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1 Introduction

We want to study the solution set V(f1, . . . , fk) of a system of equations

f1(x1, . . . , xn) = 0

...

fk(x1, . . . , xn) = 0

where the fi are polynomials.

Figure 1. The Cayley Cubic

x1x2 + x1x3 + x2x3 + x1x2x3 = 0.

Figure 2. The Heart
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Figure 3. A plane curve

32x21 − 2097152x
11
2 + 1441792x92

− 360448x72 + 39424x
5
2

− 1760x32 + 22x2 − 1 = 0

Figure 4. A Space Curve

x1 − x
2
3 = 0

x22 − x
3
3 = 0

The first case to consider would be n = k = 1, that is, we have a single polynomial

f = am · xm + am−1 · xm−1 + . . .+ a1 · x+ a0
and we are looking for the roots of that polynomial. In theory, this is not too hard

to deal with. There are at most n roots, and if the base field is algebraically closed
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like C, then there are exactly n roots counted with the appropriate multiplicity.

However, it is very hard in practise to find any of the roots.

The second case to consider would have n and k arbitrary, but the polynomials are

all linear, i.e. they are of the form

fi = ai1 · x1 + . . .+ ain · xn + bi.

Then the solution set is an affine vector space, and it is even easy to compute using

the Gauß algorithm.

In general, life is much more difficult and much more interesting as already the above

examples show. Before introducing the theory we want to mention some applications

where such polynomial systems of equations come up naturally.

A) Robotics

A frequently used robotic system is the hexapod (see Figure 5). A platform is

Figure 5. Schematic image of a hexapod robot

connected to six legs via rotational joints. The length of the legs can be varied

in order to adjust the position of the platform in space. Note that one has three

translational and three rotational directions of movement, that is one has six degrees

of freedom, and fixing the length of the six legs one thus expects to fix the position

of the platform. Robots using this basic scheme are used in many applications, e.g.

Figure 6. Applications: Flight simulator and micro surgery
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for flight simulators or in micro surgery (see Figure 6). To deduce the length of the

legs needed in order to achieve a given position one has to solve a system of eight

polynomial equations, one of which is shown in Figure 7.
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Figure 7. One equation for the leg-length of a hexapod

B) Elliptic curve cryptography

Equations like

y2z− x ·
(

x− 1
2
· z
)

· (x− z) = 0
define elliptic curves in the projective plane (see Figure 8). They carry in a natural

way the structure of an abelian group, that is, one can add and subtract points on

the curve from each other. If the base filed K over which one considers the solutions

is finite, then these groups are very well suited as alphabets for cryptographical

methods, and they are widely used nowadays. Note that, while it is easy to add a

point P several times to itself, e.g. P + P + P = 3 · P, it is very hard to find P if

you are given the result 3 · P. One says, that it is very hard to compute the discrete

logarithm.

C) Coding theory

Also for coding theory one can use projective curves over a finite field K. However,

this time one considers the global sections of a divisor on the curve and its image

under the map evaluating the sections at n fixed points. This gives a subspace of

Kn which serves as the code and has pretty good properties. These ideas go back to

Goppa.
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Figure 8. A visualisation of y2z− x ·
(

x− 1
2
· z
)

· (x− z) = 0

D) Chip design

A modern micro processor chip contains several layers of electrical circuits with

millions of transistors, resistors and capacitors. The functionality of certain units of

such an electrical circuit within itself and with other units leads eventually to systems

of partial differential equations. These can be treated symbolically as polynomial

equations which one uses in a preprocessing step before applying numerical methods.

Certain properties of the circuits can thus be predicted by pure simulation and

computations without actually building the chip (see Figure 9).

Figure 9. A micro processor chip

E) Sudoku

A Sudoku is a scheme of digits as in Figure 10. One should fill the table by digits

Figure 10. Sudoku
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in such a way that in each row, in each column and in each block each of the nine

digits 1, . . . , 9 occurs precisely once.

Let us now associate coordinates x1, . . . , x81 to each of the 81 squares and consider

the set of pairs

B = {(i, j) | 1 ≤ i < j ≤ 81, xi and xj are in the same row, column or block}.

For i = 1, . . . , 81 we define

Fi =

9∏

k=1

xi − k,

and for (i, j) ∈ B we set

Gij =
Fi − Fj

xi − xj
.

Then the Fi and the Gij are polynomials. Moreover, a1, . . . , a81 is a feasible solution

for a sudoku if and only if it is a solution of the system of equations

Gij = 0, Fk = 0 where (i, j) ∈ B, k = 1, . . . , 9.

F) Exercises

Exercise 1.1

How do the solution sets in R2 of the following equations look like?

a. y− x2 = 0.

b. y− x4 + 1 = 0.

c. y2 − x2 = 0.

d. x2 − y3 = 0.

e. y2 − x2 − x3 = 0.

f. (x2 + y2)3 − 4x2y2 = 0.

Which image belongs to which equation?
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Exercise 1.2

How do the solution sets in R3 of the following systems of equations look like?

a. x2 − y3 = 0.

b. z− x2 − y2 = 0.

c. z2 − x2 − y2 = 0.

d. z2 − x2 − y2 = 0 and z2 − 1 = 0.

e. xz = 0 and yz = 0.

f. x2 + y2 + z2 − 1 = 0.

Which image belongs to which system of equations?
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2 Affine algebraic varieties

Studying solution sets of systems of polynomial equations does not in general mean

that we want to write down all solutions. That is in general impossible even if the

number is finite which in general is not the case. Instead we want to study the

structure of these sets, properties such as its dimension or if it decomposes into

several components or how it looks locally at some point. The latter is important if

one wants to control parameters which allow to travel along the solution set without

fearing any sudden and instable behaviour. In this section we will introduce the

basic notions needed to deal with the theory of the solution sets of finite systems of

polynomial equations, called affine algebraic varieties.

Throughout these lecture notes K will always denote a field.

For computations it is best to choose K = Q or K = Z/pZ for some prime number

p; for visualisations it is best to choose K = R; for applications one usually needs

K = R or some finite field of size pn for some large prime number p and some large

integer n; finally, the theory works best when K is algebraically closed like K = C.

We will always choose whatever field is best for the purpose at hand!

A) Basic definitions

Definition 2.1 (The polynomial ring)

We define the polynomial ring in n indeterminates x1, . . . , xn over K as

K[x] = K[x1, . . . , xn] =






d∑

|α|=0

aα · xα
∣

∣

∣

∣

∣

d ∈ N, aα ∈ K




 ,

where we use the notation

• x = (x1, . . . , xn),

• α = (α1, . . . , αn) ∈ Nn,

• x
α = xα1

1 · · · xαn
n ,

• |α| = α1 + . . .+ αn.

This set is a commutative ring with one via the addition
∑

α

aα · xα +
∑

α

bαx
α =
∑

α

(aα + bα) · xα

and the multiplication
∑

α

aα · xα ·
∑

β

bβx
β =
∑

γ

∑

α+β=γ

aα · bβ · xγ.
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The number

deg

(

∑

α

aα · xα
)

= sup
{
|α|
∣

∣ aα 6= 0
}
∈ N ∪ {−∞}

is the degree of the polynomial
∑

α aα · xα.

Remark 2.2 (Properties of the polynomial ring)

Let us gather some easy and well known facts about the polynomial ring K[x].

a. For f, g ∈ K[x] we have:

• deg(f · g) = deg(f) + deg(g),

• f is a unit ⇐⇒ f ∈ K \ {0} ⇐⇒ deg(f) = 0.

b. A non-constant polynomial f is said to be irreducible if it does not factor

properly, i.e. f = g ·h implies that either g or h is a unit. Otherwise it is said

to be reducible.

c. An ideal in K[x] is a non-empty subset I of K[x] which is closed under addition

and scalar multiplication, i.e.

f+ g, r · f ∈ I ∀ f, g ∈ I, r ∈ K[x].

We denote this by I✂ K[x].

d. If M ⊆ K[x] is any subset, then

〈M〉 :=
⋂

M⊆I✂K[x]

I =

{
k∑

i=1

ri · fi
∣

∣

∣ ri ∈ K[x], fi ∈M,k ∈ N

}

is the ideal generated by M. It is the smallest ideal containing M, and its

elements are precisely the finite linear combinations of elements in M.

Definition 2.3 (Affine algebraic varieties)

a. We call An
K = Kn = {(a1, . . . , an) | ai ∈ K} the affine n-space.

b. For any subset M ⊆ K[x] we define the vanishing set of M as

V(M) = {p ∈ An
K | f(p) = 0 ∀ f ∈M}.

c. A subset X ⊆ An
K is an affine algebraic variety if it is the vanishing set X =

V(M) of some (not necessarily finite) set M of polynomials in K[x].

Remark 2.4 (First properties of affine algebraic varieties)

a. An
K = V(0) and ∅ = V(1) are affine algebraic varieties.

b. If M ⊆ N ⊆ K[x], then V(M) ⊇ V(N).

c. Since the polynomials in 〈M〉 are the linear combinations of polynomials in

M we have

V(M) = V
(

〈M〉
)

.

That is, every affine algebraic variety is the vanishing set of an ideal.
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We started by considering finite systems of polynomial equations and their solution

sets, that is by considering vanishing sets of finite sets of polynomials. The last

remark encourages us to replace any given set of polynomials by the ideal which it

generates and which in general will contain infinitely many polynomials. The ideals

are more suitable for theoretical purposes and Hilbert’s Basis Theorem states that

we have not enlarged the universe of geometric objects we are interested in.

Theorem 2.5 (Hilbert’s Basis Theorem)

Every ideal in K[x] is finitely generated, and hence every affine algebraic variety is

the solution set of a finite system of polynomial equations!

Idea of the proof: One proves the statement by induction on the number n of

variables. We set R = K[x1, . . . , xn−1] and consider the polynomials in K[x] = R[xn]

as polynomials in the variable xn with coefficients in R. Given an ideal I in K[x]

the ideal J in R generated by the leading coefficients of the elements in I is finitely

generated by induction. That is, there are finitely many polynomials f1, . . . , fk ∈ I
such that there leading coefficients generate J. If d is an upper bound for the degree

of these polynomials, then one can show by some kind of division with remainder

that I is generated by f1, . . . , fk together with the finite generating set of the ideal

〈1, xn, x2n, . . . , xd−1n 〉R ∩ J in R. �

Example 2.6

It is easy to see that the set

I = {f ∈ K[x, y] | f(1, 1) = 0} ⊂ K[x, y]

is an ideal. By Hilbert’s Basis Theorem it must be finitely generated, and it is

actually just

I = 〈x− 1, y− 1〉.

B) Gröbner bases

Remark 2.7

Suppose we are given a system of polynomials f1, . . . , fk and we are interested in

their vanishing set X = V(f1, . . . , fk). Remark 2.4 then says that we may replace the

given set of generators of I = 〈f1, . . . , fk〉 by any other set of generators of I without

changing the vanishing set X. The idea is now to change to a set of generators which

reveals more information on the vanishing set.

Definition 2.8 (Monomial orderings)

A total ordering > on the set

Mon(x) =
{
x
α
∣

∣ α ∈ Nn
}

of monomials in the indeterminates x1, . . . , xn is a monomial ordering if and only if

x
α > x

β =⇒ x
α · xγ > x

β · xγ ∀ γ ∈ Nn.
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That is, the ordering is compatible with the obvious semi group structure on Mon(x).

A monomial ordering is called global if 1 < x
α for all α 6= 0, and it is called local if

1 > x
α for all α 6= 0.

Example 2.9 (Monomial orderings on Mon(x))

On Mon(x) = {xn | n ∈ N} there are exactly two monomial orderings defined by

either

xn > xm ⇐⇒ n > m

or

xn > xm ⇐⇒ n < m.

The first one is global, the second one is local.

Example 2.10 (Global monomial orderings)
a. Define the global lexicographical ordering >lp on Mon(x) by x

α >lp x
β if

∃ i ∈ {1, . . . , n} : α1 = β1, . . . , αi−1 = βi−1, and αi > βi.

b. Define the global degree reverse lexicographical ordering >dp on Mon(x) by

x
α >dp x

β if

deg
(

x
α
)

> deg
(

x
β
)

,

or deg
(

x
α
)

= deg
(

x
β
)

, but then

∃ i ∈ {1, . . . , n} : αn = βn, . . . , αi+1 = βi+1, and αi < βi.

c. E.g., x21 >lp x1x
3
2, but x1x

3
2 >dp x

2
1.

Definition 2.11 (Leading monomial)

Let > be a monomial ordering on Mon(x) and 0 6= f =∑d
|α|=0 aα · xα ∈ K[x].

a. lm>(f) = max
{
x
α | aα 6= 0

}
is the leading monomial of f w.r.t. >.

b. lc>(f) = aα, if lm>(f) = x
α, is the leading coefficient of f w.r.t. >.

c. lt>(f) = lc>(f) · lm>(f) is the leading term of f w.r.t. >.

For the sake of completeness we define

lm>(0) := 0, lt>(0) := 0, lc>(0) := 0.

Example 2.12

We consider Mon(x, y) with the lexicographical respectively the degree reverse lex-

icographical ordering and the polynomial f = 2x2 + 5xy3 − y, then

lm>lp
(f) = x2, lc>lp

(f) = 2, lt>lp
(f) = 2x2,

while

lm>dp
(f) = xy3, lc>dp

(f) = 5, lt>dp
(f) = 5xy3.

Remark 2.13 (Singular)

Below you find the Singular commands for the last example. It is important to

note that in Singular one always has to specify the polynomial ring one is working

with. The command
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ring r=0,(x,y),dp;

does so. It attributes the name r to the ring, specifies the base field to be the

rational numbers by stating the characteristic to be 0, introduces the indeterminates

x and y, and finally specifies the ordering to be dp, i.e. the global degree reverse

lexicographical ordering. The remaining parts should be more or less self explaining.

SINGULAR /

A Computer Algebra System for Polynomial Computations / version 3-1-1

0<

by: G.-M. Greuel, G. Pfister, H. Schoenemann \ Feb 2010

FB Mathematik der Universitaet, D-67653 Kaiserslautern \

> ring r=0,(x,y),dp;

> poly f=3*x^2+5*x*y^3-y;

> leadmonom(f);

xy3

> leadcoef(f);

5

> lead(f);

5xy3

Remark 2.14 (Standard representations for global monomial orderings)

If the leading monomial xα of a polynomial f is divisible by the leading monomial

x
β of a polynomial g (i.e. βi ≤ αi for all i), then we can cancel out the leading term

of f by the leading term of g, i.e.

h = f−
lt>(f)

lt>(g)
· g

has a leading monomial which is strictly smaller than that of f. That is, we can

write f as a monomial multiple of g plus some polynomial with a strictly smaller

leading term:

f =
lt>(f)

lt>(g)
· g+ h.

Replacing f by h and continuing like this we can finally write f as a polynomial mul-

tiple of g plus some remainder r whose leading term is no longer divisible by lm>(g)

(the termination of this process is guarantueed for global orderings by Exercise 2.44):

f = q · g+ r.

The same works if we replace g by several polynomials g1, . . . , gk, i.e. successively

canceling out leading terms by the leading term of some gi we get a representation

f = q1 · g1 + . . . qk · gk + r (1)
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where the leading monomial of r is no longer divisible by the leading monomial of

any gi and where by construction the leading monomial of qi ·gi is never larger than
lm>(f). Such a representation of f is called a standard representation or a division

with remainder of f with respect to G and >.

Definition 2.15 (Leading ideal)

Let > be a monomial ordering on Mon(x).

a. For a subset M ⊆ K[x] we call the ideal

L>(M) = 〈lm>(f) | f ∈M〉✂ K[x]

generated by the leading monomials of the elements in M its leading ideal.

b. A finite subset G = {f1, . . . , fk} of an ideal I ✂ K[x] is a Gröbner basis or

standard basis of I w.r.t. >, if the leading monomials of the fi generate the

leading ideal L>(I) of I.

Example 2.16

If I = 〈x − 1, y − 1〉 and > is any global monomial ordering on Mon(x, y), then

G = {x− 1, y− 1} is a Gröbner basis of I since L>(I) = 〈x, y〉.

> ring r=0,(x,y),dp;

> ideal I=x-1,y-1;

> groebner(I);

_[1]=y-1

_[2]=x-1

> leadmonom(groebner(I));

_[1]=y

_[2]=x

Gröbner bases are good generating systems, as the following proposition shows.

Proposition 2.17 (Ideal membership test)

Let I be an ideal in K[x], G = {g1, . . . , gk} ∈ K[x] and > a monomial ordering.

a. If G is a Gröbner basis of I, then G generates I, i.e. I = 〈G〉.
b. If G is a Gröbner basis of I and f =

∑k
i=1 qi ·gi+r is a standard representation,

then

f ∈ I ⇐⇒ r = 0.

Idea of the proof: If f ∈ I and f = ∑k
i=1 qi · gi + r is a standard representation,

then r = f −
∑k

i=1 qi · gi is in I and thus its leading monomial is divisible by the

leading monomial of some gi if G is a Gröbner basis. Thus r must be zero and the

gi generate I. �
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Example 2.18

Let I = 〈x−y2, x+y2〉 and consider the lexicographical ordering >lp on Mon(x, y).

Then

y2 = 0 · (x− y2) + 0 · (x+ y2) + y2

is a standard representation with r = y2 6= 0, however

y2 =
1

2
· (x+ y2) − 1

2
· (x− y2) ∈ I.

This shows that G = {x− y2, x+ y2} is not a Gröbner basis of I.

Example 2.19 (Ideal membership and syzygies)

Suppose we want to find a standard representation of the polynomial f = x4 + y4

with respect to G = {x− 1, y− 1} and to >dp on Mon(x, y). The command

reduce(f,I);

gives us the remainder r. And in the Singular code below we see, how the command

syz can be used to find q1 and q2.

