) + 29 P�(Si)�39�p�(Si) + 132p29�2, and(5.4d) (a� 3); (b� 3) > 8<: q2075 p�(S1)� 1; if �(S1) � 38;p29p�(S1) + 112 ; if �(S1) � 39:6.e. Surfa
es in P3C . A smooth proje
tive surfa
e � in P3C is given by a singleequation f = 0 with f 2 C[w; x; y; z℄ homogeneous, and by de�nition the degree of�, say n, is just the degree of f . For n = 1, � �= P2C , for n = 2, � �= P1C �P1C , and forn = 3, � is isomorphi
 to P2C blown up in six points in general position. Thus thePi
ard number �(�), i. e. the rank of the N�eron-Severi group, in these 
ases is 1, 2,and 7 respe
tively. Note that these are also pre
isely the 
ases where � is rational.



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 39In general the Pi
ard number �(�) of a surfa
e in P3C may be arbitrarily large,18but the N�eron-Severi group always 
ontains a very spe
ial member, namely the
lass H 2 NS(�) of a hyperplane se
tion with H2 = n. And the 
lass of the
anoni
al divisor is then just (n� 4)H. Moreover, if the degree of � is at least four,that is, if � is not rational, then it is likely that NS(�) = HZ. More pre
isely,if n � 4, Noether's Theorem says that f� j �(�) = 1; deg(�) = ng is a verygeneral subset of the proje
tive spa
e of proje
tive surfa
es in P3C of �xed degree n,i. e. it's 
omplement is an at most 
ountable union of lower dimensional subvarieties.(
f. [Har75℄ Corollary 3.5 or [IS96℄ p. 146)Sin
e we 
onsider the 
ase of rational surfa
es separately the following 
onsiderationsthus give a full answer for the \general 
ase" of a surfa
e in P3C .2.2e CorollaryLet � � P3C be a surfa
e in P3C of degree n, H 2 NS(�) be the algebrai
 
lass of ahyperplane se
tion, and d an integer satisfying(2.4e) n(d� n+ 4)2 � 2Pri=1(mi + 1)2, and(2.5e) (d � n + 4) �H:B > maxfmi j i = 1; : : : ; rg for any irredu
ible 
urveB with B2 = 0 and dim jBja � 1, and(2.6e) d � n� 4,then for z1; : : : ; zr 2 � in very general position and � > 0H�  Blz(�); d��H � rXi=1 miEi! = 0:6.13 Remark(i) If NS(�) = HZ, then (2.5e) is redundant, sin
e there are no irredu
ible 
urvesB with B2 = 0. Otherwise we would have B �a kH for some k 2 Z andk2n = B2 = 0 would imply k = 0, but then H:B = 0 in 
ontradi
tion to Hbeing ample.(ii) However, a quadri
 in P3C or the K3-surfa
e given by w4 + x4 + y4 + z4 = 0
ontain irredu
ible 
urves of self-interse
tion zero.(iii) IfPri=1(mi+1)2 > n2m2i for all i = 1; : : : ; r then again (2.5e) be
omes obsoletein view of (2.4e), sin
e H:B > 0 anyway. The above inequality is, for instan
e,ful�lled if the highest multipli
ity o

urs at least n2 times.(iv) In the existen
e theorems the 
ondition depending on 
urves of self-interse
tionwill vanish in any 
ase.As for Corollary 4.2 we 
laim that if NS(�) = HZ, then18E. g. the n-th Fermat surfa
e, given by wn + xn + yn + zn = 0 has Pi
ard number � � 3(n �1)(n � 2) + 1, with equality if g
d(n; 6) = 1. (
f. [Shi82℄ Theorem 7, see also [AS83℄ pp. 1f. and[IS96℄ p. 146)



40 THOMAS KEILEN AND ILYA TYOMKIN(4.7e) n(d� n+ 3)2 � 2Pri=1(mi + 1)2,ensures the existen
e of an irredu
ible 
urve C �a dH with pre
isely r ordinarysingular points of multipli
ities m1; : : : ; mr and h1��;JX(m;z)=�(dH)� = 0.The role of the very ample divisor L is �lled by a hyperplane se
tion, and thusg(L) = 1 + L2+L:K�2 = �n�12 �. Therefore, (4.7e) obviously implies (4.7), and (4.10)takes the form n � (d� n+ 3) > mi + 2 for all i = 1; : : : ; r: (6.11)However, from (4.7e) we dedu
e for any i 2 f1; : : : ; rgn � (d� n+ 3) � pn � p2 � (mi + 1) � mi + 2;unless n = r = m1 = 1, in whi
h 
ase we are done by the assumption d � 3. Thus(4.10) is redundant.Moreover, there are no 
urves of self-interse
tion zero on �, and it thus remains toverify (4.9), whi
h in this situation takes the formd � n� 3;and follows at on
e from (6.11).With the aid of this result the 
onditions of Corollary 5.4 for the existen
e of anirredu
ible 
urve C �a dH with pres
ribed singularities Si in this situation thereforeredu
e to(5.3e) n(d� n+ 3)2 � 4145 P�(Si)�38�(Si) + 58 P�(Si)�39 �p�(Si) + 132p29�2, and6.f. K3-Surfa
es. We note that if � is a K3-surfa
e then the N�eron-Severi groupNS(�) and the Pi
ard group Pi
(�) of � 
oin
ide, i. e. jDja = jDjl for every divisorD on �. Moreover, an irredu
ible 
urve B has self-interse
tion B2 = 0 if and onlyif the arithmeti
al genus of B is one. In that 
ase jBjl is a pen
il of ellipti
 
urveswithout base points endowing � with the stru
ture of an ellipti
 �bration over P1C .(
f. [M�er85℄ or Proposition B.1) We, therefore, distinguish two 
ases.6.f.i. Generi
 K3-Surfa
es. Sin
e a generi
 K3-surfa
e does not possess an ellip-ti
 �bration the following version of Corollary 2.2 applies for generi
 K3-surfa
es.(
f. [FM94℄ I.1.3.7)2.2f.i CorollaryLet � be a K3-surfa
e whi
h is not ellipti
, and let D a divisor on � satisfying(2.4f) D2 � 2Pri=1(mi + 1)2, and(2.6f) D nef,then for z1; : : : ; zr 2 � in very general position and � > 0H�  Blz(�); ��D � rXi=1 miEi! = 0:



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 41In view of equation (4.12) the 
onditions in Corollary 4.2 redu
e to(4.7f) (D � L)2 � 2Pri=1(mi + 1)2,(4.9f) D � L nef, and(4.10f) D:L� 2g(L) � mi +mj for all i; j,and, analogously, the 
onditions in Corollary 5.4 redu
e to (5.6),(5.3f) (D � L)2 � 4145 P�(Si)�38�(Si) + 58 P�(Si)�39 �p�(Si) + 132p29�2, and(5.5f) D � L nef.6.f.ii. K3-Surfa
es with an Ellipti
 Stru
ture. The hypersurfa
e in P3C given by theequation x4+ y4+ z4+ u4 = 0 is an example of a K3-surfa
e whi
h is endowed withan ellipti
 �bration. Among the ellipti
 K3-surfa
es the general one will possess aunique ellipti
 �bration while there are examples with in�nitely many di�erent su
h�brations. (
f. [FM94℄ I.1.3.7)2.2f.ii CorollaryLet � be a K3-surfa
e whi
h possesses an ellipti
 �bration, and let D be a divisoron � satisfying(2.4f) D2 � 2Pri=1(mi + 1)2,(2.5f) D:B > maxfmi j i = 1; : : : ; rg for any irredu
ible 
urve B with B2 =0, and(2.6f) D nef,then for z1; : : : ; zr 2 � in very general position and � > 0H�  Blz(�); ��D � rXi=1 miEi! = 0:6.16 RemarkIf � is generi
 among the ellipti
 K3-surfa
es, i. e. admits exa
tly one ellipti
 �bra-tion, then Condition (2.5f) means that a 
urve in jDjl meets a general �bre in atleast k = maxfmi j i = 1; : : : ; rg distin
t points.The 
onditions in Corollary 4.2 then redu
e to (4.7f), (4.9f), (4.10f), and(4.8f) (D � L):B > maxfmi j i = 1; : : : ; rg for any 
urve B with B2 = 0.Similarly, the 
onditions in Corollary 5.4 redu
e to (5.3f), (5.5f), (5.6), and(5.4f) (D � L):B > 8<: q2075 p�(S1)� 1; if �(S1) � 38;p29p�(S1) + 112 ; if �(S1) � 39;



42 THOMAS KEILEN AND ILYA TYOMKINfor any irredu
ible 
urve B with B2 = 0.



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 43Appendix A. Very General PositionIt is our �rst aim to show that if there is a 
urve passing through points z1; : : : ; zr 2 �in very general position with multipli
ities n1; : : : ; nr then it 
an be equimultiplydeformed in its algebrai
 system in a good way - i. e. suitable for Lemma 3.3.A.1 LemmaLet B � � be a 
urve, and n 2 Nr0. ThenVB;n = �z 2 �r �� 9 C 2 jBja : multzi(C) � ni 8i = 1; : : : ; r	is a 
losed subset of �r.Proof:Step 1: Show �rst that for n 2 N0XB;n := �(C; z) 2 H � � j multz(C) � n	is a 
losed subset of H � �, where H := jBja.Being the redu
tion of a 
onne
ted 
omponent of the Hilbert s
heme Hilb�, H isa proje
tive variety endowed with a universal family of 
urves, giving rise to thefollowing diagram of morphismsC = SC2HfCg � C � � //

((QQQQQQQQQQQQQQQ
H � � pr� // //prH

����

�H;where C is an e�e
tive Cartier divisor on H � � with CjfCg�� = C.Let s 2 H0�H � �;OH��(C)� be a global se
tion de�ning C. ThenXB;n = �� = (C; z) 2 H � � �� s� 2 (mn�;z +mH;C) � OH��;�	:We may 
onsider a �nite open aÆne 
overing of H � � of the form fHi � Uj j i 2I; j 2 Jg, Hi � H and Uj � � open, su
h that C is lo
ally on Hi � Uj given by onepolynomial equation, say si;j(a; b) = 0; for a 2 Hi; b 2 Uj:It suÆ
es to show that XB;n \ (Hi � Uj) is 
losed in Hi � Uj for all i; j.However, for � = (C; z) = (a; b) 2 Hi � Uj we haves� 2 �mn�;z +mH;C� � OH��;�if and only if si;j(a; b) = 0 and��si;j�b� (a; b) = 0; for all j�j � n� 1:



44 THOMAS KEILEN AND ILYA TYOMKINThus,XB;n \ (Hi � Uj) = ((a; b) 2 Hi � Uj ����� si;j(a; b) = 0 = ��si;j�b� (a; b); 8 j�j � n� 1)is a 
losed subvariety of Hi � Uj.Step 2: VB;n is a 
losed subset of �r.By Step 1 for i = 1; : : : ; r the setXB;n;i := �(z; C) 2 �r �H �� multzi(C) � ni	 �= �r�1 �XB;niis a 
losed subset of �r �H. Considering nowXB;n := rTi=1XB;n;i � � //�
''NNNNNNNNNNNN