> ring r=0,(x,y),dp;

> ideal I=x-1,y-1;

> poly f=x4+y4;

> reduce(f,I);

2

> ideal J=I,f-reduce(f,I);

> print(syz(J));

-y+1,x3+x2+x+1,

x-1, y3+y2+y+1,

0, -1

The last column of the matrix that we get, has a −1 as its last entry. Thus the

entries above are q1 = x
3 + x2 + x + 1 in the first row and q2 = y

3 + y2 + y + 1 in

the second row. This comes from the fact that each column (a1, a2, a3) represents

polynomials such that

a1 · (x− 1) + a2 · (y− 1) + a3 · (f− r) = 0.
One calls such a vector (a1, a2, a3) a syzygy of the polynomials x− 1, y− 1, f− r.

C) Finite solution sets and Gröbner bases

Proposition 2.20 (Finite affine algebraic varieties)

Let I be an ideal in K[x]. Then V(I) is finite if and only if for each i = 1, . . . , n

I ∩ K[xi] = 〈fi〉 6= {0}.

Moreover, then V(I) ⊆ {(p1, . . . , pn) | fi(pi) = 0, i = 1, . . . , n}.
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Idea of the proof: If V(I) is finite and fi is the polynomial that has all the i-th

coordinates of points in V(I) as zero, then one expects some power of fi in I. �

Remark 2.21

We now want to explain how one can easily compute I∩K[xi] using Gröbner bases.

Reorder the variables x1, . . . , xn in such a way, that xi is the last one and call the

new variables y1, . . . , yn. Then compute a Gröbner basis G of I with respect to the

lexicographical ordering on Mon(y1, . . . , yn). There will be at least one polynomial

in G which only depends on the variable yn = xi, and among those only depending

on that variable the one of lowest degree will be a generator of I ∩ K[xi].
There is actually a simple Singular command, eliminate, which allows to com-

pute the generators directly. We will come back to this command further down.

Example 2.22 (Elimination of variables)

Let us consider the ideal I = 〈x2 + y2 − 1, xy〉 in K[x, y]. Then the following

Singular commands can be used to find generators for I ∩ K[x] and I ∩ K[y]:

> ring r=0,(x,y),lp;

> ideal i=x2+y2-1,xy;

> groebner(i);

_[1]=y3-y

_[2]=xy

_[3]=x2+y2-1

> ring r=0,(y,x),lp;

> ideal i=x2+y2-1,xy;

> groebner(i);

_[1]=x3-x

_[2]=yx

_[3]=y2+x2-1

We thus see that

I ∩ K[x] = 〈x3 − x〉
and

I ∩ K[y] = 〈y3 − y〉.
This implies that

V(I) ⊆ V(x3 − x)× V(y3 − y) =
{
(a, b)

∣

∣ a, b ∈ {−1, 0, 1}
}
,

but since V(I) is the intersection of the unit circle with the coordinate axes we know

that indeed

V(I) = {(0, 1), (0,−1), (1, 0), (−1, 0)}.

It would of course be an easy task to verify which of the above (a, b) is actually in

V(I) by just evaluating the generators of I at each (a, b).
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We could have computed the generator of I∩K[x] by eliminating the variable y with

the aid of the command eliminate:

> ring r=0,(x,y),lp;

> ideal i=x2+y2-1,xy;

> eliminate(i,y);

_[1]=x3-x

Remark 2.23 (The commands factorize and solve)

The idea that one can find the solutions of V(I) as above if there are only finitely

many, depends of course on whether we can find the roots of the univariate polyno-

mials fi, which in general is impossible.

However, if the solutions happen to be all rational numbers, then one can factorise

the polynomial.

> ring r=0,x,dp;

> poly f=(x-1)*(x-4)*(x-5)^2*(x+3)^3*(x^2+1);

> f;

x9-6x8-28x7+162x6+314x5-1254x4-1412x3+1278x2-1755x+2700

> factorize(f);

[1]:

_[1]=1

_[2]=x+3

_[3]=x-5

_[4]=x-1

_[5]=x2+1

_[6]=x-4

[2]:

1,3,2,1,1,1

The command factorize applied to a univariate polynomial factorises this poly-

nomial into its irreducible factors. The output is a list containing a constant coef-

ficient and the irreducible factors together with a vector of integers containing the

corresponding multiplicities of the factors. E.g. the second list entry x + 3 has as

multiplicity the second entry 3 in the vector.

The command works also if the base field is a field of type Z/pZ, e.g. in Z/2Z[x]

we have x8 + 1 = (x+ 1)8.
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> ring s=2,x,lp;

> poly f=x8+1;

> factorize(f);

[1]:

_[1]=1

_[2]=x+1

[2]:

1,8

One can also try to approximate the solutions if they are not rational using the

command solve from the library solve.lib. A library is loaded using the command

LIB as in the following example.

> LIB "solve.lib";

> ring r=0,x,dp;

> poly g=(x^2+1)*(x^2-2)*(x+5);

> g;

x5+5x4-x3-5x2-2x-10

> solve(g);

[1]:

-5

[2]:

-1.41421356

[3]:

1.41421356

[4]:

-i

[5]:

i

D) Hilbert’s Nullstellensatz

Definition 2.24 (Radicals, prime ideals and vanishing ideals)
a. A strict ideal P ✁ K[x] is a prime ideal if and only if K[x]/P is an integral

domain, i.e. a · b ∈ P implies a ∈ P or b ∈ P.
We denote by Spec(K[x]) the set of all prime ideals of K[x] and call this the

spectrum of K[x].

b. A strict ideal m✁ K[x] is a maximal ideal if and only if K[x]/m is a field, i.e.

there is no further ideal between m and K[x].

We denote by Max(K[x]) the set of all maximal ideals of K[x] and call this the

maximal spectrum of K[x].
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c. If I✂ K[x] is an ideal, we denote the radical of I by
√
I =

⋂

I⊆P∈Spec(K[x])

P = {f ∈ K[x] | ∃ n ∈ N : fn ∈ I}.

d. For any subset X ⊆ An
K we call the radical ideal

I(X) = {f ∈ K[x] | f(p) = 0 ∀ p ∈ X}✂ K[x]

the vanishing ideal of X.

Remark 2.25

Since fn(p) = 0 if and only if f(p) = 0, for any ideal I✂ K[x] we have

V(I) = V
(
√
I
)

.

Thus, every affine algebraic variety is the vanishing set of a radical ideal.

Moreover, it is obvious that √
I ⊆ I

(

V(I)
)

.

Exercise 2.26

Find a maximal ideal I✂R[x] such that
√
I 6= I

(

V(I)
)

and such that I is not of the

form 〈x− a〉.

Something like this cannot happen for K = C. There life is much better as the

following theorem states.

Theorem 2.27 (Hilbert’s Nullstellensatz)

Let K be an algebraically closed field.

a. For any ideal I✂ K[x]

I
(

V(I)
)

=
√
I.

Hence there is a one-to-one correspondence between the affine algebraic vari-

eties and the radical ideals

{X ⊆ An
K | X aff. alg. var.}

V
//

{I✂ K[x] | I =
√
I}

I

1:1
oo

b. The maximal ideals in K[x] are precisely the ideals of the form

mp = 〈x1 − p1, . . . , xn − pn〉

for p = (p1, . . . , pn) ∈ An
K. Thus there is a one-to-one correspondence

An
K

1:1−→ Max(K[x]) : p = (p1, . . . , pn) 7→ mp = 〈x1 − p1, . . . , xn − pn〉.

Proof: One first shows that if K[x]/m is a field then dimK(K[x]/m) is finite using

results from commutative algebra on finite ring extensions and localisation. In

particular K[x]/m is an algebraic extension of K, but if K is algebraically closed then

K[x]/m must coincide with K, i.e. the map

K −→ K[x]/m : a 7→ a
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is an isomorphism. Thus, there is some ai ∈ K such that xi ≡ ai(mod m), and hence

m = 〈x1 − a1, . . . , xn − an〉. For part a. one then shows that

I(V(I)) =
⋂

p∈V(I)

I(V(p)) =
⋂

p∈V(I)

mp =
√
I,

i.e. the radical of I is already the intersection of all maximal ideals containing I. �

Example 2.28 (Radical)

We can compute the radical of an ideal with Singular with the aid of the command

radical from the library primdec.lib. This may help to see what the vanishing

set is. E.g. in the following example the ideal I describes just the line x = y = z.

> ring r=0,(x,y,z),dp;

> ideal I=x2-2xy+2y2-2yz+z2,x2-2xy+2yz-z2;

> LIB "primdec.lib";

> radical(I);

_[1]=y-z

_[2]=x-z

E) Decomposition into irreducible components

Definition 2.29 (Irreducible varieties)

An affine algebraic variety X is irreducible if it cannot be decomposed as X = Y ∪Z
for two strictly smaller affine algebraic varieties Y and Z.

Remark 2.30

It is straight forward to see that for ideals I, J✂ K[x] we have

V(I) ∪ V(J) = V(I ∩ J) = V(I · J).

One can compute the intersection of two ideals in Singular using the command

intersect. In the following example we compute an ideal defining the union of a

double cone and a line (see Figure 11).

> ring r=0,(x,y,z),dp;

> ideal I=x2+y2-z2;

> ideal J=x-1,z-2;

> intersect(I,J);

_[1]=x2z+y2z-z3-2x2-2y2+2z2

_[2]=x3+xy2-xz2-x2-y2+z2
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Figure 11. A double cone and a line.

Proposition 2.31 (Irreducible =̂ prime)

A non-empty affine algebraic variety X is irreducible if and only if I(X) is prime.

Idea of the proof: X = X1 ∪ X2 ⇐⇒ I(X) = I(X1) ∩ I(X2) ⊇ I(X1) · I(X2). �

Proposition 2.32 (Lemma of Gauß + primary decomposition)

a. The polynomial ring K[x] is factorial, i.e. every non-constant polynomial fac-

torises uniquely as a product of irreducible polynomials.

b. Every radical ideal I =
√
I in K[x] factorises uniquely as an intersection of

finitely many prime ideals

I = P1 ∩ . . . ∩ Pk (2)

such that none of the Pi is superfluous. We call the decomposition (2) the

minimal primary decomposition of I and we call the prime ideals in

Ass(I) = {P1, . . . , Pk}

the associated prime ideals of I.

Corollary 2.33 (Irreducible decomposition)

Every affine algebraic variety X decomposes uniquely as a union

X = X1 ∪ . . . ∪ Xk
of irreducible affine algebraic varieties, non of which is superfluous. We call these

the irreducible components of X.

Idea of the proof: Let I(X) = P1∩ . . .∩Pk be the minimal primary decomposition

of I(X), then

X = V(I(X)) = V(P1 ∩ . . . ∩ Pk) = V(P1) ∪ . . . ∪ V(Pk),
and none of these irreducible varieties is superfluous since none of the Pi is so. �

Example 2.34 (Decomposition of a hypersurface)

If an affine algebraic variety X is defined by the vanishing of a single polynomial f,

we call it a hypersurface in An
K, moreover, if n = 2 we simply call X a plane curve,

and if n = 3 we call X a surface. In that case the primary decomposition I(X) can be

computed by decomposing f into its irreducible factors, and the irreducible factors
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thus define the irreducible components of X.

E.g. in the following example the curve V(f) decomposes as a union of the three

lines (see Figure 12).

> ring s=0,(x,y),dp;

> poly f=x^3-x*y^2;

> factorize(f);

[1]:

_[1]=-1

_[2]=-x+y

_[3]=x+y

_[4]=x

[2]:

1,1,1,1

Figure 12. V(x3 − xy2) = V(x) ∪ V(x− y) ∪ V(x+ y).

Example 2.35 (Associated primes and irreducible decomposition)

We can compute the associated primes of an ideal via minAssGTZ and we can thus

compute the irreducible components of an affine algebraic variety.

> ring r=0,(x,y,z),dp;

> LIB "primdec.lib";

> ideal I=xz,yz;

> minAssGTZ(I);

[1]:

_[1]=z

[2]:

_[1]=y

_[2]=x

This shows that the affine algebraic variety defined by xz = yz = 0 decomposes as

the union of the xy-plane V(z) and the z-axis V(x, y) (see Figure 13).
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Figure 13. The affine algebraic variety V(xz, yz) = V(z) ∪ V(x, y).

F) The coordinate ring and the dimension of a variety

Remark 2.36

It is easy to see that affine algebraic varieties X, Y ⊆ An
K satisfy

X $ Y ⇐⇒ I(X) % I(Y).

We then call X a subvariety of Y.

This motivates the following definition of the dimension of an affine algebraic variety.

Definition 2.37 (Dimension)

Let X ⊆ An
K be an affine algebraic variety and I✂ K[x] an ideal.

a. The dimension of X is one less than the maximal length of a strictly descending

chain of irreducible subvarieties of X, i.e.

dim(X) = max{d | X ⊇ X0 % X1 % . . . % Xd, Xi irred. aff. alg. var.}.
b. The Krull dimension dim(R) of a ring R is one less than the maximal length

of a strictly ascending chain of prime ideals in R. Thus the Krull dimension

of K[x]/I is

dim(K[x]/I) = max{d | I ⊆ P0 $ P1 $ . . . $ Pd, Pi ∈ Spec(K[x])}.

c. We call the ring K[X] = K[x]/ I(X) the coordinate ring of X.

Proposition 2.38 (Dimension)

If X ⊆ An
K is an affine algebraic variety and K is algebraically closed, then

dim(X) = dim
(

K[X]
)

= max{dim(K[x]/P) | P ∈ Ass(I)}.

The dimension of X is the maximum of the dimensions of its irreducible components.

Idea of the proof: Y is an irreducible subvariety of X if and only if I(Y) is a prime

ideal containing I(X). Moreover, by Hilbert’s Nullstellensatz two different prime

ideals define different varieties. �

Theorem 2.39 (Krull’s Principle Ideal Theorem)

Let K be an algebraically closed field.

a. dimAn
K = dimK[x] = n.
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b. If f ∈ K[x] \ K, then dimV(f) = dimK[x]/〈f〉 = n− 1.

c. If I = 〈f1, . . . , fk〉 with fi ∈ K[x] \ K, then dimV(I) ≥ n− k.

If the equality in c. holds, we call V(I) a complete intersection and we say that V(I)

has the expected dimension.

Idea of the proof: One shows by induction on k that a prime ideal which is min-

imal such that it contains polynomials f1, . . . , fk contains no chain with more than

k+ 1 prime ideals. The hard part is the case k = 1. But then Hilbert’s Nullstellen-

satz shows that the dimension of K[x] is at most n since the maximal ideals are all

generated by n polynomials, and there is also a chain with n+ 1 prime ideals

〈0〉 $ 〈x1〉 $ 〈x1, x2〉 $ . . . $ 〈x1, x2, . . . , xn〉.
�

Example 2.40

The dimension of X = V(xz, yz) = V(z) ∪ V(x, y) is
dim(X) =max{dimV(z), dimV(x, y)}

=max{dimK[x, y, z]/〈z〉, dimK[x, y, z]/〈x, y〉 = max{2, 1} = 2.

Remark 2.41 (How to compute the dimension.)

The dimension of K[x]/I can easily be computed as “dim(I)” with Singular using

the command dim. The reason for that is that for any global monomial ordering >

dim
(

K[x]/I
)

= dim
(

K[x]/L>(I)
)

,

and since the latter is a monomial ideal one only has to check how many variables at

most are algebraically independent modulo the monomial generators. That is rather

simple. Note, that Singular simply computes the leading terms of the generators

and proceeds with these. Thus the ideal I should already be given by a Gröbner

basis.

E.g. in the following example the ideal I defines a curve in space, for which three

equations are needed. It is an example of an irreducible affine algebraic variety

which is not a complete intersection.

> ring r=0,(x,y,z),dp;

> ideal I=y2-xz,x2y-z2,x3-yz;

> dim(groebner(I));

1

> ideal J=lead(groebner(I));

> J;

J[1]=y2

J[2]=x2y

J[3]=x3
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> dim(groebner(J));

1

> LIB "primdec.lib";

> size(minAssGTZ(I));

1

By the last command we show that I has only one associated prime ideal, which

shows that V(I) is irreducible. One can indeed easily compute that I is prime. (See

Figure 14.)

Figure 14. A space curve drawn on a shadow of the surface V(y2 − xz).

G) Exercises

Exercise 2.42

Let M,N ⊆ K[x].

a. Show, if M ⊆ N, then V(M) ⊇ V(N).

b. Show that V(M) = V(〈M〉) for M ⊆ K[x].

Exercise 2.43

Show that the monomial orderings in Example 2.9 are global monomial orderings.

Exercise 2.44 (Global monomial orderings)

Show that for a total ordering > on Mon(x) which is compatible with the semigroup

structure on Mon(x) the following are equivalent:

a. > is a monomial ordering.

b. 1 < xi for i = 1, . . . , xn.

c. If αi ≤ βi for i = 1, . . . , n, then x
α ≤ x

β.

d. > is a well-ordering (i.e. every non-empty set of monomials contains a minimal

element).
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Exercise 2.45

Show that the monomial orderings in Example 4.9 are local monomial orderings.

Exercise 2.46

Find an example of a monomial ordering which is neither local nor global.

Exercise 2.47

Compute the leading monomial and the leading coefficient of the polynomial f =

x31x2 − 4x1x
5
2 + x

2
1 − x

2
2 with respect to >lp, >dp, >ls, and >ds by hand and using

Singular. (For the definition of >ls and >ds see Example 4.9).

Exercise 2.48

Compute a standard representation of the polynomial f = x2yz2 + 3z3 with respect

to g1 = x
2y+ y, g2 = z

2 − x and the ordering >dp using Singular.

Exercise 2.49

Compute the leading ideal of I = 〈x3y+ 2x, x2yz+ 3xy, z3−x2〉 with respect to >dp
with Singular.

Exercise 2.50

Check with Singular if the polynomial x3y4 − 3yz2 − x2z is contained in the ideal

I = 〈x3y+ 2x, x2yz+ 3xy, z3 − x2〉.
Exercise 2.51

Show that the set of solutions of

x2 + y2 − 8 = x2 − y2 = 0

is finite and compute the solutions with the aid of minAssGTZ as well as with the aid

of solve. Moreover, find a non-zero polynomial in I∩K[x] for I = 〈x2+y2−8, x2−y2〉.
Exercise 2.52

Consider the three plane curves Ci in A2
C
given by the equations fi = 0, i = 1, 2, 3,

where

f1 = y
2 − 5x2 − x3, f2 = x

4 + y4 − 2, respectively f3 = y
2 + 5x2 + x3.

How many intersection points do C1 and C2 respectively C1 and C3 have? How many

of these points are real? You may use Singular for the computations. Verify the

real points by drawing the curves using surf.

Exercise 2.53

Factorize the polynomial f = −x2y4z−xy5z−xy4z2+x4yz+x3y2z+x3yz2+2x2y3+

2xy4 + 2xy3z− 2x4 − 2x3y− 2x3z using Singular.

Exercise 2.54

Show that V(I) is finite if and only if dimK K[x]/I is finite.

Exercise 2.55

Find a maximal ideal I✂R[x] such that
√
I 6= I

(

V(I)
)

and such that I is not of the

form 〈x− a〉.
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Exercise 2.56

Compute the vanishing ideal of intersection of V(x2 − y3) and V(x − y2) in C[x, y]

using Singular.

Exercise 2.57

Prove that V(I · J) = V(I ∩ J) = V(I) ∪ V(J) for ideals I, J✂ K[x].

Exercise 2.58

Show that I(X) =
√

I(X) for any X ⊆ An
K.

Exercise 2.59

Let X be the union of the three coordinate axes in A3
C
. Compute the vanishing ideal

of X in K[x, y, z]. Is X a complete intersection?

Exercise 2.60

Consider the surface V(f) ⊂ A3
C
defined by the polynomials f = x2 + y2 + xyz and

consider the planes Hc = V(x − c) ⊂ A3
C
for c ∈ C arbitrary. Determine I(Xc) for

Xc = Hc ∩ V(f).

Exercise 2.61

Compute the irreducible components of V(x3 + x2y + x2z − xyz − y2z − yz2) and

visualise them with surfex.

Exercise 2.62

Compute first the vanishing ideal of X = V(x2−z, xy−z2)∩V(x+y+z) and compute

then its irreducible components. Visualise the irreducible components with surfex

and compute their dimension. What is the dimension of X?

Exercise 2.63

Consider the ideal I generated by the 2× 2-minors of the matrix

A =

(

x0 x1 x2 x3 x4

x5 x6 x7 x8 x9

)

in C[x0, . . . , x9] and the variety X = V(I). Compute the dimension of X. You may

use the Singular command minor.

Exercise 2.64

Let X = V
(

yz2 − yz, xz2 − xz, xyz + xz − y2z − yz, y3z − yz
)

⊆ A3
C
. Compute the

irreducible components of the variety X as well as the dimension of X and of each

of its irreducible components.
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3 Regular functions and morphisms

Affine algebraic varieties carry more structure than mere sets. They are topologi-

cal spaces with additional structure. In this section we first introduce the Zariski

topology on affine algebraic varieties, and then we want to study morphisms between

affine algebraic varieties, i.e. maps which respect their structure. For that we intro-

duce first the notion of regular functions, i.e. admissible maps on open subsets of

affine algebraic varieties which take values in the base field K. They will locally be

given as rational functions. The regular functions are the additional structure, and

they are gathered in the so called structure sheaf. A morphism then should respect

these regular functions via composition. One of the main results will be that only

polynomial maps do so.

A) The Zariski topology

Definition 3.1 (Topology)

Let X be a set.

a. A topology on X is a set T of subsets of X which is closed with respect to

finite unions and arbitrary intersections and which contains X and ∅. We call

the elements of T the closed subsets of X, and we call X together with T a

topological space.

b. A subset of a topological space is open if its complement is closed.

c. A map between topological spaces is continuous if the preimage of closed

subsets is closed or, equivalently, if the preimage of open subsets is open.

Proposition 3.2 (Zariski topology on An
K)

The collection of all affine algebraic varieties in An
K is the Zariski topology on An

K.

Idea of the proof:

• An
K = V(0) and ∅ = V(1) are closed.

• A finite union of closed subsets
⋃k
i=1 V(Ii) = V

(

⋂k
i=1 Ii

)

is closed.

• An arbitrary intersection of closed subsets
⋂

λ∈Λ V(Iλ) = V
(
⋃

λ∈Λ Iλ
)

is closed.

�

Example 3.3 (Zariski topology on A1
K)

In A1
K only finite sets and A1

K are closed. The Zariski topology is a rather coarse

topology.

Remark 3.4 (Zariski topology on X)

Every subvariety X ⊆ An
K of the affine n-space is a topological space with respect to

the subspace topology. That is, a subset of X is closed if and only if it is an affine

algebraic variety which is contained in X.
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Exercise 3.5

If f ∈ K[x] we call Xf = X \ V(f) a basic open subset of X. Show that every open

subset of X is a union of finitely many basic open subsets. One says that the basic

open subsets form a basis of the Zariski topology.

Exercise 3.6

Let X be an irreducible affine algebraic variety and U ⊆ X a non-empty open subset

of X. Then U is dense in X, i.e. its topological closure is all of X.

We will consider all algebraic varieties as topological spaces w.r.t. the Zariski

topology. We write K = K to indicate that K is algebraically closed.

B) Regular functions

Definition 3.7 (Regular functions)

Let X be an affine algebraic variety inAn
K andU ⊆ X be open. A function f : U −→ K

is called regular if it locally is a quotient of two polynomials, i.e.

∀ p ∈ U ∃ p ∈ V ⊆ U open and g, h ∈ K[x] s.t. ∀ q ∈ V : f(q) =
g(q)

h(q)
.

By OX(U) we denote all regular functions on U, and we call the functions in OX(X)

global regular functions. Note that with the usual operations OX(U) is a K-algebra.

Exercise 3.8

If X = V(x1x2 − x3x4) ⊂ A4
C
and U = X \ V(x1, x3) then the function

f : U −→ C : (x1, x2, x3, x4) 7→
{

x2
x3
, if x3 6= 0,

x4
x1
, if x1 6= 0

is well-defined and regular. However, it is impossible to write f as a quotient of two

polynomials on the whole of U!

Example 3.9 (Elements in the coordinate ring as regular functions)

Every polynomial f ∈ K[x] defines a regular function

f : X 7→ K : p 7→ f(p)

on an affine algebraic variety X, and two polynomials f and g define the same

function on X if their difference is in I(X). One may thus in a natural way identify

the elements of the coordinate ring of X with regular functions on X.

It turns out that indeed there are no other regular functions on all of X.

Theorem 3.10 (Global regular functions)

Let X be an affine algebraic variety and K = K, then OX(X) ∼= K[X] as K-algebras.

In particular, every global regular function is globally defined by a polynomial.
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Idea of the proof: Considering the elements in K[X] as regular functions gives an

injective K-algebra homomorphism from K[X] to OX(X). It remains to show that

every regular function on X is globally given by a polynomial. For that we note that

for any given regular function f : X −→ K there is a finite covering of X by basic

open subsets Xh1, . . . , Xhk such that f coincides on Xhi with a quotient gi
hi
. But then

〈h1, . . . , hk〉+ I(X) = K[x] and thus

1 ≡
k∑

i=1

fi · hi (mod I(X)),

and since gi · hj ≡ gj · hi we get

gj ≡
k∑

i=1

fi · hi · gj ≡
k∑

i=1

fi · hj · gi ≡ hj · g

for g =
∑k

i=1 fi ·gi ∈ K[x]. This shows that the regular function f ≡
gj
hj

≡ g coincides

with g on each Xhi and hence on X. �

This result generalises to basic open sets.

Remark 3.11 (Localisation at f)

Let X ⊆ An
K be an affine algebraic variety and 0 6= f ∈ K[X]. We call the K-algebra

K[X]f =
{ g
fm

∣

∣

∣
g ∈ K[X],m ∈ N

}

the localisation of K[X] at f.

Theorem 3.12 (Regular functions on basic open sets)

Let X be an affine algebraic variety, K = K and f ∈ K[x]\I(X), then OX(Xf) ∼= K[X]f.

In particular, every regular function on a basic open set is globally a quotient of two

polynomials.

Proof: This is proved as Theorem 3.10 with X replaced by Xf. �

Remark 3.13 (The structure sheaf OX)

For every open subset U of an affine algebraic variety X we have the K-algebra

OX(U) of regular functions on U, and for two open subsets V ⊆ U ⊆ X of X the

restriction map

resU,V : OX(U) −→ OX(V) : f 7→ f|V

which restricts a regular function on U to the subset V is a K-algebra homomor-

phism. Moreover, the restriction maps behave nicely, i.e. resU,U = idOX(U) and

resV,W ◦ resU,V = resU,W. This all amounts to the fact that the collection of K-algebras

OX(U) and restriction maps resU,V , where U and V run over all open subsets of X

such that V ⊆ U, forms a sheaf of K-algebras. We call it the structure sheaf of X

and denote it by OX.

In modern algebraic geometry the language of sheaves is vital. In this minicourse,

however, we will avoid it since it is rather technical and not that important for

computational questions.



29

C) Morphisms

Definition 3.14 (Morphisms)

Let X ⊆ An
K and Y ⊆ Am

K be two affine algebraic varieties. A morphism from X

to Y is a continuous map ϕ : X −→ Y such that regular functions pull back to

regular functions, i.e. for any open subset U ⊆ Y and f ∈ OY(U) the function

ϕ∗(f) = f ◦ϕ ∈ OX

(

ϕ−1(U)
)

:

ϕ−1(U)
ϕ

//

ϕ∗(f)=f◦ϕ
##❋

❋❋
❋❋

❋❋
❋❋

U

f����
��
��
��

K

We denote by Mor(X, Y) the set of morphisms from X to Y. A morphism is an

isomorphism if it is bijective and its inverse in a morphism as well.

Example 3.15 (Polynomial maps are morphisms.)

If f1, . . . , fm ∈ K[X] then we get a morphism

X −→ Am
K : p 7→

(

f1(p), . . . , fm(p)
)

by just taking the fi as component functions. This works since composing a rational

function with a polynomial gives a rational function.

The following theorem states that actually this is the only way to get a morphism.

Theorem 3.16 (Morphisms are polynomial maps.)

If X ⊆ An
K and Y ⊆ Am

K are affine algebraic varieties and K = K, then the pull-back

Mor(X, Y) −→ HomK−alg(K[Y], K[X]) : ϕ 7→ ϕ∗

is a bijection.

In particular, if ϕ : X→ Y is a morphism, then the components of ϕ are polynomials.

Idea of the proof: The inverse map is given by assigning to a K-algebra homo-

morphism ψ : K[Y] −→ K[X] the morphism X −→ Y with component functions

ψ(y1), . . . , ψ(ym) ∈ K[X]. �

Corollary 3.17 (Isomorphisms)

Let ϕ : X −→ Y be a morphism of affine algebraic varieties over K = K and let

ϕ∗ : K[Y] −→ K[X] be its pull back. Then ϕ is an isomorphism of varieties if and

only if ϕ∗ is an isomorphism of K-algebras.

Exercise 3.18 (Bijective morphisms need not be isomorphisms.)

Show that the morphism ϕ : A1
C
−→ A2

C
: t 7→ (t2, t3) is bijective onto its image

Y = V(x3 − y2), but it is not an isomorphism, since the pull back

ϕ∗ : C[Y] = C[x, y]/〈x3 − y2〉 −→ C[t] : x 7→ t2, y 7→ t3

is not surjective — t is not in its image.
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Remark 3.19 (Morphisms on open subsets of X)

If one replaces in Theorem 3.16 K[X] and K[Y] by OX(X) and OY(Y) respectively,

then the assumption K = K can be dropped.

One can of course define morphisms on open subsets of X in the same way, and if one

then replaces in Theorem 3.16 X by some open subset U of X and K[X] by OX(U)

the statement holds still true. However, this is not the case for Corollary 3.17. For

X = A2
C
and U = X \ {(0, 0)} one can show that OX(U) = K[x, y] and the inclusion

i : U →֒ X induces the isomorphism

i∗ = id : K[Y] = K[x, y] −→ K[x, y] = OX(U)

without being an isomorphism itself.

Remark 3.20 (Morphisms in Singular)

One can define a ring homomorphism between two polynomial rings in Singular

and then map polynomials or ideals with this homomorphism from the previous ring

to the new ring. E.g. R = K[x, y, z] and S = K[s, t] with

ϕ : R −→ S : x 7→ s2, y 7→ st, z 7→ t2

and we would like to compute the image of x2+y2−z2. We have to define a variable

of type map by specifying the domain of definition and the polynomials to which the

coordinates in the domain of definition should be mapped.

> ring R=0,(x,y,z),dp;

> poly f=x^2+y^2-z^2;

> ring S=0,(s,t),dp;

> map phi=R,s2,st,t2;

> phi(f);

s4+s2t2-t4

There are also predefined maps which can be accessed by the commands imap and

fetch. imap works like the identity and does not change anything, fetch simply

maps the i-th variable of the domain of definition to the i-th variable of the new

ring. For more details on how to use these one should consult the manual.

D) Computing the image of a morphism

Example 3.21 (Projections)

The simplest type of a morphism is a projection which simply forgets some compo-

nents. If n ≥ m then we get the projection

prn,m : An
K −→ Am

K : (p1, . . . , pn) 7→ (p1, . . . , pm).

Unfortunately, the image of an affine algebraic variety under a projection need no

longer be an affine algebraic variety. E.g. the image of V(xy − 1) ⊂ A2
K under the
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projection to the x-axis is A1
K \ {0}. However, it is never far from being a variety and

it is safe to compute its topological closure, i.e. the smallest affine algebraic variety

in which it is contained. This can be done as follows.

If X = V(I) ⊆ An
K is an affine algebraic variety then the closure of πn,m(X) in Am

K is

πn,m(X) = V
(

I ∩ K[x1, . . . , xm]
)

.

That is, we can compute the closure of the image of an affine algebraic variety under

a projection by intersecting a defining ideal with a subalgebra. This can be done

by computing a Gröbner basis similar to Remark 2.21 using the concept of block

orderings. In Singular one can instead use the built-in command eliminate which

computes the intersection of an ideal with a subalgebra by eliminating the variables

one wants to get rid of.

> ring r=0,(x,y,z),dp;

> ideal I=y2-xz,x2y-z2,x3-yz;

> eliminate(I,x);

_[1]=y5-z4

The example shows that if we project the space curve V(I) to the yz-plane we get

a curve with the equation y5 − z4 = 0 (see Figure 15).

//

Figure 15. A projection of a space curve

Remark 3.22 (Computing the image of a morphism by projecting its graph.)

If ϕ : X −→ Am
K with X ⊆ An

K is any morphism, then its graph is the set

Graph(ϕ) =
{(
p,ϕ(p)

)

∈ An+m
K

∣

∣ p ∈ X
}
.

It actually is an affine algebraic variety, namely the one defined by the ideal

〈f1, . . . , fk, y1 − g1, . . . , ym − gm〉✂ K[x1, . . . , xn, y1, . . . , ym]
if X = V(f1, . . . , fk) and ϕ = (g1, . . . , gm).
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Moreover, it is clear that

ϕ(X) = πn,m
(

Graph(ϕ)
)

,

and we can thus compute the closure of the image of ϕ as the projection of the

graph of ϕ.

E.g. consider the morphism

ϕ : A1
R
−→ A2

R
: t 7→

(

1− t2

1+ t2
,
2t

1+ t2

)

and its graph

Graph(ϕ) =
{(
t,ϕ(t)

) ∣

∣ t ∈ R
}
=

{(
t,
1− t2

1+ t2
,
2t

1+ t2

)

∣

∣

∣ t ∈ R

}
.

The graph of ϕ is a curve in space which lies on the surface of a cylinder. The

coordinates in space are given by t, x and y, and the axis of the cylinder is the

t-axis. If we project the curve into the xy-plane we get a circle. This is the image

of the morphism. The morphism, its graph and the projection are displayed in

Figure 16.

Graph(ϕ)

π3,1

t

ϕ

x

y

t

Figure 16. The black curve on the cylinder is the graph of ϕ

Example 3.23

If we consider the plane curve X = V(y2 − x2 − x3), the so called Newton node, and

the map ϕ : A2
K −→ A2

K : (x, y) 7→ (x− 1, x+ y), then we can compute ϕ(X):

> ring r=0,(x,y,X,Y),dp;

> ideal I=y2-x2-x3,X-x+1,Y-x-y;

> eliminate(I,xy);

_[1]=X3+3X2+2XY-Y2+3X+2Y+1
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//

Figure 17. The image of the Newton node

Remark 3.24 (Parametrisations)

A particularly interesting case is the image of morphism

ϕ : An
K −→ Am

K

on the whole of An
K when the morphism is nearly everywhere injective and its image

is closed. We then say that ϕ parametrises its image.

E.g. the morphism

ϕ : A1
K −→ A3

K : t 7→
(

t3, t4, t5
)

is a parametrisation of the space curve considered in Remark 2.41 as the following

computation basically shows:

> ring R=0,(x,y,z,t),dp;

> ideal I=x-t3,y-t4,z-t5;

> eliminate(I,t);

_[1]=y2-xz

_[2]=x2y-z2

_[3]=x3-yz

E) Exercises

Exercise 3.25

If f ∈ K[x] we call Xf = X \ V(f) a basic open subset of X. Show that every open

subset of X is a union of finitely many basic open subsets. One says that the basic

open subsets form a basis of the Zariski topology.