�r �H
�����r;we �nd that VB;n = �(XB;n), being the image of a 
losed subset under a morphismbetween proje
tive varieties, is a 
losed subset of �r (
f. [Har77℄ Ex. II.4.4). �A.2 CorollaryThen the 
omplement of the setV = [B2Hilb� [n2Nr0 �VB;n j VB;n 6= �r	is very general, where Hilb� is the Hilbert s
heme of 
urves on �.In parti
ular, there is a very general subset U � �r su
h that if for some z 2 Uthere is a 
urve B � � with multzi(B) = ni for i = 1; : : : ; r, then for any z0 2 Uthere is a 
urve B0 2 jBja with multz0i(B0) � ni.Proof: Fixing some embedding � � PnC and h 2 Q[x℄, Hilbh� is a proje
tive varietyand has thus only �nitely many 
onne
ted 
omponents. Thus the Hilbert s
hemeHilb� has only a 
ountable number of 
onne
ted 
omponents, and we have only a
ountable number of di�erent VB;n, where B runs through Hilb� and n through Nr.By Lemma A.1 the sets VB;n are 
losed, hen
e their 
omplements �r nVB;n are open.But then U = �r n V = \B2Hilb� \n2Nr0 ��r n VB;n j VB;n 6= �r	is an at most 
ountable interse
tion of open dense subsets of �r, and is hen
e verygeneral. �In the proof of Theorem 2.1 we use at some pla
e the result of Corollary A.3. We
ould instead use Corollary A.2. However, sin
e the results are quite ni
e and simpleto prove we just give them.A.3 Corollary



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 45(i) The number of 
urves B in � with dim jBja = 0 is at most 
ountable.(ii) The number of ex
eptional 
urves in � (i. e. 
urves with negative self inter-se
tion) is at most 
ountable.(iii) There is a very general subset U of �r, r � 1, su
h that for z 2 U no zibelongs to a 
urve B � � with dim jBja = 0, in parti
ular to no ex
eptional
urve.Proof:(i) By de�nition jBja is a 
onne
ted 
omponent of Hilb�, whose number is atmost 
ountable. If in addition dim jBja = 0, then jBja = fBg whi
h provesthe 
laim.(ii) Curves of negative self-interse
tion are not algebrai
ally equivalent to anyother 
urve (
f. [IS96℄ p. 153).(iii) Follows from (i). �A.4 Example (Kodaira)Let z1; : : : ; z9 2 P2C be in very general position19 and let � = Blz �P2C � be the blowup of P2C in z = (z1; : : : ; z9). Then � 
ontains in�nitely many irredu
ible smoothrational �1-
urves, i. e. ex
eptional 
urves of the �rst kind.Proof: It suÆ
es to �nd an in�nite number of irredu
ible 
urves C in P2C su
h thatd2 � 9Xi=1 m2i = �1; (A.1)and pa(C)� 9Xi=1 mi(mi � 1)2 = 0; (A.2)where mi = multzi(C) and d = deg(C), sin
e the expression in (A.1) is the selfinterse
tion of the stri
t transform eC = Blz(C) of C and (A.2) gives its arithmeti
algenus. In parti
ular eC 
annot 
ontain any singularities, sin
e they would 
ontributeto the arithmeti
al genus, and, being irredu
ible anyway, eC is an ex
eptional 
urveof the �rst kind.We are going to dedu
e the existen
e of these 
urves with the aid of quadrati
Cremona transformations.Claim: If for some d > 0 and m1; : : : ; m9 � 0 with 3d �P9i=1mi = 1 there is anirredu
ible 
urve C 2 ��JX(m;z)(d)��l, then T (C) 2 ��JX(m0;z0)(d+ a)��l is an irredu
ible
urve, where19To be pre
ise, no three of the nine points should be 
ollinear, and after any �nite number ofquadrati
 Cremona transformations 
entred at the zi (respe
tively the newly obtained 
entres)still no three should be 
ollinear. Thus the admissible tuples in (P2C )9 form a very general set,
f. [Har77℄ Ex. V.4.15.



46 THOMAS KEILEN AND ILYA TYOMKIN� fi; j; kg � f1; : : : ; 9g are su
h that mi +mj +mk < d,� T : P2C 9 9 KP2C is the quadrati
 Cremona transformation at zi; zj; zk,� z0� = � z�; if � 6= i; j; k;T (z�z�); if f�; �; �g = fi; j; kg;� m0� = � m�; if � 6= i; j; k;m� + a; else, and� a = d� (mi +mj +mk):Note that, 3(d + a) � P9i=1m0i = 1, i. e. we may iterate the pro
ess sin
e thehypothesis of the 
laim will be preserved.Sin
e 3d >P9i=1mi, there must be a triple (i; j; k) su
h that d > mi +mj +mk.Let us now 
onsider the following diagram� = Blzi;zj ;zk(P2C ) = Blz0i;z0j ;z0k(P2C )�
uulllllllllllllllll �0

))RRRRRRRRRRRRRRRRRP2C T //_____________________ P2C ;and let us denote the ex
eptional divisors of � by Ei and those of �0 by E 0i. More-over, let eC = Blzi;zj ;zk(C) be the stri
t transform of C under � and let ℄T (C) =Blz0i;z0j ;z0k �T (C)� be the stri
t transform of T (C) under �0. Then of 
ourse eC = ℄T (C),and T (C), being the proje
tion �0� eC� of the stri
t transform eC of the irredu
ible
urve C, is of 
ourse an irredu
ible 
urve. Note that the 
ondition d > mi+mj+mkensures that eC is not one of the 
urves whi
h are 
ontra
ted. It thus suÆ
es to verifydeg �T (C)� = d+ a;and m0i = multz0i �T (C)� = � m� ; if � 6= i; j; k;m� + a; else.Sin
e outside the lines zizj, zizk, and zkzj the transformation T is an isomorphismand sin
e by hypothesis none of the remaining z� belongs to one of these lines we
learly have m0� = m� for � 6= i; j; k. Moreover, we havem0i = ℄T (C):E 0i = eC:Blzi;zj ;zk(zjzk)= (��C �PmlEl):(��zjzk � Ej � Ek)= C:zjzk �mj �mk = d�mj �mk = mi + a:Analogously for m0j and m0k.Finally we �nd deg �T (C)� = T (C):z0iz0j = �0�T (C):�0�z0iz0j= �℄T (C) +Pm0�E 0��:�Ek + E 0i + E 0j�= eC:Ek +Pm0�E 0�:Ek= mk +m0i +m0j = d+ a:This proves the 
laim.