Exercise 3.26

Let X be an irreducible affine algebraic variety and U ⊆ X a non-empty open subset

of X. Then U is dense in X, i.e. its topological closure is all of X.

Exercise 3.27

Show that any two non-empty open subsets of An
K have a non-empty intersection.
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Exercise 3.28

If X = V(x1x2 − x3x4) ⊂ A4
C
and U = X \ V(x1, x3) then the function

f : U −→ C : (x1, x2, x3, x4) 7→
{

x2
x3
, if x3 6= 0,

x4
x1
, if x1 6= 0

is well-defined and regular. However, it is impossible to write f as a quotient of two

polynomials on the whole of U!

Exercise 3.29

Let U = A2
C
\ V(y3 − y2, y2 + y− 2). Are all regular functions on U globally given

by rational functions? If so, explain why, if not, give a counter example.

Exercise 3.30

Show that a regular function is continuous w.r.t. the Zariski topology.

Exercise 3.31

Let X ⊆ An
K be an affine algebraic variety with irreducible decomposition X =

X1 ∪ . . . ∪ Xk and let f ∈ K[x]. Show that the residue class of f is a zero-divisor in

K[X] if and only if f vanishes identically on some Xi.

Exercise 3.32

Let K be algebraically closed and U = A2
K \ {0}. Show that OX(U) = K[x, y], i.e.

each regular function on U extends to a regular function on all of A2
K.

Exercise 3.33 (Bijective morphisms need not be isomorphisms.)

Show that the morphism ϕ : A1
C
−→ A2

C
: t 7→ (t2, t3) is bijective onto its image

Y = V(x3 − y2), but it is not an isomorphism, since the pull back

ϕ∗ : C[Y] = C[x, y]/〈x3 − y2〉 −→ C[t] : x 7→ t2, y 7→ t3

is not surjective — t is not in its image.

Exercise 3.34

Let K be algebraically closed. Show that V(y− x2) ⊆ A2
K is isomorphic to A1

K.

Exercise 3.35

Which of the following algebraic sets are isomorphic?

A1
C

V(xy) ⊆ A2
C

V(x2 + y2) ⊆ A2
C

V(x2 − y3) ⊆ A2
C

V(y− x2, z− x3) ⊆ A3
C
.

Exercise 3.36

Define in Singular a the map

ϕ : Q[x, y] −→ Q[a, b, c] : x 7→ a2 − bc, y 7→ abc− 2

and compute the image of f = x2 − y2.

Exercise 3.37

Compute the image of the morphism A2
K −→ A3

K : (s, t) 7→ (s, t, s2+t2) and visualise

it with surfex.
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Exercise 3.38

Compute the image of the morphism A2
K −→ A3

K : (s, t) 7→ (t2 − st, s2 − st, t2 − s2)

and visualise it with surfex.

Exercise 3.39

Consider the variety X from exercise 2.63 and compute the vanishing ideal of its

projection under π10,7.

Exercise 3.40

Let g1, . . . , gm ∈ K[x]. Show that the topological closure of the image of

ϕ : An
K −→ Am

K : p 7→ (g1(p), . . . , gk(p))

is the vanishing set of

〈y1 − g1, . . . , ym − gm〉 ∩ K[y1, . . . , ym].

Exercise 3.41

Find a parametrisation of the Newton node V(y2 − x2 − x3).

Exercise 3.42

Compute the vanishing ideal of the image of the map

ϕ : A1
R
−→ A2

R
: t 7→

(

t3 + 1

t4 + 1
,
t4 + t

t4 + 1

)

.

How can we deal with the denominator t4 + 1? Visualise the resulting plane curve

with surfex.
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4 Local properties of algebraic varieties

In this section we want to consider the behaviour of an algebraic variety locally at

some point. This leads naturally to the notion of the tangent space at a point.

A) The local ring of X at p

Remark 4.1 (Germs of regular functions)

Let X be an affine algebraic variety and p ∈ X. We call two regular functions

f : U −→ K and g : V −→ K which are defined in two open neighbourhoods of p

equivalent if they coincide on some possibly smaller open neighbourhood of p. This

defines an equivalence relation on the set of all regular functions which are defined

on some open neighbourhood of p.

The equivalence classes are called germs of regular functions at p, and they are

represented by some regular function which is defined on an arbitrarily small neigh-

bourhood of p.

The set of germs of regular functions at p is denoted by OX,p. If we define operations

on OX,p via representatives then it is straight forward to see that OX,p is a local K-

algebra and its unique maximal ideal consists of those germs whose representatives

vanish at the point p. We call OX,p the local ring of X at p.

Remark 4.2 (Localisation at p)

Let X ⊆ An
K be an affine algebraic variety and p ∈ X. We call the local K-algebra

K[X]mp =
{g
h

∣

∣

∣
g, h ∈ K[X], h(p) 6= 0

}

the localisation of K[X] at mp = 〈x1−p1, . . . , xn−pn〉 or at p. By abuse of notation

we call the unique maximal ideal in K[X]mp again mp. It is generated by the xi−pi.

The next theorem shows that the elements in K[X]mp are precisely the germs of

regular functions at p.

Theorem 4.3 (The local ring of X at p)

Let X be an affine algebraic variety over K = K and p ∈ X, then OX,p
∼= K[X]mp.

Idea of the proof: We consider the K-algebra homomorphism

K[X]mp −→ OX,p :
f

g
7→ f

g

which assigns to a rational function its germ at the point p. If f
g
is the zero germ, then

f vanishes in some open neighbourhood of p, but since f is continuous and any open

neighbourhood of p intersects all irreducible components of X, which contain p, in a

dense set it follows that f vanishes identically on each irreducible component which

passes through p. Thus f
g
is zero in K[X]mp and the homomorphism is injective.

Moreover, it is obviously surjective since every regular function locally in p is a

rational function. �
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Example 4.4

The local ring of affine n-space at the origin is

OAn
K
,0
∼= K[x]〈x1,...,xn〉 =

{
f

g

∣

∣

∣
f, g ∈ K[x], g(0) 6= 0

}
.

Definition 4.5

Let X be an affine algebraic variety with irreducible components X1, . . . , Xk and let

p ∈ X. We define the dimension of X locally at p as

dim(X, p) = max{dim(Xi) | p ∈ Xi}

the maximal dimension of an irreducible component of X containing p.

Proposition 4.6 (The dimension locally at a point)

If X is an affine algebraic variety over K = K and p ∈ X, then

dim(X, p) = dimOX,p = dimK[X]mp,

the dimension of X locally at p is the Krull dimension of the local ring of X at p.

Idea of the proof: When localising at p all components which do not pass through

p are lost. �

Example 4.7

Consider X = V(xz, yz) = V(z)∪V(x, y) and p = (0, 0, 1) ∈ V(x, y). Since only the

component V(x, y) contains p the dimension of X locally at p is 1. Moreover,

K[X]mp
∼= K[x, y, z]〈x,y,z−1〉/〈xz, yz〉 = K[x, y, z]〈x,y,z−1〉/〈x, y〉 ∼= K[z]〈z−1〉

since after localising at 〈x, y, z− 1〉 the element z becomes a unit. The ring on the

right hand side has also dimension one. (See Figure 18.)

Figure 18. Dimension locally at p.
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B) Standard bases in local rings

Remark 4.8 (Computing in local rings)

We can compute in the ring K[x]〈x1,...,xn〉 as we did in K[x] provided that we work

with a local monomial ordering instead of a global one. The algorithms behind the

scenes are somewhat more involved and some notions have to be slightly adjusted,

but we will not do so here. The philosophy is that everything works basically in

the same way as for global orderings. In local rings one rather uses the notion of

standard basis than Gröbner basis.

Example 4.9 (Local monomial orderings)

a. Define the local lexicographical ordering >ls on Mon(x) by x
α >ls x

β if

∃ i ∈ {1, . . . , n} : α1 = β1, . . . , αi−1 = βi−1, and αi < βi.

b. Define the local degree reverse lexicographical ordering >ds on Mon(x) by

x
α >ds x

β if

deg
(

x
α
)

< deg
(

x
β
)

,

or deg
(

x
α
)

= deg
(

x
β
)

, but then

∃ i ∈ {1, . . . , n} : αn = βn, . . . , αi+1 = βi+1, and αi < βi.

c. E.g., x21 >ds x1x
3
2, but x1x

3
2 >ls x

2
1.

Example 4.10 (Computing dimensions locally at a point)

If one wants to compute the dimension of an affine algebraic variety locally at a

point p, then one should first move the point p to the origin by substituting xi+ pi
for xi in the defining polynomials and then one can compute the dimension of the

ideal in the local ring K[x]〈x1,...,xn〉.

E.g. X = V(xz, yz) and p = (0, 0, 1) then the following Singular commands com-

pute the dimension of X locally at p, where in the definition of the ring we use the

local ordering ls. Note also that we have to replace the command groebner by the

command std to compute a standard basis:

> ring r=0,(x,y,z),ds;

> ideal I=xz,yz;

> I=subst(I,z,z+1);

> I;

I[1]=x+xz

I[2]=y+yz

> dim(std(I));

1
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C) The tangent space of X at p

Remark 4.11

If X is an affine algebraic variety, p ∈ X and mp is the maximal ideal of the local

ring K[X]mp of X at p, then mp/m
2
p is a finite dimensional K-vector space generated

by x1 − p1, . . . , xn − pn, so that

dimKmp/m
2
p ≤ n.

We call mp/m
2
p the Zariski cotangent space of X at p.

Remark 4.12 (Tangent space to a hypersurface)

It is known from basic courses in calculus that the tangent hyperplane at a point

p to the level space f−1(c) of a function f : Rn −→ R has the gradient of f at p as

its normal vector. In our terminology this mean that the tangent hyperplane to the

hypersurface X = V(f− c) at a point p is given by

H = V

(

∂f

x1
(p) · (x1 − p1) + . . .+

∂f

xn
(p) · (xn − pn)

)

.

Note that this is indeed a hyperplane unless the gradient of f at p vanishes identically.

It is custom to move the tangent hyperplane H to the origin by subtracting p in

order to end up with a K-vector space. We thus call the K-vector space

Tp(X) = V

(

∂f

x1
(p) · x1 + . . .+

∂f

xn
(p) · xn

)

= Ker

(

∂f

x1
(p), . . . ,

∂f

xn
(p)

)

the tangent space of X.

This leads us to the following generalisation of the notion of tangent space.

Theorem 4.13 (The tangent space of X at p)

Let X ⊆ An
K be an affine algebraic variety with I(X) = 〈f1, . . . , fk〉 and let p ∈ X.

Then

mp/m
2
p
∼= Ker

(

Df(p)
)

as K-vector spaces, where

Df(p) =







∂f1
∂x1

(p) . . . ∂f1
∂xn

(p)
...

...
∂fk
∂x1

(p) . . . ∂fk
∂xn

(p)







is the Jacobian matrix of f = (f1, . . . , fk) at p.

In particular, the vector space

Tp(X) = Ker
(

Df(p)
)

is independent of the chosen generators of I(X). We call it the tangent space of X

at p.
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Example 4.14

Consider the affine algebraic variety X = V(x2 + y2 − z) and p = (1, 0, 1).

> ring r=0,(x,y,z),dp;

> ideal I=x2+y2-z;

> matrix J[1][3]=jacob(I);

> print(J);

2x,2y,-1

> LIB "poly.lib";

> J=substitute(J,x,1,y,0,z,1);

> print(J);

2,0,-1

> print(syz(J));

0,1,

1,0,

0,2

We have thus computed the tangent space of X at p to be

Tp(X) = Ker(2 0 − 1) =

〈







0

1

0






,







1

0

2







〉

K

= V(2x− z).

In the Singular code above we have loaded the library poly.lib to have the

command substitute at hand which allows to substitute values for the variables

x, y and z all at once. Moreover, we have used the command jacob in order to

compute the Jacobian matrix of the generators of I and we have used the command

syz in order to compute generators of the kernel of the Jacobian matrix. In Figure

19 we have translated the tangent space by the point p, and we have marked p by

a small green sphere.

Figure 19. A tangent space.
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D) Regular and singular points

Proposition 4.15 (Local version of Krull’s Principle Ideal Theorem)

If X is an affine algebraic variety over K = K and p ∈ X, then

dim(X, p) = dimK[X]mp ≤ dimKmp/m
2
p = dimK Tp(X).

Idea of the proof: The dimension of mp/m
2
p is by Nakayama’s Lemma the minimal

number of generators of mp and by Krull’s Principle Ideal Theorem this is an upper

bound for the length of a chain of prime ideals ending at mp, which is the dimension

of K[X]mp . �

One expects of course that the tangent space to a geometric object has the same

dimension as the object itself. That is the regular behaviour, everything else is

irregular or singular.

Definition 4.16 (Regular and singular points)

Let X be an affine algebraic variety and p ∈ X. We call p regular if dim(X, p) =

dimK Tp(X), i.e. the dimension of X locally at p coincides with the dimension of the

tangent space to X at p. Otherwise we call p singular or a singularity, and that

means that dim(X, p) < dimK Tp(X). We denote by Reg(X) all regular points of X

and by Sing(X) all singular points of X.

Remark 4.17

If f1, . . . , fk generate I(X) and f = (f1, . . . , fk), then p is regular if and only if

dim(X, p) = dimK Tp(X) = n− rank
(

Df(p)
)

.

This can be generalised even if we do not know that the fi generate the vanishing

ideal of X.

Theorem 4.18 (Jacobian Criterion)

Let X = V(f1, . . . , fk) ⊆ An
K with K = K and f = (f1, . . . , fk).

Then p ∈ X is regular if and only if

dim(X, p) ≥ n− rank
(

Df(p)
)

.

Idea of the proof: Choose polynomials g1, . . . , gl such that the vanishing ideal is

I(X) = 〈f1, . . . , fk, g1, . . . , gl〉. Setting F = (f1, . . . , gl) we have by definition

dimK Tp(X) = n− rank
(

DF(p)
)

≤ n− rank
(

Df(p)
)

.

�

Corollary 4.19 (Jacobian Criterion for hypersurfaces)

If X = V(f) ⊆ An
K with K = K is a hypersurface and f ∈ K[x] is squarefree, then p

is a singular point of X if and only if

f(p) =
∂f

∂x1
(p) = . . . =

∂f

∂xn
(p) = 0.
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Idea of the proof: The hypersurface X has dimension n− 1 locally at each point,

so that a point on X is singular if and only if the Jacobian matrix of f at p has rank

zero, i.e. all partial derivatives vanish at p. That p ∈ X requires f(p) = 0. �

Corollary 4.20 (The regular locus is open and dense in X.)

If X is an affine algebraic variety, then Reg(X) is open and dense in X.

In particular, Sing(X) is an affine algebraic variety.

Idea of the proof: Let I(X) = 〈f1, . . . , fk〉 and f = (f1, . . . , fk). That the rank of

the Jacobian matrix Df(p) is smaller than a certain value can be expressed by the

vanishing of certain minors of the matrix. Thus Sing(X) has these minors and the

fi as equations. �

Example 4.21

Newton’s node X = V(y2 − x2 − x3) ⊆ A2
K is an irreducible curve and has thus

dimension one locally at each point. The singular points are thus those points on

the curve where the rank of the Jacobian is zero, i.e. where the Jacobian vanishes.

> ring r=0,(x,y),dp;

> ideal I=y2-x2-x3;

> ideal J=I,jacob(I);

> LIB "primdec.lib";

> minAssGTZ(J);

[1]:

_[1]=y

_[2]=x

Thus the origin p = (0, 0) is the only singular point of X, i.e. it is the only point

where we have difficulties to say what the tangent line should be (see Figure 20).

Figure 20. Newton node V(y2 − x2 − x3)

Example 4.22

Consider the affine algebraic variety X = V(x2 − y3 + z2, z− y2) ⊆ A2
K. We want to

compute the dimension of X as well as its singular locus.
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> ring r=0,(x,y,z),dp;

> ideal I=x2-y3+z2,z-y2;

> size(minAssGTZ(I));

1

> dim(groebner(I));

1

> matrix J[2][3]=jacob(I);

> ideal JJ=I,minor(J,2);

> LIB "primdec.lib";

> minAssGTZ(JJ);

[1]:

_[1]=-y2+z

_[2]=y

_[3]=x

We have first checked that X is indeed an irreducible space curve. Then we defined

the Jacobian matrix of the given two equations, which is a 2 × 3-matrix. The

Jacobian Criterion says that a point p is singular if and only if the rank of the

Jacobian matrix is strictly smaller than n−dim(X, p) = 3− 1 = 2. That is the case

if and only if the 2×2-minors of the Jacobian vanish. Thus the singular locus of X is

an algebraic variety which has the two equations in I together with the 2×2-minors

of the Jacobian as entries. We computed this ideal as JJ above. Then we computed

the associated primes of JJ, and it turns out, that the irreducible space curve X has

only the origin as singular point (see Figure 22).

Singular offers a short cut for the computation of JJ via the command slocus

from the library sing.lib.

> ring r=0,(x,y,z),dp;

> ideal I=x2-y3+z2,z-y2;

> LIB "sing.lib";

> ideal JJ=slocus(I);

> LIB "primdec.lib";

> minAssGTZ(JJ);

[1]:

_[1]=-y2+z

_[2]=y

_[3]=x
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Figure 21. The singular space curve V(x2 − y3 + z2, z− y2).

E) Intersection multiplicity of two plane curves at a point

Definition 4.23 (Intersection multiplicity)

Let X = V(f) and Y = V(g) be two plane curves given by squarefree polynomials

f, g ∈ K[x, y] \ K, and let p ∈ X ∩ Y.

a. We define the intersection multiplicity of X and Y at p as

multp(X ∩ Y) = dimK K[x, y]mp/〈f, g〉.

Unless the two curves share a common component at p this is a positive

integer.

b. We say that X and Y meet non-transversally at p if one of the tangent spaces

Tp(X) respectively Tp(Y) is contained in the other, i.e. either p is a singular

point of one of the two curves or they have the same tangent line at p.

Proposition 4.24 (Intersection multiplicity)

Let f, g ∈ K[x, y] \ K be squarefree, X = V(f) and Y = V(g) and p ∈ X ∩ Y.
Then X and Y meet non-transversally at p if and only if multp(X ∩ Y) ≥ 2.

Idea of the proof: If the curves X and Y meet transversally at p then f and g

generate the maximal ideal in K[x, y]mp . �

Example 4.25

We can again compute the intersection multiplicity. For that we should move the

point p in question to the origin, since we want to compute in K[x, y]〈x,y〉.

E.g. we can compute the intersection multiplicity of the circle X = V(x2 + y2 − 1)

and the line Y = V(x − 1) at the intersection point p = (1, 0) as follows, where the

command vdim computes the vector space dimension of the K[x, y]〈x,y〉 modulo the

given ideal:

> ring r=0,(x,y),ds;

> poly f=x2+y2-1;
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> poly g=x-1;

> ideal I=f,g;

> I=subst(I,x,x+1);

> vdim(std(I));

2

Thus the intersection multiplicity is

multp(X ∩ Y) = 2,

and the line meets the circle non-transversally, which is not surprising since it is the

tangent line to the circle at this point.

Figure 22. The intersection of the two curves is non-transversal.

Definition 4.26 (The multiplicity of a curve at a point)

For a squarefree f =
∑

i,j aij · xi · yj ∈ K[x, y] and X = V(f) we call

multp(X) = ord(f) = inf{i+ j | aij 6= 0}

the multiplicity of X at the origin. The multiplicity at an arbitrary point p is defined

by first moving the point to the origin and then computing the multiplicity there.

Example 4.27

The multiplicity of V(f) at the origin is easy to compute with Singular via the

command mult, but one has to use a local ordering, since one should rather think

of f as a power series (see also Remark 4.29).

> ring r=0,(x,y),ds;

> poly f=x3y-5x2y2+7x4y5;

> mult(std(f));

4
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Proposition 4.28 (Multiplicity versus intersection multiplicity)

If X and Y are two plane curves with p ∈ X ∩ Y, then
multp(X ∩ Y) ≥ multp(X) ·multp(Y).

Idea of the proof: We consider just the case that Y = V(y) and p = (0, 0). From

the definition it is clear that

multp(f) ·multp(y) = multp(f) ≤ multp
(

f(x, 0)
)

.

Moreover, for m = multp
(

f(x, 0)
)

we have

f(x, 0) = xm · u
for some unit u ∈ K[x]〈x〉, so that

multp(X ∩ Y) = dimK K[x, y]〈x,y〉/〈f, y〉
= dimK K[x, y]〈x,y〉/〈f(x, 0), y〉
= dimK K[x]〈x〉/〈f(x, 0)〉
= dimK K[x]〈x〉/〈xm〉 = m.

It thus follows

multp(f) ·multp(y) ≤ m = multp(X ∩ Y).
�

F) Local parametrisations

Remark 4.29 (The power series ring)

If g ∈ K[x, y] is a polynomial with a non-zero constant term c = g(0, 0) 6= 0, then
1

g
=
1

c
· 1

1− c−g
c

=
1

c
·

∞∑

k=0

(

c− g

c

)k

∈ K[[x, y]]

can be written as a formal power series, i.e. it is an element of the ring of formal

power series

K[[x, y]] =

{
∞∑

i+j=0

aij · xi · yj
∣

∣ aij ∈ K
}
.

This shows that the local ring

K[x, y]〈x,y〉 ⊂ K[[x, y]]
is a subring of the ring of formal power series. Moreover, if f, g ∈ K[x, y] then

dimK K[x, y]〈x,y〉/〈f, g〉 = dimK K[[x, y]]/〈f, g〉,
that is, it does not make any difference if we compute intersection multiplicities in

the local ring K[x, y]〈x,y〉 or in the power series ring.

Moreover, one can even define local monomial orderings and standard bases for the

formal power series ring in the same way as for K[x, y]〈x,y〉, and a finite set of poly-

nomials will be a standard basis in K[x, y]〈x,y〉 if and only if it is one in the power
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series ring. Thus, as long as we start with polynomial generators we can compute

in the power series ring K[[x, y]].

There is, however, one remarkable difference between the rings K[x, y]〈x,y〉 and

K[[x, y]]. A polynomial f which is irreducible in K[x, y]〈x,y〉 may very well decompose

into several irreducible factors in K[[x, y]]. These are then called the branches of the

plane curve locally at the origin. E.g. the polynomial f = y2 − x2 − x3 is irreducible

in R[x, y]〈x,y〉, but it decomposes in R[[x, y]] as

f =
(

y− x ·
√
1+ x

)

·
(

y+ x ·
√
1+ x

)

since
√
1+ x can be expanded into a power series using the Taylor formula. This

reflects the fact that in a small Euclidean neighbourhood of the origin the curve

V(y2 − x2 − x3) has two components, its branches (see Figure 23).

Figure 23. A plane curve with two branches locally at the origin

Remark 4.30 (Parametrisations of plane curve singularities)

A global parametrisation of a plane curve ⊆ A2
K is a surjective polynomial map

ϕ : A1
K −→ X,

but only so called rational curves admit such parametrisations and rational curves

are rare.

For many questions it suffices to have local parametrisations, i.e. parametrisations

of the branches of a curve locally in a point. Suppose that X = V(f) ⊆ A2
K is an

algebraic plane curve through the origin and that X(t), Y(t) ∈ K[[t]] are two power

series such that f
(

X(t), Y(t)
)

= 0, then we call the assignment

t 7→
(

X(t), Y(t)
)

a local parametrisation of a branch of X, and we call a local parametrisation primitive

if it is not derived from another local parametrisation by replacing t by some power

of t. E.g.

t 7→
(

t, t ·
√
1+ t

)

is a primitive local parametrisation of the branch y− x ·
√
1+ x of the plane curve

V(y2 − x2 − x3).
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Such local parametrisation can be computed via Puiseux expansion in characteris-

tic zero or Hamburger-Noether expansion in arbitrary characteristic. We will not

explain the theory of those here, but rather show how to compute primitive local

parametrisations in Singular instead. The command hnexpansion is used to com-

pute a Hamburger-Noether expansion of each branch, and the command param can

then be used to compute the parametrisation for each branch up to some finite order

— we can of course not compute all infinitely many terms of a power series. Both

commands belong to the library hnoether.lib.

> LIB "hnoether.lib";

> ring r=0,(x,y),ds;

> poly f=y2-x2-x3;

> list HNE=hnexpansion(f);

> size(HNE);

2

> param(HNE[1]);

// ** Warning: result is exact up to order 2 in y !

_[1]=x

_[2]=x+1/2x2

> param(HNE[2]);

// ** Warning: result is exact up to order 2 in y !

_[1]=x

_[2]=-x-1/2x2

For the example of the curve given by f = y2 − x2 − x3 compute two branches and

their local parametrisations up to order 2. If we want to have a parametrisation up

a higher order we can extend the Hamburger-Noether expansion by the command

extdevelop.

> list L=extdevelop(HNE[1],5);

> param(L);

// ** Warning: result is exact up to order 5 in y !

_[1]=x

_[2]=x+1/2x2-1/8x3+1/16x4-5/128x5

Local parametrisations can now be used to compute intersection multiplicities. For

this we recall that the order of a power series h =
∑

∞

k=0 ak · tk ∈ K[[t]] is

ordt(h) = inf{k | ak 6= 0}.



49

Proposition 4.31 (Intersection multiplicities via local parametrisations)

Let f, g ∈ K[x, y]\K and suppose that
(

X1(t), Y1(t)
)

, . . . ,
(

Xk(t), Yk(t)
)

are primitive

local parametrisations of the k branches of V(g) at the origin p = (0, 0), then

multp
(

V(f) ∩ V(g)
)

=

k∑

i=1

ordt f
(

Xi(t), Yi(t)
)

.

In particular, the intersection multiplicity behaves additive w.r.t. the branches.

Idea of the proof: Let us prove the statement in the case where V(g) is a line.

We may assume that g = y− ax so that

〈f, g〉 = 〈f(x, ax), y− ax〉✁ K[[x, y]].

If we now apply the coordinate transformation

ϕ : K[[x, y]]
∼=−→ K[[x, y]] : x 7→ x, y 7→ y− ax

we see that

K[[x, y]]/〈f, g〉 =K[[x, y]]/〈f(x, ax), y− ax〉
∼=K[[x, y]]/〈f(x, ax), y〉 ∼= K[[x]]/〈f(x, ax)〉.

Note that t 7→ (t, at) is a primitive parametrisation of V(g) and ifm = ordt(f(t, at))

is the order of f(t, at), then

f(x, ax) = xordx(f(x,ax)) · u = xm · u

for some unit u ∈ K[[x]], so that

K[[x]]/〈f(x, ax)〉 = K[[x]]/〈xm〉.

But then

multp
(

V(f) ∩ V(g)
)

= dimK K[[x, y]]/〈f, g〉
= dimK K[[x]]/〈xm〉 = m = ordt

(

f(t, at)
)

as required. �

Example 4.32 (Intersection multiplicities and local parametrisations)

Let f = x2 − 2xy+ y2 − x− y, g = y2 − x2 − x3 and p = (0, 0).

> LIB "hnoether.lib";

> ring r=0,(x,y),ds;

> poly f=x2-2xy+y2-x-y;

> poly g=y2-x2-x3;

> list HNE=hnexpansion(g);

> ideal XY=param(HNE[1]);

> ord(substitute(f,x,XY[1],y,XY[2]));

1
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> XY=param(HNE[2]);

> ord(substitute(f,x,XY[1],y,XY[2]));

2

> vdim(std(ideal(f,g)));

3

The computation shows that the first branch of g gives order 1 and the second

branch of g gives order 2 so that the intersection multiplicity of f and g in the origin

is 1+ 2. This was verified by computing the intersection multiplicity directly.

Figure 24. An intersection of multiplicity 3

G) Exercises

Exercise 4.33

Let X = V(I) ⊆ A3
C
where

I =〈x2y+ xy2 + xyz− xz2 − yz2 − z3,

x3 + 2x2y+ xy2 + x2z+ xyz− xz2 − yz2 − z3 − xz− yz− z2,

x2z2 + xyz2 + xz3 − xyz− y2z− yz2〉.
Show that the points p = (0, 0, 0) and q = (0, 1, 0) are contained in X and compute

the dimension of X locally at these points.

Exercise 4.34

Consider the space curve X given by the parametrisation

A1
C
−→ A3

C
: t 7→ (t3, t4, t5).

Compute the tangent space of X at the point (1, 1, 1). Visualise the space curve and

the tangent line at (1, 1, 1) with surfex.

Exercise 4.35

Check if the origin is a singular point of the variety X in Exercise 4.33.

Exercise 4.36

Compute the singular locus Sing(X) for X = V(x2 − y3, x− y2 − z2 + 1).



51

Exercise 4.37

Compute for the following polynomials f and g the intersection multiplicity of X =

V(f) and Y = V(g) at p = (0, 0):

a. f = x3 + 4xy4 and g = x+ y.

b. f =
(

x2 + y2
)2

+ 3x2y− y3 and g = x+ 2y.

c. f =
(

x2 + y2
)2

+ 3x2y− y3 and g = y.

d. f =
(

x2 + y2
)2

+ 3x2y− y3 and g = y− x2.

e. f =
(

x2 + y2
)2

+ 3x2y− y3 and g = y2 − x.

f. f =
(

x2 + y2
)2

+ 3x2y− y3 and g = y2 − x2.

In which of the cases do we have

multp(X ∩ Y) = multp(X) ·multp(Y)?

Visualise X and Y locally at p = (0, 0) with surfex.

Exercise 4.38

Compute local parametrisations at the origin of the plane curves in Exercise 4.37 and

compute the intersection multiplicities there with the aid of these local parametri-

sations.
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5 Projective plane curves

The following section is a first introduction into aspects of projective geometry.

A) The projective plane

Remark 5.1 (Defects of the affine plane)

If we consider the lines

L1 = V(x− y− 1)

and

L2 = V(x+ y− 1)

in the affine plane A2
R
, we find that they intersect in a point

L1 ∩ L2 = {(1, 0)},

while the line L1 and the line

L3 = V(x− y+ 1)

do not intersect at all, they are parallel. This distinction is rather unsatisfactory,

L1

L2

L1

L3

Figure 25. Intersection types of lines in the affine plane A2
R

and projective geometry is a way to get around this problem by adding points, as

we say, at infinity.

Definition 5.2 (The projective plane)

We define the projective plane P2K to be the set of lines through the origin in affine

3-space A3
K. We denote the line through the origin determined by a non-zero point

0 6= p = (p0, p1, p2) ∈ A3
K by

P = (p0 : p1 : p2) = {λ · p | λ ∈ K} ∈ P2K

and call the pi the homogeneous coordinates of P.

Remark 5.3 (A2
K as a subset of P2K)

Let us consider the plane E in affine 3-space parallel to the xy-plane through the

point (0, 0, 1), which can be viewed as a copy of A2
K (see Figure 26).
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Figure 26. The plane E=̂A2
K in affine 3-space

Each point P = (p0 : p1 : p2) ∈ P2
R
is a line through the origin in affine 3-space. The

line intersects E if and only if it is not contained in the xy-plane. Let us denote the

set of lines in the xy-plane by

P1K = {(p0 : p1 : 0) | (p0, p1) 6= (0, 0)}

and call it the line at infinity, then with Uz = P2K \ P
1
K=̂E we have

P2
R
=̂ Uz ·∪P1K =̂ E ·∪P1K =̂ A2

K ·∪P1K.

Thus P2K is the affine plane together with some additional points — we will explain

in Example 5.9, why we call P1K a line.

B) Projective plane curves

Remark 5.4 (Evaluating a polynomial at a point in P2K)

Note that the homogeneous coordinates of a point in P2K are only determined up

to a common scalar 0 6= λ ∈ K. That makes it difficult to evaluate a polynomial

f ∈ K[x, y, z] at P by inserting the coordinates. E.g. let P = (1 : 2 : 1) = (2 : 4 : 2)

and f = 2xz− y then

f(1, 2, 1) = 0 6= 4 = f(2, 4, 2).
We see that it is in general not even possible to say whether a point in P2K is a

zero of a polynomial. However, the latter is possible, if we restrict to homogeneous

polynomials, where a polynomial F ∈ K[x, y, z] of degree d is called homogeneous if

for 0 6= λ ∈ K
F(λ · x, λ · y, λ · z) = λd · F(x, y, z), (3)

or equivalently if all monomials of F have degree d. E.g. F = x2 − 3xy + z2 is

homogeneous while f = x2 − 3xy+ 1 is not.

Note that (3) implies that

F(p) = 0 ⇐⇒ F(λ · p) = 0 ∀ 0 6= λ ∈ K,

and we may define F(P) = 0 for P ∈ P2K if F(p) = 0 for some non-zero point p on P.

We will in the sequel use capital letters (e.g. F) for homogeneous polynomials in

K[x, y, z] and lower case letters (e.g. f) for not necessarily homogeneous polynomials

in K[x, y] or K[x, y, z].
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The Singular command homog can be used to check if a polynomial is homoge-

neous. The return value 1 means TRUE and the return value 0 means FALSE.

> ring r=0,(x,y,z),dp;

> homog(x2-xy+z2);

1

> homog(x2-xyz);

0

Definition 5.5

A projective plane curve is the zero locus

V(F) = {P ∈ P2K | F(P) = 0} ⊂ P2K

of a non-constant homogeneous polynomial F ∈ K[x, y, z] \ K. If F is squarefree we

call deg(F) the degree of the projective plane curve and denote it by deg(V(F)).

Note that by abuse of notation we have used the same notation for the surface

V(F) = {p ∈ A3
K | F(p) = 0} ⊂ A3

K

which we call the cone over the corresponding projective curve. It should always be

clear from the context what V(F) actually means.

Remark 5.6 (The irreducible components of a curve)

A squarefree homogeneous polynomial F ∈ K[x, y, z] factorises into a product F =

F1 · · · Fk of irreducible homogeneous polynomials and

V(F) = V(F1) ∪ . . . ∪ V(Fk).

We call the V(Fi) the irreducible components of V(F).

> ring r=0,(x,y,z),dp;

> poly F=-x2y3+y5+x4z-x2y2z;

> homog(F);

1

> factorize(F);

[1]:

_[1]=1

_[2]=x-y

_[3]=x+y

_[4]=-y3+x2z

[2]:

1,1,1,1
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Remark 5.7 (The Zariski topology on P2K)

It is easy to see that

{X ⊂ P2K | X finite} ∪ {V(F) | F homogeneous} ∪ {P2K}

are the closed sets of a topology on P2K, the Zariski topology.

Remark 5.8 (Homogenisation and projective closure)

If f =
∑

i,j ai,j · xi · yj ∈ K[x, y] is a non-constant polynomial of degree d, then we

define its homogenisation as

F =
∑

i,j

ai,j · xi · yj · zd−i−j ∈ K[x, y, z].

It is a homogeneous polynomial and thus defines a projective plane curve V(F). If

we consider the homeomorphism

ϕ : A2
K

∼=−→ Uz ⊂ P2K : (p0, p1) 7→ (p0 : p1 : 1),

then it turns out that

ϕ
(

V(f)
)

= V(F) ∩Uz
and V(F) is the topological closure of V(f) which we get by just adding points at

infinity. We call it also the projective closure of V(f).

The Singular command homog can also be used to homogenise a polynomial.