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 47Let us now show by indu
tion that for any d > 0 there is an irredu
ible 
urve C ofdegree d0 � d satisfying (A.1) and (A.2). For d = 1 the line C = z1z2 through z1 andz2 gives the indu
tion start. Given some suitable 
urve of degree d0 � d the above
laim then ensures that through points in very general position there is an irredu
ible
urve of higher degree satisfying (A.1) and (A.2), sin
e a = d� (m1+m2+m3) > 0.Thus the indu
tion step is done. �The example shows that a smooth proje
tive surfa
e � may indeed 
arry an in�nitenumber of ex
eptional 
urves - even of the �rst kind. A

ording to Nagata ([Nag60℄Theorem 4a, p. 283) the example is due to Kodaira. For further referen
es on theexample see [Har77℄ Ex. V.4.15, [BS95℄ Example 4.2.7, or [Fra41℄. [IS96℄ p. 198Example 3 shows that also P2C blown up in the nine interse
tion points of two plane
ubi
s 
arries in�nitely many ex
eptional 
urves of the �rst kind.Appendix B. Condition (2.5)B.1 PropositionSuppose that B � � is an irredu
ible 
urve with B2 = 0 and dim jBja � 1, then(B.1) jBja is an irredu
ible proje
tive 
urve, and(B.2) there is a �bration f : � ! H whose �bres are just the elements ofjBja, and H is the normalisation of jBja.We are proving the proposition in several steps.B.2 PropositionLet f : Y 0 ! Y be a �nite 
at morphism of noetherian s
hemes with Y irredu
iblesu
h that for some point y0 2 Y the �bre Y 0y0 = f�1(y0) = Y 0 �Y Spe
 �k(y0)� is asingle redu
ed point.Then the stru
ture map f# : OY �! f�OY 0 is an isomorphism, and hen
e so is f .Proof: Sin
e there is at least one 
onne
ted redu
ed �bre Y 0y0, semi
ontinuity of
at, proper morphisms in the version [GD67℄ IV.12.2.4 (vi) implies that there is anopen dense subset U � Y su
h that Y 0y is 
onne
ted and redu
ed, hen
e a singleredu
ed point, 8 y 2 U . (U dense in Y is due to the fa
t that Y is irredu
ible.)Thus the assumptions are stable under restri
tion to open subs
hemes of Y , and sin
ethe 
laim that we have to show is lo
al on Y , we may assume that Y = Spe
(A) isaÆne. Moreover, f being �nite, thus aÆne, we have Y 0 = Spe
(B) is also aÆne.Sin
e f is 
at it is open and hen
e dominates the irredu
ible aÆne variety Y and,therefore, indu
es an in
lusion of rings A ,! B. It now suÆ
es to show:Claim: A ,! B is an isomorphism.By assumption there exists a y = P 2 Spe
(A) = Y su
h that Y 0y = f�1(y) =Spe
(BP=PBP ) is a single point with redu
ed stru
ture. In parti
ular we have for



48 THOMAS KEILEN AND ILYA TYOMKINthe multipli
ity of Y 0y = Spe
(BP=PBP ) over fyg = Spe
(AP=PAP )1 = �(Y 0y) = lengthAP =PAP (BP=PBP );whi
h implies that AP=PAP ,! BP=PBPis an isomorphism. Hen
e by Nakayama's Lemma alsoAP ,! BPis an isomorphism, that is, BP is free of rank 1 over AP . B being lo
ally free overA, with A=p0 an integral domain, thus ful�lsAQ ,! BQis an isomorphism for all Q 2 Spe
(A), and hen
e the 
laim follows. �B.3 Proposition (Prin
iple of Conne
tedness)Let X and Y be noetherian s
hemes, Y 
onne
ted, and let � : X ! Y be a 
atproje
tive morphism su
h that for some y0 2 Y the �bre Xy0 = ��1(y0) is redu
edand 
onne
ted.Then for all y 2 Y the �bre Xy = ��1(y) is 
onne
ted.Proof: Considering points in the interse
tions of the �nite number of irredu
ible
omponents of Y we 
an redu
e to the 
ase Y irredu
ible.Stein Fa
torisation (
f. [GD67℄ III.4.3.3) gives a fa
torisation of � of the form� : X �0 // Y 0 = Spe
(��OX) f
// Y;with(1) �0 
onne
ted (i. e. its �bres are 
onne
ted),(2) f �nite,(3) f�OY 0 = ��OX lo
ally free over OY , sin
e � is 
at, and(4) Y 0y0 = f�1(y0) is 
onne
ted and redu
ed, i. e. a single redu
ed point.Be
ause of (1) it suÆ
es to show that f is 
onne
ted, and we 
laim that they areredu
ed as well. Sin
e f is �nite (3) is equivalent to saying that f is 
at. Hen
e fful�ls the assumptions of Proposition B.2, and we 
on
lude that OY = f�OY 0 andthe proposition follows from [Har77℄ III.11.3.Alternatively, from [GD67℄ IV.15.5.9 (ii) it follows that there is an open dense subsetU � Y su
h that Xy is 
onne
ted for all y 2 U . Sin
e, moreover, by the sametheorem the number of 
onne
ted 
omponents of the �bres is a lower semi-
ontinuousfun
tion on Y the spe
ial �bres 
annot have more 
onne
ted 
omponents than thegeneral ones, that is, all �bres are 
onne
ted. �B.4 LemmaUnder the hypotheses of Proposition B.1 let C 2 jBja then C is 
onne
ted.