> ring r=0,(x,y,z),dp;

> poly f=y2-x2-x3;

> homog(f,z);

-x3-x2z+y2z

Example 5.9 (Lines in P2K)

A projective line in the projective plane P2K is the projective plane curve defined by

a homogeneous linear polynomial F = ax+by+ cz. Note that the line V(F) is thus

the projective closure of the line V(xy + by + c) in the affine plane, and note also

that the line at infinity

P1K = V(z)

is indeed a projective line in the projective plane. It is the only line which is not

the projective closure of a line in the affine plane.

If we consider the affine cone of V(xy + by + cz), then this is a plane EL in affine

3-space through the origin. Its intersection with the plane E representing A2
K is the

line L = ϕ
(

V(ax+ by+ c)
)

(see Figure 27).

Note that any two distinct lines P and Q through the origin in 3-space span a

unique plane EL through the origin in 3-space. Translating this to the projective

plane means that through any two distinct points P and Q there is a unique line L

as was the case in the affine plane. (See Figure 27.)
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Figure 27. The line L through the points P and Q

Moreover, any two planes EL and EL ′ in affine 3-space through the origin intersect

in a line Q through the origin. Translating this to the projective plane means that

any two lines L and L ′ in the projective plane intersect in a point Q. There are no

parallel lines as in the affine plane! The defect of the affine plane is resolved. (See

Figure 28.)

Figure 28. Two projective lines intersecting in a point

Remark 5.10 (Affine charts)

We have seen that the set Uz = P2K \ V(z) is an open and dense set of P2K which is

homeomorphic to A2
K. Similarly, the sets Ux = P2K \ V(x) and Uy = P2K \ V(y) are

open and dense in P2K and homeomorphic to A2
K, and moreover

P2K = Ux ∪Uy ∪Uz,

that is they form an open cover of the projective plane. We call Ux, Uy and Uz the

affine charts of P2K, and whenever we want to study a local property of the projective

plane or of projective curves at a point P, we can restrict to an affine chart which

contains the point P. But then we are in the affine setting and the affine theory

as explained in Section 4 applies. In particular, we can talk of tangent spaces, of

singularities and of intersection multiplicities multP(X ∩ Y) for two projective plane

curves X and Y at a point P ∈ X ∩ Y.
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C) Visualising the projective plane P2
R

Remark 5.11 (Visualising the affine cone of a projective plane curve)

A first method of visualising a projective plane curve in P2
R
would be by visualising

its affine cone. E.g. in Figure 29 we show the affine cone of the projective plane

curve V(xyz+ x2y− y3).

Figure 29. The affine cone of V(xyz+ x2y− y3).

This is, however, somewhat unsatisfactory since one expects to see a curve, i.e. a

one dimensional object, rather than a surface. One can now intersect this surface

with the plane E in order to see a curve (see Figure 30.), but that would only be

the affine part of the curve, which again is somewhat unsatisfactory.

Figure 30. The affine cone and part of the curve V(xyz+ x2y− y3)

In the following remark we explain how we can actually visualise the global picture.

Remark 5.12 (The sphere as a model for visualising P2
R
)

Any line through the origin meets the unit sphere in exactly two antipodal points.

We may thus identify the projective plane P2
R
with sets of antipodal pairs of points

on the unit-sphere. Moreover, the points on the upper hemisphere (omitting the

equator) are in one-to-one correspondence with the points in E=̂Uz, i.e. with the

points in the affine part of the projective plane, and the equator is the line at infinity,

where we have to identify antipodal points (see Figure 31).

This allows us to visualise a projective curve like V(xyz + x2y − y3) ⊆ P2
R

(see

Figure 32). The affine plane curve in Figure 30 consists of a line and two branches

of a hyperbola. If we compare this to the curve in the upper hemisphere in Figure 32,
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Figure 31. The unit sphere with the equator and a pair of antipodal points

Figure 32. A model of P2
R
with the curve V(xyz+ x2y− y3)

we find there as well the line an the two branches of the hyperbola. However, the

line intersects the equator in two antipodal points which have to be identified, that

is, the open ends of the line are closed up by a point. Similarly, the two branches

of the hyperbola intersect the equator in two sets of antipodal points which means

that one end of one of the branches is connected to one end of the other branch.

Topologically the hyperbola thus becomes an ellipse. Altogether this reflects the fact

that projective curves or more generally projective algebraic varieties are compact.

D) The Theorem of Bézout for projective plane curves

The following theorem counts the number of intersection points of two projective

plane curves with multiplicity and claims that the result does only depend on the

degree of the two curves.

Theorem 5.13 (Bézout)

Let X and Y be two projective plane curves without a common component and K = K,

then ∑

P∈X∩Y

multP(X ∩ Y) = deg(X) · deg(Y).

In particular, X and Y must intersect.

Idea of the proof: Let us prove the statement in the special case where Y = V(y)

is the x-axis and X∩Y has no point on the line at infinity. We thus have deg(Y) = 1

and if X = V(F) for some squarefree homogeneous polynomial F, then

deg(X) = deg(F) = deg(f) = deg
(

f(x, 0)
)
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where f = F(x, y, 1) ∈ K[x, y].Moreover, we can compute the intersection multiplic-

ities in the affine chart Uz ∼= A2
K. Note that

〈f, y〉 = 〈f(x, 0), y〉✁ K[x, y]

and that the polynomial f(x, 0) ∈ K[x] factorises into linear factors

f(x, 0) = c · (x− c1)m1 · · · (x− xk)mk

since K is algebraically closed. But the intersection of X and Y is then

X ∩ Y = {(c1 : 0 : 1), . . . , (ck : 0 : 1)}.

If we want to compute the intersection multiplicity of V(f) and V(y) in pi = (ci, 0)

we first of all apply the coordinate change

ϕ : x 7→ x+ ci, y 7→ y

so that

f(x, 0) 7→ f(x+ ci, 0) = c · xmi ·
∏

j6=i

(x+ ci − cj)
mj .

Setting Pi = (ci : 0 : 1) and pi = (ci, 0) we compute the intersection multiplicity

multPi(X ∩ Y) = multpi
(

V(f) ∩ V(y)
)

= dimK K[x, y]〈x−c1,y〉/〈f, y〉
= dimK K[x, y]〈x,y〉/〈f(x+ ci, 0), y〉

= dimK K[x]〈x〉/
〈

c · xmi ·
∏

j6=i

(x+ ci − cj)
mj
〉

= dimK K[x]〈x〉/〈xmi〉 = mi.

But then we have

deg(X) · deg(Y) = deg(X) = deg
(

f(x, 0)
)

= m1 + . . .+mk =
∑

P∈X∩Y

multP(X ∩ Y).

�

Example 5.14

Let us consider the two plane quadrics

Ct = V
(

x2 + t · y2 − z2
)

⊂ P2
R

and

C ′ = V
(

4xy− z2
)

⊂ P2
R
,

where the parameter t varies in the interval [1, 4]. In order to compute the points

of intersection of Ct and C
′ we insert z2 = 4xy into the equation x2+ t ·y2− z2 = 0.

This leads to

x2 + t · y2 − 4xy = 0,
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or alternatively

(x− 2y)2 = (4− t) · y2.

Taking square roots on both sides we get two solutions

x =
(

2±
√
4− t

)

· y.

Plugging these into the equation 4xy− z2 = 0 we get

z2 =
(

8± 4 ·
√
4− t

)

· y2,

and taking square roots on both sides gives the four solutions

z = ±
√

8± 4
√
4− t · y.

In order to compute the projective coordinates of the points of intersection we choose

y = 1 and get

P1 =

(

2−
√
4− t : 1 :

√

8− 4 ·
√
4− t

)

,

P2 =

(

2+
√
4− t : 1 :

√

8+ 4 ·
√
4− t

)

,

P3 =

(

2−
√
4− t : 1 : −

√

8− 4 ·
√
4− t

)

,

P4 =

(

2+
√
4− t : 1 : −

√

8+ 4 ·
√
4− t

)

.

Note that only for t < 4 the points are pairwise different. If t = 4 then the points

P1 and P2 coincide as do the points P3 and P4. That means we only get two points

of intersection. Note also that in the latter case the tangents to C4 and C ′ in P1
coincide and the same holds in P3. The common tangent of C4 and C ′ in P1 is

V(4x+8y−16z). The intersection multiplicity of C4 and C
′ in P1 as well as in P3 is

two, so that the statement of the Theorem of Bézout works out in this case as well

even though the base field R is not algebraically closed. (See Figure 33.)

Figure 33. C1 ∩ C ′ und C4 ∩ C ′
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E) Parametrisations via the Theorem of Bézout

Proposition 5.15 (Parametrisations via the Theorem of Bézout)

Let X be a projective algebraic curve of degree d and suppose that P ∈ X with

multP(X) = d− 1, then there exists a parametrisation ϕ : P1K −→ X. The analogous

result for affine algebraic curves holds as well.

Idea of the proof: The lines through the point p are actually a P1K. By the The-

orem of Bézout each of these lines L intersects X in exactly one further point, since

d = deg(X) · deg(L) = multP(X ∩ L) +
∑

P 6=Q∈X∩L

multQ(X ∩ L)

and multP(X∩L) ≥ multP(X) = d−1. Thus we can associate to the line L (considered

as a point in P1K) this additional intersection point. That gives the parametrisation.

�

Remark 5.16

We can actually compute a parametrisation as above using the following Singular

procedure if P = (0 : 0 : 1).

proc parametrise (poly F)

"USAGE: parametrise(F); F a homogeneous polynomial in three variables

ASSUME: the multiplicity of f at (0:0:1) is one less than the degree of F;

x=0 is not a tangent direction at (0:0:1)

RETURN: a list containing a parametrisation of F"

{

def BASERING=basering;

ring S=(0,s,t),(x,y,z),dp;

poly F=fetch(BASERING,F);

poly f=subst(F,z,1);

poly h=substitute(f,y,tx);

h=h/x^(deg(f)-1);

poly xnumerator=-leadcoef(h-lead(h));

poly denominator=leadcoef(h);

poly ynumerator=t*xnumerator;

ring R=0,(s,t),dp;

poly xnumerator=homog(imap(S,xnumerator),s);

poly ynumerator=homog(imap(S,ynumerator),s);

poly denominator=homog(imap(S,denominator),s);

int d=deg(xnumerator);

if (d<deg(ynumerator)){d=deg(ynumerator);}

if (d<deg(denominator)){d=deg(denominator);}

xnumerator=xnumerator*s^(d-deg(xnumerator));
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ynumerator=ynumerator*s^(d-deg(ynumerator));

denominator=denominator*s^(d-deg(denominator));

return(list(string(xnumerator),string(ynumerator),string(denominator)));

}

example

{ "EXAMPLE:";echo = 2;

ring RING=0,(x,y,z),lp;

poly F=x3+y3-3xyz;

parametrisiere(F);

}

If we apply the procedure to the Newton node V(y2z−x2z−x3) we get the following

parametrisation.

> ring r=0,(x,y,z),dp;

> poly F=y2z-x2z-x3;

> parametrise(F);

[1]:

s3-st2

[2]:

s2t-t3

[3]:

-s3

F) Exercises

Exercise 5.17

Check the Theorem of Bézout for the projective plane curves V(F) and V(G) with

F = y2z− x · (x− z) · (x− 2z)

and

G = y2 + 2x2 − 2xz.

Visualise both curves and their intersection in the sphere model of the projective

plane.

Exercise 5.18

Compute a parametrisation of the projective plane curve

V
(

x3z− 3x2yz+ 3xy2z− y3z+ 4x2y2
)

and visualise the curve in P2
R
with surfex.
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Exercise 5.19

Find more examples of plane curves of degree d with one singular point of multi-

plicity d− 1 and compute parametrisations for these.

Exercise 5.20

Let V(F) be a projective plane curve and let P be a regular point on V(F). Show

that the projective closure of the tangent line of V(F) at P is

V

(

∂F

∂x
(P) · x+ ∂F

∂y
(P) · y+

∂F

∂z
(P) · z

)

.
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6 Projective varieties

In this section we want to generalise the results from Section 5 to arbitrary projective

varieties. We will not be able to treat this Section in the lectures of this summer

school, however. Consider it as an additional reading which may complete the

picture on basic facts about algebraic geometry introduced throughout this course.

In this section we set x = (x0, . . . , xn) and K[x] = K[x0, . . . , xn].

A) The projective n-space

Definition 6.1 (Projective n-space)

We define on the set Kn+1 \ {0} an equivalence relation by setting

p ∼ q ⇐⇒ ∃ 0 6= λ ∈ K : q = λ · p.

The equivalence class of a point p = (p0, . . . , pn) is denoted by

P = (p0 : . . . : pn),

and we call the pi the homogeneous coordinates of P. Moreover, the set of equivalence

classes

PnK =
{
(p0 : . . . : pn)

∣

∣ (p0, . . . , pn) ∈ Kn+1 \ {0}
}

is the projective n-space.

Remark 6.2 (The points of projective n-space)

The points in projective n-space are by definition lines in Kn+1 through the origin

omitting the origin. We will, however, for simplicity call them lines through the

origin.

Definition 6.3 (Affine charts)

For i = 0, . . . , n we call the injective map

φi : A
n
K −→ PnK : (p1, . . . , pn) 7→ (p1 : . . . : pi−1 : 1 : pi : . . . : pn)

the i-th affine chart of PnK. The image of φi is denoted by

Ui = Im(φi) = {(p0 : . . . : pn) | pi 6= 0}.

Remark 6.4 (Affine charts and the decomposition of PnK)

The affine charts can be used to identify affine n-space with certain subsets of

projective n-space. At the same time it follows from

PnK = U0 ∪ . . . ∪Un
that projective n-space can be covered by n+ 1 copies of affine n-space. Finally, if

we identify U0 with An
K and note

PnK \U0 = {(0 : p1 : . . . : pn) | (p1 : . . . : pn) ∈ Pn−1K }=̂Pn−1K
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we see that

PnK=̂An
K ·∪Pn−1K

is a disjoint union of a copy of affine n-space and of projective n− 1-space.

B) Projective algebraic varieties

Remark 6.5 (Homogeneous polynomials)

A polynomial F ∈ K[x] of degree d is called homogeneous if for 0 6= λ ∈ K

F(λ · x0, . . . , λ · xn) = λd · F(x0, . . . , xn), (4)

or equivalently if all monomials of F have degree d. Note that (4) implies that

F(p) = 0 ⇐⇒ F(λ · p) = 0 ∀ 0 6= λ ∈ K,

and we may define F(P) = 0 for P ∈ PnK if F(p) = 0 for some representative p of P.

Definition 6.6 (Homogeneous ideals)

If f ∈ K[x] is any polynomial of degree d then we can write

f = f0 + f1 + . . .+ fd

where fi is homogeneous of degree i, by just collecting in fi all terms of f of degree

d. We call the fi the homogeneous parts of f.

An ideal I ✂ K[x] is called homogeneous if it contains for any polynomial f also its

homogeneous parts.

Remark 6.7 (Homogeneous ideals)

It is easy to see that an ideal is homogeneous if and only if it is generated by homo-

geneous polynomials. Moreover, if the homogeneous generators of a homogeneous

ideal vanish at a point P ∈ PnK then actually all (not necessarily homogeneous)

polynomials in the ideal do so as well, independently of the chosen homogeneous

coordinates. This justifies the following definition.

Definition 6.8 (Projective algebraic varieties)

For a homogeneous ideal I✂ K[x] we call

V(I) = {P ∈ PnK | f(P) = 0 ∀ f ∈ I}

the projective vanishing set of I. And we call a subset X ⊆ PnK a projective algebraic

variety if it is the projective vanishing set of some homogeneous ideal.

Remark 6.9 (Cones over projective algebraic varieties)

One should note that for a homogeneous ideal I ✂ K[x] the notion V(I) is used for

both, the projective algebraic variety

V(I) = {P ∈ PnK | f(P) = 0 ∀ f ∈ I}

as well as the affine algebraic variety

V(I) = {p ∈ An+1
K | f(p) = 0 ∀ f ∈ I}.
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The latter is often called the affine cone over the corresponding projective algebraic

variety, and one has to understand from the context which one is meant.

Since the intersection and the sum of homogeneous ideals is again homogeneous the

Zariski topology generalises to projective n-space.

Proposition 6.10 (Zariski topology on PnK)

The collection of all projective algebraic varieties in PnK is a topology.

Remark 6.11

Given a polynomial f ∈ K[x0, . . . , xi−1, xi+1, . . . , xn] of degree d we define its ho-

mogenisation with respect to xi as

fhi = x
d
i · f

(

x0
xi
, . . . , xi−1

xi
, xi+1

xi
, . . . , xn

xi

)

∈ K[x0, . . . , xn]

which is homogeneous of degree d.

For a homogeneous polynomial F ∈ K[x0, . . . , xn] we define its dehomogenisation

with respect to xi as

Fdi = F(x0, . . . , xi−1, 1, xi+1, . . . , xn) ∈ K[x0, . . . , xi−1, xi+1, . . . , xn],

which is a not necessarily homogeneous polynomial of degree at most d.

For an ideal I in K[x0, . . . , xi−1, xi+1, . . . , xn] we define its homogenisation Ihi w.r.t.

xi to be the ideal generated by the homogenisations of all elements in I, and for a

homogeneous ideal I in K[x0, . . . , xn] we define its dehomogenisation Idi w.r.t. xi to

be the set of dehomogenisations of elements in I.

Proposition 6.12

a. If I is an ideal in K[x0, . . . , xi−1, xi+1, . . . , xn] and X = V(I) ⊆ An
K, then the

topological closure of φi(X) in PnK is the vanishing set of Ihi .

b. If I is a homogeneous ideal in K[x0, . . . , xn] and X = V(I) ⊆ PnK, then φ
−1
i (X) =

V(Idi ) ⊆ An
K.

Corollary 6.13

The affine charts φi : A
n
K →֒ PnK are continuous.