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 49Proof: Consider the universal familyjBja � � prjBja
((QQQQQQQQQQQQQQQQQ

SC2jBjafCg � C =: S? _oo � 
at
��jBja (B.3)

over the 
onne
ted proje
tive s
heme jBja � Hilb�.Sin
e the proje
tion � is a 
at proje
tive morphism, and sin
e the �bre ��1(B) =fBg �B is 
onne
ted and redu
ed, the result follows from Proposition B.3. �B.5 LemmaUnder the hypotheses of Proposition B.1 let C 2 jBja with B � C, then C = B.Proof: Suppose B $ C, then the Hilbert polynomials of B and C are di�erent in
ontradi
tion to B �a C. �B.6 LemmaUnder the hypotheses of Proposition B.1 let C 2 jBja with C 6= B, then C \B = ;.Proof: Sin
e B is irredu
ible by Lemma B.5 B and C do not have a 
ommon
omponent. Suppose B\C = fp1; : : : ; prg, then B2 = B:C � r > 0 in 
ontradi
tionto B2 = 0. �B.7 Proposition (Zariski's Lemma)Under the hypotheses of Proposition B.1 let C =Pri=1 niCi 2 jBja, where the Ci arepairwise di�erent irredu
ible 
urves, ni > 0 for i = 1; : : : ; r.Then the interse
tion matrix Q = (Ci:Cj)i;j=1;:::;r is negative semi-de�nite, and,moreover, C, 
onsidered as an element of the ve
torspa
eLri=1Q �Ci, generates theannihilator of Q.In parti
ular, D2 � 0 for all 
urves D � C, and, moreover, D2 = 0 if and only ifD = C.Proof: By Lemma B.4 C is 
onne
ted. We are going to apply [BPV84℄ I.2.10, andthus we have to verify three 
onditions.(i') C:Ci = B:Ci = 0 for all i = 1; : : : ; r by Lemma B.6. Thus C is an element ofthe annihilator of Q with ni > 0 for all i = 1; : : : ; r.(ii) Ci:Cj � 0 for all i 6= j.(iii) Sin
e C is 
onne
ted there is no non-trivial partition I [ J of f1; : : : rg su
hthat Ci:Cj = 0 for all i 2 I and j 2 J .Thus [BPV84℄ I.2.10 implies that �Q is positive semi-de�nite. �B.8 LemmaUnder the hypotheses of Proposition B.1 let C;C 0 2 jBja be two distin
t 
urves, thenC \ C 0 = ;.



50 THOMAS KEILEN AND ILYA TYOMKINProof: Suppose C = A+D and C 0 = A+D0 su
h that D and D0 have no 
ommon
omponent.We have 0 = B2 = (A +D)2 = (A+D0)2 = (A+D):(A+D0);and thus (A+D)2 + (A+D0)2 = 2(A+D):(A+D0);whi
h implies that D2 +D02 = 2D:D0;where ea
h summand on the left hand side is less than or equal to zero by PropositionB.7, and the right hand side is greater than or equal to zero, sin
e the 
urves D andD0 have no 
ommon 
omponent. We thus 
on
ludeD2 = D02 = D:D0 = 0:But then again Proposition B.7 implies that D = C and D0 = C 0, that is, C and C 0have no 
ommon 
omponent.Suppose C \ C 0 = fp1; : : : ; prg, then B2 = C:C 0 � r > 0 would be a 
ontradi
tionto B2 = 0. Hen
e, C \ C 0 = ;. �B.9 LemmaUnder the hypotheses of Proposition B.1 
onsider on
e more the universal family(B.3) together with its proje
tion onto �,jBja � �prjBja
**

pr�
��S �0 //�

��

3 S

eeKKKKKKKKKKK �jBja:
(B.4)

Then S is an irredu
ible proje
tive surfa
e, jBja is an irredu
ible 
urve, and �0 issurje
tive.Proof:Step 1: S is an irredu
ible proje
tive surfa
e and �0 is surje
tive.The universal property of jBja implies that S is an e�e
tive Cartier divisor of jBja��, and thus in parti
ular proje
tive of dimension at least 2 � dim jBja+dim(�)�1.Sin
e �0 is proje
tive, its image is 
losed in � and of dimension 2, hen
e it is thewhole of �, sin
e � is irredu
ible.By Lemma B.8 the �bres of �0 are all single points, and thus, by [Har92℄ Theorem11.14, S is irredu
ible.Moreover, dim(S) = dim(�) + dim(�bre) = 2:



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 51Step 2: dim jBja = dim(jBja � �)� dim(�) = dim(S) + 1� 2 = 1:Step 3: jBja is irredu
ible.Let V be any irredu
ible 
omponent of jBja of dimension one, then we have auniversal family over V and the analogue of Step 1 for V shows that the 
urves inV 
over �. But then by Lemma B.8 there 
an be no further 
urve in jBja, sin
eany further 
urve would ne
essarily have a non-empty interse
tion with one of the
urves in V . �B.10 LemmaLet's 
onsider the following 
ommutative diagram of proje
tive morphismsS �0 //�
��

�jBja Sred1 Q

bbEEEEEEEEE
'0OO'oo

(B.5)
The map '0 : Sred �! � is birational.Proof: Sin
e Sred and � are irredu
ible and redu
ed, and sin
e '0 is surje
tive,we may apply [Har77℄ III.10.5, and thus there is an open dense subset U � Sredsu
h that '0j : U ! � is smooth. Hen
e, in parti
ular '0j is 
at and the �bresare single redu
ed points. Sin
e '0j : U ! '0(U) is proje
tive and quasi-�nite, it is�nite (
f. [Har77℄ Ex. III.11.2), and it follows from Proposition B.2 that '0j is anisomorphism onto its image, i. e. '0 is birational. �B.11 LemmaIf  : � 9 9 K Sred denotes the rational inverse of the map '0 in (B.5), then  isindeed a morphism, i. e. '0 is an isomorphism.Proof: By Lemma B.8 the �bres of '0 over the possible points of indetermina
y of'0 are just points, and thus the result follows from [Bea83℄ Lemma II.9. �B.12 LemmaThe map g : �! jBja assigning to ea
h point p 2 � the unique 
urve C 2 jBja withp 2 C is a morphism, and is thus a �bration whose �bres are the 
urves in jBja.Proof: We just have g = ' Æ  . �Proof of Proposition B.1: Let � : H ! jBja be the normalisation of the irre-du
ible 
urve jBja. Then H is a smooth irredu
ible 
urve.Moreover, sin
e � is irredu
ible and smooth, and sin
e g : �! jBja is surje
tive, gfa
torises over H, i. e. we have the following 
ommutative diagram� g