C) The projective Nullstellensatz

Remark 6.14

The ideals 〈x0, . . . , xn〉 and K[x] are both homogeneous radical ideals and their pro-

jective vanishing set is empty. But this is the only ambiguity of this sort when

considering a projective version of Hilbert’s Nullstellensatz. Note that any homoge-

neous ideal which is not the whole ring is contained in the ideal 〈x0, . . . , xn〉.
Analogously to the affine case we can define a homogeneous vanishing ideal

I(X) = 〈F ∈ K[x] | F is homogeneous, F(P) = 0 ∀ P ∈ X〉
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for a subset X ⊆ PnK, and I(X) will be a radical ideal. Moreover, we call the graded

K-algebra

K[x]/I(X)

the coordinate ring of the projective algebraic variety X, if X is a projective algebraic

variety.

Theorem 6.15 (Projective Nullstellensatz)

Let I✁ K[x] be a strict homogeneous ideal and K = K then

I(V(I)) =
√
I.

In particular, there is a one-to-one correspondence between the projective algebraic

varieties in PnK and the strict homogeneous radical ideals in K[x].

Remark 6.16

One defines the notion of irreducibility for projective algebraic varieties analogous

to the same notion for affine algebraic varieties, and it turns out that a projective

algebraic variety is irreducible if and only if its vanishing ideal is prime. Also, the

associated prime ideals of I(X) give the irreducible components of X as in the affine

case. The dimension of a projective algebraic variety can be defined analogously to

that of an affine algebraic variety, and if K = K then dim(X) = dimK[X]− 1, i.e. the

dimension of the variety coincides with that of its coordinate ring minus one. The

minus one reflects the fact that a point in projective space is line in affine space.

D) Regular functions and morphisms on projective algebraic varieties

Definition 6.17 (Regular functions and morphisms)

Let X ⊆ PnK and Y ⊆ PmK be two projective algebraic varieties and U ⊆ X be open.

a. A function f : U −→ K is regular if and only if f is locally at each point of U

the quotient of two homogeneous polynomials of the same degree. We again

denote by OU(X) the K-algebra of regular functions on U.

b. A morphism from X to Y is a continuous map such that the pull back of a

regular function is a regular function.

Remark 6.18 (Regular functions on projective algebraic varieties)

For a projective algebraic variety the elements of K[X] are in general not regular

functions, since we cannot evaluate polynomials on projective space as we have

seen above. Actually, there are not many global regular functions on a projective

algebraic variety, as the following theorem shows – the constant functions are the

only global regular functions! But open subsets, such as the affine charts Ui ∼= A2
K,

may have plenty of regular functions – e.g. OPn
K
(Ui) ∼= K[x0, . . . , xi−1, xi+1, . . . , xn].

Theorem 6.19 (Global regular functions on projective algebraic varieties)

If X ⊆ PnK is an irreducible projective algebraic variety and K = K, then OX(X) = K.
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Remark 6.20 (Morphisms of projective algebraic varieties)

While even homogeneous polynomials are no regular functions on projective alge-

braic varieties, they can be used to define morphisms. If F0, . . . , Fm ∈ K[x0, . . . , xn]
are homogeneous polynomials of the same degree and if X ⊆ PnK is a projective

algebraic variety such V(F0, . . . , Fm) ∩ X = ∅, then

ϕ : PnK −→ PmK : P 7→
(

F0(P) : . . . : Fm(P)
)

is a morphism. This is the most common way to write down a morphism on a

projective algebraic variety, but we should like to point out that not every morphism

of projective algebraic varieties has such a global description.

Theorem 6.21 (Projective morphisms are closed.)

If ϕ : X −→ Y is a morphism of projective algebraic varieties, then the image of

every closed subset of X is closed in Y.

Example 6.22

The analogous statements for affine algebraic varieties is wrong, as the image of

V(xy− 1) ⊆ A2
K under the projection to the x-axis is not closed in A1

K.

Example 6.23 (Computing the image of a projective morphism)

Since the image of a projective morphism is closed, the method in Remark 3.22

applied to the projective situation actually computes the image of the projective

morphism and no topological closure is needed. E.g. we can compute the image of

the 2-uple Veronese embedding of P2K

P2K −→ P6K : (x : y : z) 7→ (x2, y2, z2, xy, xz, yz)

which uses the monomials of degree two as component functions.

> ring r=0,(x,y,z,a(0..5)),dp;

> ideal I=a(0)-x2,a(1)-y2,a(2)-z2,a(3)-xy,a(4)-xz,a(5)-yz;

> eliminate(I,xyz);

_[1]=a(3)*a(4)-a(0)*a(5)

_[2]=a(1)*a(4)-a(3)*a(5)

_[3]=a(2)*a(3)-a(4)*a(5)

_[4]=a(1)*a(2)-a(5)^2

_[5]=a(0)*a(2)-a(4)^2

_[6]=a(0)*a(1)-a(3)^2

E) The Hilbert polynomial of a projective algebraic variety

Remark 6.24 (The Hilbert function)

The coordinate ring K[X] = K[x]/I(X) of a projective algebraic variety X is a K-

vector space, and we denote by K[X]d the subspace generated by the residue classes



69

of all monomials of degree d. The function

HX : Z −→ Z : d 7→ dimK K[X]d

is the Hilbert function of X. E.g. for X = PnK we have

HPn
K
(d) =

(

d+ n

n

)

.

Theorem 6.25 (Hilbert polynomial)

If X is a projective variety, then there is a polynomial HPX ∈ Q[t] of degree dim(X)

such that

HPX(d) = HX(d)

for d sufficiently large. We call HPX the Hilbert polynomial of X.

Remark 6.26 (The degree of a projective algebraic variety)

The Hilbert polynomial HPX of a projective algebraic variety X of dimension d is of

the form

HPX(t) = ad · td + ad−1 · td−1 + . . .+ a0 ∈ Q[t]. (5)

We call the number

deg(X) = d! · ad ∈ Z

the degree of the variety X, and it turns out that this number is always a positive

integer. In the case that X = V(F) for some squarefree homogeneous polynomial F,

then

deg(X) = deg(F).

Example 6.27 (Computing the Hilbert polynomial)

The Hilbert polynomial of a projective algebraic variety can be computed with the

Singular command hilbPoly. It returns an integer vector containing the entries

d! · a0, d! · a1, . . . , d! · ad
where we use the notation in (5). E.g. the so called twisted cubic is the image of the

parametrisation

P1K −→ P3K : (s : t) 7→ (s3 : s2t : st2 : t3).

We want to show that the result is actually a space curve of degree 3 as the name

suggests.

> ring R=0,(w,x,y,z,s,t),dp;

> ideal J=w-s3,x-s2t,y-st2,z-t3;

> ideal I=eliminate(J,st);

> ring r=0,(w,x,y,z),dp;

> ideal I=imap(R,I);

> I;

I[1]=y2-xz

I[2]=xy-wz



70

I[3]=x2-wy

> hilbPoly(I);

1,3

> dim(groebner(I));

2

We first compute the ideal of the image of the parametrisation in the ring

K[w, x, y, z, s, t] and we then map with the command fetch to the ring K[w, x, y, z].

There we compute the Hilbert polynomial and get

HPX =
3

1!
· t+ 1

1!
= 3t+ 1.

This shows in particular that X = V(I) is a curve in projective 3-space of degree

3. We finally verified that the dimension is 1 by computing the dimension of the

coordinate ring which should be one more than the dimension of the projective

algebraic variety.

F) The Theorem of Bézout

Definition 6.28 (Pure-dimensional)

We call a projective algebraic variety pure-dimensional if all its irreducible compo-

nents have the same dimension.

Remark 6.29 (Intersection multiplicity)

One can generalise the notion of intersection multiplicity of two curves to higher

dimensions. If a point p is an irreducible component of the intersection X∩Y of two

affine algebraic varieties in An
K then we define

multp(X ∩ Y) = dimK K[x1, . . . , xn]/I(X) + I(Y).

In the projective case one passes to some affine chart which contains the point.

Theorem 6.30 (Bézout)

Let X, Y ⊆ PnK be two pure-dimensional projective varieties over K = K such that no

component of X is contained in Y and vice versa.

a. If dim(X) + dim(Y) = n, then X ∩ Y is a finite set and
∑

P∈X∩Y

multP(X ∩ Y) = deg(X) · deg(Y).

b. If dim(X) + dim(Y) = n+ 1, then X ∩ Y is a curve of degree

deg(X ∩ Y) = deg(X) · deg(Y).

Corollary 6.31 (The degree of a projective algebraic variety)

The degree of a projective algebraic variety X over K = K is the number of intersec-

tion points with a generic linear space of dimension n− dim(X).
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Example 6.32

Intersecting V(wz − xy) with V(w3 + x3 + y3 + z3) in P3
C
we get a space curve of

degree 6.

> ring r=0,(w,x,y,z),dp;

> poly F=wz-xy;

> poly G=w3+x3+y3+z3;

> LIB "poly.lib";

> hilbPoly(ideal(F,G));

-3,6

Intersecting V(w3 + x3 + y3 + z3) with a generic line in P3
C
we should find three

intersection points. A generic line is given by two random linear polynomials, but

in order to use the command solve in Singular we have to concentrate on one of

the affine charts, e.g. we can add the polynomial z − 1 to the ideal — if the linear

polynomials were chosen randomly then no intersection point should occur on one

of the coordinate hyperplanes.

> ring r=0,(w,x,y,z),dp;

> poly F=w3+x3+y3+z3;

> ideal H=3w+x+2y-12z,13w-x-y+21z;

> ideal I=F,H,z-1;

> LIB "solve.lib";

> solve(I);

[1]:

[1]:

-1.61509409

[2]:

-16.8377286

[3]:

16.84150544

[4]:

1

[2]:

[1]:

(-0.88699321+i*0.12160413)

[2]:

(4.27719681+i*3.52651968)

[3]:

(5.19189141-i*1.945666)
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[4]:

1

[3]:

[1]:

(-0.88699321-i*0.12160413)

[2]:

(4.27719681-i*3.52651968)

[3]:

(5.19189141+i*1.945666)

[4]:

1
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Appendix A Short introduction to Singular

This short introduction to the computer algebra system Singular does not claim

to be complete. It introduces step by step basic structures and commands in Singu-

lar. The introduction is not written in a strictly systematic manner. Therefore, for

a systematical and complete documentation of Singular, we refer to the manual

[DGPS10]. Anyone wishing to install Singular on their personal computer can

find the sources and the installation instructions on the Singular home page:

http://www.singular.uni-kl.de

1) First steps

1.1 Notations. The following notations will be used in this introduction:

• Singular input and output as well as set words will be written in typewriter

face, e.g. exit; oder help.

• The symbol 7→ starts Singular output, e.g.:
int i=5;

i;

7→ 5
• Square brackets mark the parts of the syntax which are optional, that is, can

be left out. E.g.

pmat(M[,n]);

The above command, a procedure of the library matrix.lib is used to show

a matrix M as a formatted matrix. The optional parameter n defines the width

of the columns. If this is missing, a standard value will be used.

• Keys are also shown in typewriter face, such as:
n (press the key n),

RETURN (press the enter key),

CTRL-P (press the control key and P simultaneously).

1.2 Starting and terminating Singular. Obviously, the first question is, how does

one start the programme and how can it be terminated? Singular is started by

using the command

Singular

in the command line of the system.

After the start, Singular shows an input prompt, >, and is available to the user

for interactive use. As soon as the user no longer wants to use this possibility, it

is recommended to terminate the programme. There are three commands available

for this: exit;, quit; or, for very lazy users, $.

Please note that the semicolons in the preceding paragraph are part of the Singular

commands.



74

In general, every command in Singular ends with a semicolon!

The semicolon tells the computer that the input is to be interpreted and, if this is

successful, be carried out. The programme comes up with a result (possibly an error

notification) followed by a new input prompt. Should the user forget the semicolon,

Singular shows this with an input prompt ., in words a dot, and enables further

inputs, such as the missing semicolon. In this way it is possible to stretch longer

commands over several lines.

1.3 The online help help. The next most important information after the start

and terminate commands is how to find help. Here Singular offers the command

help, or in short ?. Using the command help followed by a Singular command,

a Singular function or procedure name or a Singular library, information to

the respective objects are shown. For the libraries one receives a list of the proce-

dures contained therein, for commands, functions and procedures their purpose is

explained as well as their syntax and one gets examples.

Examples:

help exit;

help standard.lib;

help printf;

By default an internet browser will be opened and the help will be displayed. Via

self–explanatory buttons the entire handbook is available.

1.4 Interrupt Singular. Under Unix–like operating systems and under Windows,

it is possible, via the key combination CTRL-C, to force an interruption in Singular.

Singular reacts with an output of the currently performed command and awaits

further instructions. The following options are available:

a Singular carries out the current command and returns then to top level,

c Singular carries on,

q the programme Singular is terminated.

1.5 Editting inputs. If a command has been misspelled, or if an earlier command is

needed again, it is not absolutely necessary to renew the input. Existing Singular

text can be edited. For this, Singular records a history of all commands of a

Singular session. Below is a selection of the available key combinations for text

editing:

TAB automatic completion of function and file names

←
CTRL-B moves the cursor to the left

→
CTRL-F moves the cursor to the right
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CTRL-A moves the cursor to the beginning of the line

CTRL-E moves the cursor to the end of the line

CTRL-D deletes the letter under the cursor — never use in an empty line!

BACKSPACE

DEL

CTRL-H deletes the letter in front of the cursor

CTRL-K deletes all from the cursor to the end of the line

CTRL-U deletes all from the cursor to the beginning of the line

↓
CTRL-N supplies the next line from the history

↑
CTRL-P supplies the preceding line from the history

RETURN sends the current line to the Singular parser

1.6 Procedures. The user can create new commands in Singular. These are called

procedures. The syntax of a procedure is fairly simple:

proc PROCEDURENAME [PARAMETERLIST]

{
PROCEDUREBODY

}
For PROCEDURENAME, any not otherwise resevered sequence of letters can be used.

The types and names of the arguments which are passed on to the procedure are

laid down in the PARAMETERLIST. The PARAMETERLIST should be encased in round

brackets. The PROCEDUREBODY contains a sequence of Singular code. If the proce-

dure is to return a result, the result should be stored in a variable result and the

procedure should terminate with the command return(result);.

An example is more useful than thousands of words:

proc permcol (matrix A, int c1, int c2)

{
matrix B=A;

B[1..nrows(B),c1]=A[1..nrows(A),c2];

B[1..nrows(B),c2]=A[1..nrows(A),c1];

return(B);

}
The procedure permcol should exchange two columns of a matrix. For this three

arguments are necessary. The first argument of name A is of type matrix, the two

following arguments c1 and c2 are of type int. Singular instructions follow and

the result is stored in the variable B of type matrix, which is then returned with

return(B);. This means, in particular, that the result of the procedure is of type

matrix.
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A procedure can be invoked by entering the procedure name, followed by the argu-

ments in round brackets. E.g.

LIB "matrix.lib"; LIB "inout.lib";

ring r=0,(x),lp;

matrix A[3][3]=1,2,3,4,5,6,7,8,9;

pmat(A,2);

7→ 1 2 3

4 5 6

7 8 9

matrix B=permcol(A,2,3);

pmat(B,2);

7→ 1 3 2

4 6 5

7 9 8

Variables, which are defined within a procedure, are only known there and may,

therefore, have the same name as objects which are defined outside the procedure.

1.7 Libraries. To make procedures available for more than one Singular session,

it makes sense to store them in files, which can be loaded as Singular libraries.

The library names always have the ending .lib. Libraries are read into Singular

through the command LIB followed by library name enclosed in ", such as

LIB "123456.lib";

(Library names should, if possible, only consist of eight letters, to guarantee com-

patibility with systems such as Dos!) If they are not builtin Singular libraries,

then they should be in the subdirectory from which Singular is started.

Of course, a library must conform to certain syntax rules, and procedures, which

are stored in libraries, should be extended by two explanatory additions. We show

this in an example:

////////////////////////////////////////////////////////////////////

version="1.0";

info="
LIBRARY: linalgeb.lib FIRST STEPS IN LINEAR ALGEBRA

AUTHOR: Thomas Markwig, email: keilen@mathematik.uni-kl.de

PROCEDURES:

permcol(matrix,int,int) permutes columns of the matrix

permrow(matrix,int,int) permutes rows of the matrix
";

////////////////////////////////////////////////////////////////////

LIB "inout.lib";
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////////////////////////////////////////////////////////////////////

proc permcol (matrix A, int c1, int c2)

"USAGE: permcol(A,c1,c2); A matrix, c1,c2 positive integers

RETURN: matrix, A being modified by permuting column c1 and c2

NOTE: space for important remark

can be stretched over several lines

EXAMPLE: example permcol; shows an example"

{
matrix B=A;

B[1..nrows(B),c1]=A[1..nrows(A),c2];

B[1..nrows(B),c2]=A[1..nrows(A),c1];

return(B);

}
example

{
"EXAMPLE:";

echo = 2;

ring r=0,(x),lp;

matrix A[3][3]=1,2,3,4,5,6,7,8,9;

pmat(A);

pmat(permcol(A,2,3));

}
...

If a double slash // in a line appears, the rest of the line is interpreted as a comment

and ignored.

The first section is the head of the library. The first line contains the reserved

name version, through which the version number of the library is fixed. General

information to the library follows the reserved name info.

It should be noted that under the item PROCEDURES: all procedure names are listed

with a one-line description.

Singular shows this part when the help command is called on the library, that is

help linalgeb.lib;

It should also be noted that strings are allocated to version and info by means of

the sign of equality, =, so that the " are just as necessary as the semicolon at the

end of the line!