//9f
��

jBjaH: � =={{{{{{{{



52 THOMAS KEILEN AND ILYA TYOMKINThen f is the desired �bration. �Appendix C. Some Fa
ts used in the Proofs of Se
tion 3In this se
tion we are, in parti
ular, writing down some identi�
ations of 
ertainsheaves respe
tively of their global se
tions. Doing this we try to be very formal.However, in a situation of the kind X � � i // Y � // Z we usually do not distinguishbetween OX and i�OX , or between � and any restri
tion of � to X.C.1 LemmaLet '(x; y; t) =P1i=0 'i(x; y) � ti 2 Cfx; y; tg with '(x; y; t) 2 (x; y)m for every �xedt in some small dis
 � around 0. Then 'i(x; y) 2 (x; y)m for every i 2 N0.Proof: We write the power series as ' =P1�+�=0(P1i=0 
�;�;i � ti)x�y�.'(x; y; t) 2 (x; y)m for every t 2 � implies1Xi=0 
�;�;i � ti = 0 8 �+ � < m and t 2 �:The identity theorem for power series in C then implies that
�;�;i = 0 8 � + � < m and i � 0: �C.2 LemmaLet X be a noetherian s
heme, i : C ,! X a 
losed subs
heme, F a sheaf of moduleson C, and G a sheaf of modules on X. Then(C.1) i�F �= i�F 
OX OC ,(C.2) H0(C;F) = H0(X; i�F 
OX OC),(C.3) G 
OX OC �= i�i�(G 
OX OC), and(C.4) H0�C; i�(G 
OX OC)� = H0(X;G 
OX OC).Proof:(C.1) For U � X open, we de�ne�(U; i�F) ! �(U; i�F)
�(U;OX) �(U;OC) � �(U; i�F 
OX OC)s 7! s
 1:This morphism indu
es on the stalks the isomorphismi�Fx = � Fx; (if x 2 C) = Fx 
OX;x OX;x=IC;x0; (else) = 0
OX;x OX;x=IC;x � �= i�Fx 
OX;x OC;x;where IC;x is the ideal de�ning C in X lo
ally at x.(C.2) The identi�
ation (C.1) together with [Har77℄ III.2.10 gives:H0(C;F) = H0(X; i�F) = H0(X; i�F 
OX OC):



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 53(C.3) The adjoint property of i� and i� together with i�i� �= id gives rise to thefollowing isomorphisms:End �i�i�(G 
OC)� �= Hom �i�i�i�(G 
 OC); i�(G 
OC)��= End �i�(G 
 OC)� �= Hom �G 
 OC ; i�i�(G 
OC)�:That means, that the identity morphism on i�i�(G 
OC) must 
orrespond toan isomorphism from G 
OC to i�i�(G 
 OC) via these identi�
ations.(C.4) follows from (C.3) and on
e more [Har77℄ III.2.10.C.3 CorollaryIn the situation of Lemma 3.4 we have:(C.5) H0�C; ��O eC(E)
OC OC(C)� = H0��; ��O eC(E)
O� OC(C)�, and(C.6) H0�C; ��Oe�(E)
O� OC(C)� = H0��; ��Oe�(E)
O� OC(C)�.Proof: We denote by j : eC ,! e� and i : C ,! � respe
tively the given embeddings.(C.5) By (C.2) in Lemma C.2 we have:H0�C; ��O eC(E)
OC OC(C)� = H0��; i����O eC(E)
OC OC(C)�
O� OC�:By the proje
tion formula this is just equal to:H0��; �i���O eC(E)
O� O�(C)�
O� OC� = H0��; ��j�O eC(E)
O� OC(C)�=def H0��; ��O eC(E)
O� OC(C)�:(C.6) Using (C.4) in Lemma C.2 we get:H0�C; ��Oe�(E)
O� OC(C)� =def H0�C; i����Oe�(E)
O� OC(C)�� =H0��; ��Oe�(E)
O� OC(C)�: �C.4 LemmaWith the notation of Lemma 3.4 we show that supp �Ker(
)� � fz1; : : : ; zrg.Proof: Sin
e � : e� n �Sri=1Ei� �! � n fz1; : : : ; zrg is an isomorphism, we have forany sheaf F of Oe�-modules and y 2 e� n �Sri=1Ei�:(��F)�(y) = lim�(y)2V F(��1(V )) = limy2U F(U) = Fy:In parti
ular,���Oe�(E)
O� OC(C)��(y) �= Oe�;y 
O�;�(y) OC;�(y) �= O�;�(y) 
O�;�(y) OC;�(y);and���O eC(E)
O� OC(C)��(y) �= O eC;y 
O�;�(y) OC;�(y) �= OC;�(y) 
O�;�(y) OC;�(y):



54 THOMAS KEILEN AND ILYA TYOMKINMoreover, the morphism 
�(y) be
omes under these identi�
ations just the morphismgiven by a
 b = 1
 ab 7! a
 b = 1
 ab, whi
h is inje
tive. Thus, 0 = Ker(
�(y)) =Ker(
)�(y), and �(y) 62 supp(Ker(
)). �C.5 LemmaLet X be an irredu
ible noetherian s
heme, F a 
oherent sheaf on X, and s 2H0(X;F) su
h that dim � supp(s)� < dim(X). Then s 2 H0�X;Tor(F)�.Proof: The multipli
ation by s gives rise to the following exa
t sequen
e:0 // Ker(�s) // OX �s // F :Sin
e OX and F are 
oherent, so is Ker(�s), and hen
e supp �Ker(�s)� is 
losed inX. Now, supp(Ker(�s)) = fz 2 X j 9 0 6= rz 2 OX;z : rz � sz = 0g= fz 2 X j sz 2 Tor(Fz)g:But then the 
omplement fz 2 Xjsz 62 Tor(Fz)g is open and is 
ontained in supp(s)(sin
e sz = 0 implies that sz 2 Tor(Fz)), and is thus empty sin
e X is irredu
ibleand supp(s) of lower dimension. �Appendix D. The Degree of a Line Bundle on a CurveD.1 RemarkLet C = C1 [ : : : [ Ck be a redu
ed 
urve on a smooth proje
tive surfa
e � overC, where the Ci are irredu
ible, and let L be a line bundle on C. Then we de�nethe degree of L with the aid of the normalisation � : C 0 ! C. We have H2(C;Z) �=Lki=1H2(C 0i;Z) = Zk, and thus the image of L in H2(C;Z), whi
h is the �rst Chern
lass of L, 
an be viewed as a ve
tor (l1; : : : ; lk) of integers, and we may de�ne thedegree of L by deg(L) := l1 + � � �+ lk:In parti
ular, if C is irredu
ible, we get:deg(L) = deg(��L) = 
1(��L):Sin
e H0(C;L) 6= 0 implies that H0(C 0; ��L) 6= 0, and sin
e the existen
e of anon-vanishing global se
tion of ��L on the smooth 
urve C 0 implies that the 
orre-sponding divisor is e�e
tive, we get the following lemma. (
f. [BPV84℄ Se
tion II.2)D.2 LemmaLet C be an irredu
ible redu
ed 
urve on a smooth proje
tive surfa
e �, and let L bea line bundle on C. If H0(C;L) 6= 0, then deg(L) � 0.



EXISTENCE OF CURVES WITH PRESCRIBED TOPOLOGICAL SINGULARITIES 55Appendix E. Two Results used in the Proof of Theorem 4.1E.1 RemarkLet � � PnC be a (not ne
essarily) smooth proje
tive surfa
e and let z 2 � be �xed.We 
onsider the se
ant varietybSz := �(z0; r) 2 �� PnC �� z0 6= z; r 2 z; z0	;whi
h is lo
ally 
losed in ��PnC , together with the to proje
tions bSz ! � nfzg andbSz ! Sz := Sz 6=z02� zz0 � PnC . The isomorphism�� n fzg�� P1C // bSz�z0; (a : b)� � // (z0; a � z + b � z0)shows that bSz is an irredu
ible P1C -bundle. But thus also Sz is irredu
ible. Moreover,sin
e bSz has dimension 3, the dimension of Sz is at most 3, and sin
e � \ Sz = �is 
losed in the irredu
ible variety Sz we have either dim(Sz) = 3 or Sz = �. Thelatter happens if � is linear in PnC , and might happen when z is a singular point, e.g. � = fx0x1 � x2 = 0g � P3C and z = (0 : 0 : 0 : 1).E.2 LemmaLet � � PnC a non-linear proje
tive surfa
e.(i) If z 2 � is not singular, then a generi
 se
ant line through z is not 
ontainedin �. In parti
ular, dim(Sz) = 3.(ii) If � is smooth, there is a very general subset U � ��� su
h that for (z; z0) 2 Uthe se
ant line zz0 6� �.Proof: Part b. is an immediate 
onsequen
e of Part a. Sin
e z 2 � is regular,O�;z �=OPnC =(f1; : : : ; fn�2), where (f1; : : : ; fn�2) is a regular sequen
e in OPnC . For generi
linear forms l; l0 2 C[x0; : : : ; xn℄1 through the point z, the sequen
e (f1; : : : ; fn�2; l; l0)will then be regular. This in parti
ular means that the linear n�2-spa
eH = V (l; l0)interse
ts � in z transversally, i. e. with interse
tion multipli
ity 1 and z is an isolatedpoint of H \ �. Sin
e � is not linear H interse
ts � in at least one more point z0by the Theorem of B�ezout, and then zz0 6� �. This proves the �rst assertion, andby Remark E.1 we also know that dim(Sz) = 3. �E.3 LemmaLet L be very ample over C on the smooth proje
tive surfa
e �.There is a very general subset U � ��� su
h that for �z; z0) 2 U , there is a smooth
onne
ted 
urve through z and z0 in jLjl. Indeed, a generi
 
urve in jLjl through zand z0 will be so.Proof: Considering the embedding � � PnC de�ned by L the 
urves in jLjl are inone-to-one 
orresponden
e with the hyperplane se
tions.



56 THOMAS KEILEN AND ILYA TYOMKINBy the Theorems of Bertini (
f. [Har77℄ II.8.18 and III.9.9.1) we know that thereis an open dense subset of the linear system of all hyperplane se
tions of � whi
hare irredu
ible and smooth. Moreover, the linear systems Lz = �C 2 jLjl �� z 2 C	forms a subsystem of 
odimension one for any z 2 �. Thus for all but possiblya �nite number of points z1; : : : ; zs the linear system Lz has an open dense subsetwhi
h 
onsists of irredu
ible and smooth 
urves. Note that the linear system Lz;z0 =�C 2 jLjl �� z; z0 2 C	 forms a linear subsystem of Lz of 
odimension one, and thatLz;z0 = Lz;z00 only if z, z0 and z00 are 
ollinear. Thus �xing a point z 2 �nfz1; : : : ; zsgwe �nd that for all z0 but those in a �nite number of lines l1;z; : : : ; lsz;z the systemLz;z0 
ontains an irredu
ible and smooth 
urve. This proves the 
laim. �E.4 RemarkA slightly 
loser investigation shows that for two points z; z0 2 � the linear systemjLjl in Lemma E.3 does not 
ontain a smooth and irredu
ible 
urve C trough z andz0 if and only if the linear system has a �x 
omponent through z and z0. Havingembedded the surfa
e � into PnC via L this means that the se
ant line through z andz0 lies in �. Therefore, Lemma E.2 also implies the result of Lemma E.3, Part a.If we 
onsider e. g. � = P1C �P1C with L = O�(1; 1), then for two points on the linesp � P1C respe
tively on P1C � fpg there is no smooth 
urve in jLjl through the twopoints.E.5 LemmaLet L � � be a smooth 
urve and X � � a zero-dimensional s
heme. If D 2 Div(�)su
h that(E.1) h1��;JX:L=�(D � L)� = 0, and(E.2) deg(X \ L) � D:L + 1� 2g(L),then h1��;JX=�(D)� = 0:Proof: Condition (E.2)) implies2g(L)� 2 < D:L� deg(X \ L) = deg �OL(D)�+ deg �JX\L=L�= deg �JX\L=L(D)�;and thus by Riemann-Ro
h (
f. [Har77℄ IV.1.3.4)h1�JX\L=L(D)� = 0:Consider now the exa
t sequen
e0 // JX:L=�(D � L) �L // JX=�(D) // JX\L=L(D) // 0:The result then follows from the 
orresponding long exa
t 
ohomology sequen
e0 = H1�JX:L=�(D � L)� // H1�JX=�(D)� // H1�JX\L=L(D)� = 0:
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t Surfa
esThrougout this se
tion we sti
k to the notation of Se
tion 6.
 and 6.d. Let C1 andC2 be two smooth proje
tive 
urves of genus g1 � 0 and g2 � 0 respe
tively, and let� = C1 � C2.Supposed that one of the 
urves is rational, the surfa
e is geometri
ally ruled andthe Pi
ard number of � is two. Whereas, if both C1 and C2 are of stri
tly positivegenus, this need no longer be the 
ase as we have seen in Remark 6.9. Thus thefollowing proposition is the best we may expe
t.F.1 PropositionFor a generi
 