Section two serves the loading of further libraries, whose procedures one wants to

use. As an example, the library inout.lib is loaded, whose procedure pmat is used

in the example part of the procedure permcol.
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In the third section the procedures follow one by one. (It should be noted that the

command proc always has to be at the start of a new line!)

It is recommended that the Syntax in section 1.6 is extended by two sections for

procedures. A commentary block can be inserted between the procedure head and

body, enclosed in ", which contains certain key words followed by the relative infor-

mation. Under USAGE: should be shown how the command is invoked and of which

type the arguments are. RETURN: should contain information on the type of the

return value and, if necessary, further information. NOTE: is used to show important

comments to the procedure, its use, etc. EXAMPLE: shows how an example of the use

of the procedure can be displayed in Singular. The commentary block contains

the information which is shown when the help command is called for the procedure,

e.g. through

help permcol;

The second additional section at the end of the procedure is initiated through the

reserved name example, followed by a section in curly brackets which contains the

Singular code. The aim is to show an example for the operation of the procedure

which explains its use to the user. The user obtains the example by entering example

PROCEDURENAME;.

1.8 Write to files / read from files. The command write offers the possibility to

store the values of variables or any string in a file. For this, the variable values are

converted to strings. The following lines store variable values, resp. a string, in the

file hello.txt:

int a=5;

int b=4;

write("hello.txt",a,b);

write("hello.txt","This is Singular.");

Several variables or strings can be stored at a time, separated by commas. The

value of each variable is written in a separate line.

Data contained in a file can be read in by the command read. They are, however,

interpreted as strings, e.g.

read("hello.txt");

7→ 5

4

This is Singular.

Should Singular code, which is read in from a file, be recognised as such, then the

read command must be passed on to the command execute. If the file hello.txt

contains the following lines,

4*5-3;

6/3;
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then the command

execute(read("hello.txt"));

leads to the following Singular output:

7→ 17

2

A short form for execute(read(...)) is <, e.g.

< "hello.txt";

Anyone wanting to document a Singular session for security in a file, e.g.

hello.txt, can do this with the command monitor, e.g.

monitor("hello.txt","io");

The option "io" causes input as well as output to be stored. The omission of one

of the letters leads to only the input or only the output being stored. The option

monitor is very helpful when working on an operating system on which Singular

is instable.

Please note that monitor opens a file, but does not terminate it. This can be done

by the following input:

monitor("");

2) Types of data in Singular and rings

In Singular different data types are available, and when introducing a variable

first one has to specify the data type of the variable. Most data types in Singular

depend on a meta structure, the base ring, over which they exist. Exceptions are

string, int, intvec und intmat. To perform a computation in Singular it is

first absolutely necessary to define the ring over which one is working.

ring r=0,x(0..2),lp; The ring of polynomials in the variables

x(0), x(1), x(2) with coefficients in the rational

numbers Q and global lexicographical ordering.

ring r=(0,a,b),(x,y,z),dp; The ring of polynomials in the variables x, y, z,

where the coefficients are rational functions in

the variables a and b. The global degree reverse

lexicographical ordering is used.

ring r=(real,15),x,ls; The localised ring of polynomials in the variables

x with coefficients in real numbers R — for com-

putations with 15 places after the decimal point.

The local lexicographical ordering is used.

ring r=5,x,ds; The localised ring of polynomials in the variables

x with coefficients in Z/5Z and local degree re-

verse lexicographical ordering.
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A list of the available data types in Singular is given below.

int i=1; The data type int represents the machine

integers (between −231 und 231 − 1). In

addition, boolean values are represented as

integers, 0 = FALSE, 1 = TRUE.

string s="Hallo"; strings are chains of letters enclosed by ”.

intvec iv=1,2,3,4; A vector of integers.

intmat im[2][3]=1,2,3,4,5,6; A matrix with two lines and three columns

with integer entries.

ring R=(0,a),(x,y),lp; Q(a)[x, y] with lexicographical order.

number n=4/6; numbers are the elements of the base field

of the ring. By ring r=0,x,lp; the ratio-

nal numbers, by ring r=(0,a),x,lp; also

fractions of polynomials in a, e.g. a
2+1
a−1

.

list l=n,iv,s; A list can contain objects of different types.

l[2] refers to the second entry of l.

matrix m[2][3]=1,2,3,4,5,6; A matrix with two lines and three columns,

the entries being of type poly,

vector v=[1,2,3]; A vector in the module R3.

proc The data type procedure is discussed at

length in 1.6.

poly f=x2+2x+1; A polynomial in the indeterminates of the

ring with numbers as coefficients, here f =

x2 + 2x + 1. Note that numbers in front of

the monomials are interpreted as coefficients,

whereas Singular interprets integers after

single variables as exponents.

ideal i=f,x3; The ideal generated by f and x3.

qring Q=i; The quotient ring R/i.

map g=R,x; A map from the ring R to the current ring

sending the first variable of R to x.

module mo=v,[x,x2,x+1]; The module generated v and (x, x2, x+ 1).

def j; In case one does not want to specify the data

type yet, one can use the type def. The first

time a value is assigned to j this value deter-

mines the data type of j.

link For the data type link, we refer to the man-

ual [DGPS10].

resolution For the data type resolution, we refer to

the manual [DGPS10].
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At the first glance it might seem as though the matrices im and m are identical. For

Singular that is not the case as they are of different types!

3) Some elements of the programming language Singular

3.1 Allocations. In Singular the operator = is used to assign a value to a variable.

It is possible to assign a value at the time of the definition of the variable,

int i=1;

or later,

int i;
...

i=2;

3.2 Loops. There are two types of loops, the for and the while loop.

The for loop is used typically, if a command sequence is to be performed several

times and the number of times is known beforehand. E.g.

int s=0;

int i;

for (i=1; i<=10; i=i+1)

{
s=s+i;

}
The command sequence in curly brackets are the commands executed when passing

the loop. The commands in round brackets determine how often the loop is to be

passed. The first entry fixes the control variable and is here of type int; the second

entry shows the termination condition, i.e. the loop is passed through as long as this

condition is fulfilled; the third entry fixes how the control variable should change in

each passage. The example computes the sum of the first ten natural numbers.

while loops are used, when the number of passages is not a priori clear. E.g.

int s=10000;

int i=1;

while (s > 50)

{
i=i*i;

s=s-i;

}
Again the command sequence is shown in curly brackets, whilst the termination

conditions are shown in round brackets. As long as these show the value TRUE, the

loop is performed.

The termination condition is checked before the first entry into the loop.
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3.3 Branchings. Singular offers as a branching the if-else command, where,

however, the else part could be missing. E.g.

int i=10;

int s=7;

if (i<5 or s<10)

{
s=5;

}
else

{
s=0;

}
Again the command sequences are shown as a block in curly brackets, whereas the

branching conditions are in round brackets.

3.4 Comparison operators. In Singular we have the comparison operators == and

!=, with which objects of the same type (e.g. int, string, matrix, etc.) can be

compared to one another. == tests for equality and supplies the value 1 if the objects

are the same and otherwise 0. != checks for inequality. <> has the same effect.

For the data types int, number, poly and vector, the operators <, >, <= and >=

are available. Its significance for integers and monomials is clear. We refer to the

manual for further data types [DGPS10].

3.5 Some further operators in Singular. As we have already seen, the operators

may depend on the data types.

boolean: For boolean variables, the connecting operators and and or as well as

the negating operator not are defined.
not ((1==0) or (1!=0));

7→ 0
int: For integers the operations +, - and * are entirely clear. ^ means raising

to some power
int i=4;

i^3;

7→ 64
The commands div and mod are more difficult, whereby the first is synonymous

to /. If, for two integers, a division with remainder is performed, then mod

supplies the remainder, and div the result without remainder. E.g. 7 = 2∗3+1,
also

7 div 3;

7→ 2

7 mod 3;

7→ 1
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list: The following operators are given for the data type list.
+ Combines the elements of two lists.

delete Deletes an element from a list, delete(L,3) deletes the third

element of the list L.

insert Inserts an element into a list. insert(L,4) inserts the ele-

ment 4 at the start of the list L, insert(L,4,2) inserts four

into into the second position.
matrix: The operators +, - and * are available with their obvious meaning. We

show, by examples, how single entries of a matrix, resp. whole lines or columns

of a matrix, can by accessed:

matrix m[2][3]=1,2,3,4,5,6;

print(m);

7→ 1,2,3,

4,5,6

m[1,2];

7→ 2;

m[1,1..3];

7→ 1 2 3

m[1..2,3];

7→ 3 6

4) Some selected functions in Singular

Singular has a quite notable arsenal of functions available, which are, in part,

integrated in the Singular core, in part made available via libraries. We only wish

to show a small selection of function names, which are useful for computations in

linear algebra. Information on their syntax can be found via help or in the manual.

4.1 Functions which are connected to the data type matrix. ncols, nrows,

print, size, transpose, det, as functions in the core of Singular. Fur-

thermore there are the functions of the library matrix.lib, in particular

permrow, permcol, multrow, multcol, addrow, addcol, concat, unitmat,

gauss row, gauss col, rowred, colred. Also the function pmat from the library

inout.lib is interesting.

4.2 Functions which are connected to the data type int. random, gcd, prime as

functions in the core of Singular.

5) ESingular - or the editor Emacs

There are many editors in which Singular procedures and libraries can be written.

On Unix or similar systems the editor emacs (oder Xemacs) should be considered, as

it simplifies the entered code through using coloured highlighting of the key words,

and they offer many options which simplify editing and error correction.
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There is another reason for the recommendation to use Emacs. Singular can be

started in a special Emacs mode, as ESingular. This means that first the editor

Emacs is started and then inside Emacs the programme Singular. The advantage

is that apart from the full functionality of the editor Emacs for editing files, a bunch

of further options can be made available, which simplify the use — in particular for

the inexperienced user, for whom pulldown menu buttons are available. By calling

ESingular --emacs=xemacs

it is possible to fix the version of Emacs which is to be used, in this case Xemacs.

6) Exercises

Exercise A.1

Write a procedure binomi, which reads in two natural numbers n and k and returns

the binomial coefficient
(

n
k

)

. (Convention, if k < 0 or k > n, then
(

n
k

)

= 0.)

Exercise A.2

Write a procedure squaresum, which reads in the natural number n and returns the

sum of the square numbers 12, 22, 32, . . . , n2.

Exercise A.3

Write a procedure minimum, which reads in a vector of natural numbers and returns

the minimum of the numbers.

Exercise A.4

Write a procedure rowsumnorm, maximumnorm and q eukl norm, which read in a

(m× n) matrix A of real numbers and calculate

a. the row summmation norm of A (i.e. maxi=1,...,m
(

Σnj=1|Aij|
)

),

b. the maximum norm of A (i.e. max
(

|Aij|
∣

∣ i = 1, . . . ,m, j = 1, . . . , n
)

), respec-

tively

c. the square of the euclidian norm of A (i.e. Σi,j|Aij|
2).

Use the function abs from the library linalg.lib for the absolute value.

7) Solutions

Solution to Exercise A.1

proc binomi (int n, int k)

"USAGE: binomi(n,k); int n, int k

RETURN: int, binomial coefficient n over k

EXAMPLE: example binomi; shows an example"

{
if ((k < 0) or (k > n))

{
return(0);
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}
else

{
int i;

int denominator,nominator1,nominator2 = 1,1,1;

for (i=1;i<=n;i++)

{
denominator = denominator * i;

}
for (i=1;i<=k;i++)

{
nominator1 = nominator1 * i;

}
for (i=1;i<=n-k;i++)

{
nominator2 = nominator2 *i;

}
return (denominator / (nominator1 * nominator2));

}
}
example

{
"Example:";

echo = 2;

binomi(5,2);

binomi(7,5);

}

Solution to Exercise A.2

proc squaresum (int n)

"USAGE: squaresum(n); int n

RETURN: int, the sum of the first n square numbers

EXAMPLE: example squaresum; shows an example"

{
if (n < 0)

{
return (0);

}
else

{
int i;

int result = 0;
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for (i=1;i<=n;i++)

{
result = result + i*i;

}
return (result);

}
}
example

{
"Example:";

echo = 2;

squaresum(3);

squaresum(5);

}

Solution to Exercise A.3

proc minimum (intvec iv)

"USAGE: minimum(iv); iv intvector

RETURN: int, the minimum of the entries in iv

EXAMPLE: example minium; shows an example"

{
int i;

int k=size(iv);

int result=iv[1];

for (i=2;i<=k;i++)

{
if (iv[i] < result)

{
result=iv[i];

}
}

return(result);

}
example

{
"EXAMPLE:";

echo=2;

intvec iv=3,2,5,2,1;

print(iv);

minimum(iv);

iv =-3,4,5,3,-6,7;

print(iv);
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minimum(iv);

}

Solution to Exercise A.4

proc rowsumnorm (matrix A)

"USAGE: rowsumnorm(A); matrix A with rational/real entries

RETURN: poly, the row-sum-norm of A

EXAMPLE: example rowsumnorm; shows an example"

{
int i,j;

int n,m = ncols(A),nrows(A);

poly r,s = 0,0;

for (i=1;i<=m;i++)

{
for (j=1;j<=n;j++)

{
r = r + abs(A[i,j]);

}
if (r > s)

{
s = r;

}
r = 0;

}
return (s);

}
example

{
"Example:";

echo = 2;

ring r=real,x,lp;

matrix A[3][2]=-3,-2,-1,3,-4,2;

print(A);

rowsumnorm(A);

ring r=0,x,lp;

matrix B[3][2]=-7,0,0,3,-4,2;

print(B);

rowsumnorm(B);

}

proc maximumnorm (matrix A)

"USAGE: maximumnorm(A); matrix A with rational/real entries

RETURN: poly, the maximum norm of A
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EXAMPLE: example maximumnorm; shows an example"

{
int i,j;

int n,m = ncols(A),nrows(A);

poly r = 0;

for (i=1;i<=m;i++)

{
for (j=1;j<=n;j++)

{
if (abs(A[i,j]) > r)

{
r = abs(A[i,j]);

}
}

}
return(r);

}
example

{
"Example:";

echo = 2;

ring r=real,x,lp;

matrix A[3][2]=-3,-2,-1,3,-4,2;

print(A);

maximumnorm(A);

ring r=0,x,lp;

matrix B[3][2]=-7,0,0,3,-4,2;

print(B);

maximumnorm(B);

}

proc q eukl norm (matrix A)

"USAGE: q eukl norm(A); matrix A with rational/real entries

RETURN: poly, the square of the euclidean norm of A

EXAMPLE: example q eukl norm; shows an example"

{
int i,j;

int n,m = ncols(A),nrows(A);

poly r = 0;

for (i=1;i<=m;i++)

{
for (j=1;j<=n;j++)
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{
r = r + abs(A[i,j]) * abs(A[i,j]);

}
}
return (r);

}
example

{
"Example:";

echo = 2;

ring r=real,x,lp;

matrix A[3][2]=-3,-2,-1,3,-4,2;

print(A);

q eukl norm(A);

ring r=0,x,lp;

matrix B[3][2]=-7,0,0,3,-4,2;

print(B);

q eukl norm(B);

}

Appendix B First steps with surfex

The programme surfex (see [HL08]) offers a graphical interface to visualise algebraic

surfaces in 3-space and curves on such surfaces. One can either start surfex directly

or one can invoke it from within a Singular session. If you should want to invoke

surfex from within Singular then you have to load the library surfex.lib first.

The Singular command to plot a surface would then be plotRot. We demonstrate

this with for the polynomial f = x2 − y2 · (t2 − y).

SINGULAR /

A Computer Algebra System for Polynomial Computations / version 3-1-2

0<

by: W. Decker, G.-M. Greuel, G. Pfister, H. Schoenemann \ Oct 2010

FB Mathematik der Universitaet, D-67653 Kaiserslautern \

> ring r=0,(t,x,y),dp;

> poly f=x^2-y^2*(t^2-y);

> LIB "surfex.lib";

> plotRot(f);

The command plotRot starts the programme surfex and opens three new windows

(see Figure 34). The leftmost window contains the equation of the surface as well

as most of the control buttons to direct the programme; the upper right window
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Figure 34. Surfex

allows to rotate the surface and to zoom in and out; the third window displays the

surface.

If you start surfex from within Singular your Singular session is interrupted

as long as surfex is running. In order to continue in Singular you have to shut

down surfex. Moreover, you should be aware that your Singular variables will

be renamed, so that the first variable becomes x, the second y and the third z. In

the above example the variable t becomes x, x becomes y and y becomes z. The

polynomial x2 − y2 · (t2 − y) is thus transformed into y2 − z2 · (y2 − z).
As mentioned above one can use surfex in order to cut two surfaces and to draw

the intersection curve on one of the two surfaces. We show this for the surface

V(y2 − z2 · (y2 − z)) and the plane V(x − 1). In Figure 35 we added besides the

polynomial y2− z2 · (y2− z), that could already be seen in Figure 34 the polynomial

x− 1 by using the button add eqn. Both polynomials can be seen in the third part

of the control window, and both surfaces are displayed in the left part of Figure 36.

There you can also see the intersection curve in black. In order to produce this we

have used the button add curve. By this we got the option to choose some numbers

in the fourth part of the control window. We chose the numbers 1 and 2. This means

that on the surface given by the polynomial f1 the intersection curve that we get

by intersecting this surface with the surface given by the polynomial f2 should be

drawn. In the right part of Figure 36 only the surface V
(

y2 − z2 · (y2 − z)
)

and the

intersection curve can be seen. This is achieved by removing the hook in front of

the polynomial x − 1 in the control window of surfex (see Figure 35). For further

details on the use of surfex we refer to the manual [HL08] and to the surfex web

page:

http://www.surfex.algebraicsurface.net
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Figure 35. The intersection of V
(

y2 − z2 · (y2 − z)
)

and V(x− 1)

Figure 36. The intersection of V
(

y2 − z2 · (y2 − z)
)

and V(x− 1)
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