hoi
e of smooth proje
tive 
urves C1 and C2 the Neron-Severi groupof � = C1 � C2 is NS(�) �= C1Z� C2Z.More pre
isely, �xing g1 and g2 there is a very general subset U � Mg1 �Mg2 su
hthat for any (C1; C2) 2 U the Pi
ard number of C1 � C2 is two, where Mgi denotesthe moduli spa
e of smooth proje
tive 
urves of genus gi, i = 1; 2.Proof: As already mentioned, if either g1 or g2 is zero, then we may take U =Mg1 �Mg2 .Suppose that g1 = g2 = 1. Given an ellipti
 
urve C1 there is a 
ountable unionV of proper subvarieties of M1 su
h that for any C2 2 M1 n V the Pi
ard numberof C1 � C2 is two - namely, if �1 and �2 denote the periods as in Se
tion 6.d, thenwe have to require that there exists no invertible integer matrix ( z1 z2z3 z4 ) su
h that�2 = z4�z3�1z2�z1�1 . (Compare also [GH94℄ p. 286.)We, therefore, may assume that g1 � 2 and g2 � 1. The 
laim then follows fromLemma F.2, whi
h is due to Denis Gaitsgory. �F.2 Lemma (Denis Gaitsgory)Let C2 be any smooth proje
tive 
urve of genus g2 � 1. Then for any g1 � 2 thereis a very general subset U of the moduli spa
e Mg1 of smooth proje
tive 
urves ofgenus g1 su
h that the Pi
ard number of C1 � C2 is two for any C1 2 U .Proof: We note that a 
urve B � � = C1 � C2 with C1 6�a B 6�a C2 indu
es anon-trivial morphism �B : C1 ! Pi
(C2) : p 7! pr2� �pr�1(p)�, where pri : � ! Ci,i = 1; 2, denote the 
anoni
al proje
tions. It thus makes sense to study the moduliproblem of (non-trivial) maps from 
urves of genus g1 into Pi
(C2).More pre
isely, let k 2 N and let 0 6= � 2 H2�Pi
k(C2);Z� = Z2g2 be given, wherePi
k(C2) is the Pi
ard variety of divisors of degree k on C2. Following the notationof [FP97℄ we denote by Mg1;0�Pi
k(C2); �� the moduli spa
e of pairs (C1; �), whereC1 is a smooth proje
tive 
urve of genus g1 and � : C1 ! Pi
k(C2) a morphism with���[C1℄� = �. We then have the 
anoni
al morphismFk;� :Mg1;0�Pi
k(C2); ��!Mg1 : (C1; �) 7! C1;



58 THOMAS KEILEN AND ILYA TYOMKINjust forgetting the map �, and the proposition redu
es to the following 
laim:Claim: For no 
hoi
e of k 2 N and 0 6= � 2 H2�Pi
k(C2);Z� the morphism Fk;� isdominant.Let � : C1 ! Pi
k(C2) be any morphism with ���[C1℄� = �. Then � is not a
ontra
tion and the image of C1 is a proje
tive 
urve in the abelian variety Pi
k(C2).Moreover, we have the following exa
t sequen
e of sheaves0 // TC1 d�
// ��TPi
k(C2) = Og2C1 // N� := 
oker(d�) // 0: (F.1)Sin
e d� is a non-zero in
lusion, its dual d�_ : (��TPi
k(C2))_ = Og2C1 ! 
C1 = !C1 isnot zero on global se
tions, that isH0�d�_� : H0�C1;Og2C1� = HomOC1 �Og2C1 ;OC1�! H0(C1; !C1) = HomOC1 �TC1 ;OC1�is not the zero map. Sin
e g1 � 2 we have h0(C1; !C1) = 2g1�2 > 0, and thus !C1 hasglobal se
tions. Therefore, the indu
ed mapH0�C1; !C1
Og2C1�! H0(C1; !C1
!C1)is not the zero map, whi
h by Serre duality gives that the mapH1(d�) : H1(C1; TC1)! H1�C1; ��TPi
k(C2)�from the long exa
t 
ohomology sequen
e of (F.1) is not zero. Hen
e the 
oboundarymap Æ : H0(C1;N�)! H1(C1; TC1)
annot be surje
tive. A

ording to [Har98℄ p. 96 we haveÆ = dFk;� : TMg1;0(Pi
k(C2);�) = H0(C1;N�) �! TMg1 = H1(C1; TC1):But if the di�erential of Fk;� is not surje
tive, then Fk;� itself 
annot be dominant.�Referen
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