
A Short Introduction to Singular

Thomas Keilen
Fachbereich Mathematik

Universität Kaiserslautern
67553 Kaiserslautern

keilen@mathematik.uni-kl.de

Singular Version 2.0.4
Universität Kaiserslautern

Fachbereich Mathematik und Zentrum für Computeralgebra
Autoren: G.–M. Greuel, G. Pfister, H. Schönemann

Copyright c©1986-2003; alle Rechte vorbehalten

Singular Version 2.0.4
Universität Kaiserslautern

Fachbereich Mathematik und Zentrum für Computeralgebra
Autoren: G.–M. Greuel, G. Pfister, H. Schönemann

Copyright c©1986-03; alle Rechte vorbehalten

A SHORT INTRODUCTION TO SINGULAR

THOMAS KEILEN

Contents

1. First steps 2

1.1. Notations 2

1.2. Starting and terminating Singular 2

1.3. The online help help 3

1.4. Interrupt Singular 3

1.5. Editting inputs 3

1.6. Procedures 3

1.7. Libraries 4

1.8. Write to files / read from files 6

2. Types of data in Singular and rings 7

3. Some elements of the programming language Singular 8

3.1. Allocations 8

3.2. Loops 9

3.3. Branchings 9

3.4. Comparison operators 10

3.5. Some further operators in Singular 10

4. Some selected functions in Singular 10

4.1. Functions which are connected to the data type matrix 11

4.2. Functions which are connected to the data type int 11

5. ESingular - or the editor Emacs 11

6. Exercises 11

7. Solutions 12

References 17

This short introduction to the computer algebra system Singular does not claim
to be complete. It introduces step by step basic structures and commands in Singu-

lar. The introduction is not written in a strictly systematic manner. Therefore, for
1

2 THOMAS KEILEN

a systematical and complete documentation of Singular, we refer to the manual
[DGPS10]. Anyone wishing to install Singular on their personal computer can
find the sources and the installation instructions on the Singular home page:

http://www.singular.uni-kl.de/

1. First steps

1.1. Notations. The following notations will be used in this introduction:

• Singular input and output as well as set words will be written in typewriter
face, e.g. exit; oder help.
• The symbol 7→ starts Singular output, e.g.:

int i=5;

i;

7→ 5

• Square brackets mark the parts of the syntax which are optional, that is, can
be left out. E.g.

pmat(M[,n]);

The above command, a procedure of the library matrix.lib is used to
show a matrix M as a formatted matrix. The optional parameter n defines
the width of the columns. If this is missing, a standard value will be used.
• Keys are also shown in typewriter face, such as:

n (press the key n),
RETURN (press the enter key),
CTRL-P (press the control key and P simultaneously).

1.2. Starting and terminating Singular. Obviously, the first question is, how
does one start the programme and how can it be terminated? Singular is started
by using the command

Singular

in the command line of the system.

After the start, Singular shows an input prompt, a >, and is available to the user
for interactive use. As soon as the user no longer wants to use this possibility, it
is recommended to terminate the programme. There are three commands available
for this: exit;, quit; or, for very lazy users, $.

Please note that the semicolons in the preceding paragraph are part of the Singular

commands.

In general, every command in Singular ends with a semicolon!

The semicolon tells the computer that the input is to be interpreted and, if this is
successful, be carried out. The programme comes up with a result (possibly an error
notification) followed by a new input prompt. Should the user forget the semicolon,
Singular shows this with an input prompt ., in words a dot, and enables further
inputs, such as the missing semicolon. In this way it is possible to stretch longer
commands over several lines.

A SHORT INTRODUCTION TO SINGULAR 3

1.3. The online help help. The next most important information after the start
and terminate commands is how to find help. Here Singular offers the command
help, or in short ?. Using the command help followed by a Singular command,
a Singular function or procedure name or a Singular library, information to
the respective objects are shown. For the libraries one receives a list of the proce-
dures contained therein, for commands, functions and procedures their purpose is
explained as well as their syntax and one gets examples.

Examples:

help exit;

help standard.lib;

help printf;

By default an internet browser will be opened and the help will be displayed. Via
self–explanatory buttons the entire handbook is available.

1.4. Interrupt Singular. Under Unix–like operating systems and under Windows,
it is possible, via the key combination CTRL-C, to force an interruption in Singular.
Singular reacts with an output of the currently performed command and awaits
further instructions. The following options are available:

a Singular carries out the current command and returns then to top level,
c Singular carries on,
q the programme Singular is terminated.

1.5. Editting inputs. If a command has been misspelled, or if an earlier command
is needed again, it is not absolutely necessary to renew the input. Existing Singu-

lar text can be edited. For this, Singular records a history of all commands of
a Singular session. Below is a selection of the available key combinations for text
editing:

TAB automatic completion of function and file names

←
CTRL-B moves the cursor to the left

→
CTRL-F moves the cursor to the right
CTRL-A moves the cursor to the beginning of the line
CTRL-E moves the cursor to the end of the line
CTRL-D deletes the letter under the cursor — never use in an empty line!

BACKSPACE

DEL

CTRL-H deletes the letter in front of the cursor
CTRL-K deletes all from the cursor to the end of the line
CTRL-U deletes all from the cursor to the beginning of the line

↓
CTRL-N supplies the next line from the history

↑
CTRL-P supplies the preceding line from the history
RETURN sends the current line to the Singular parser

1.6. Procedures. The user can create new commands in Singular. These are
called procedures. The syntax of a procedure is fairly simple:

4 THOMAS KEILEN

proc PROCEDURENAME [PARAMETERLIST]

{
PROCEDUREBODY

}

For PROCEDURENAME, any not otherwise resevered sequence of letters can be used.
The types and names of the arguments which are passed on to the procedure are
laid down in the PARAMETERLIST. The PARAMETERLIST should be encased in round
brackets. The PROCEDUREBODY contains a sequence of Singular code. If the proce-
dure is to return a result, the result should be stored in a variable result and the
procedure should terminate with the command return(result);.

An example is more useful than thousands of words:

proc permcol (matrix A, int c1, int c2)

{
matrix B=A;

B[1..nrows(B),c1]=A[1..nrows(A),c2];

B[1..nrows(B),c2]=A[1..nrows(A),c1];

return(B);

}

The procedure permcol should exchange two columns of a matrix. For this three
arguments are necessary. The first argument of name A is of type matrix, the two
following arguments c1 and c2 are of type int. Singular instructions follow and
the result is stored in the variable B of type matrix, which is then returned with
return(B);. This means, in particular, that the result of the procedure is of type
matrix.

A procedure can be invoked by entering the procedure name, followed by the argu-
ments in round brackets. E.g.

LIB "matrix.lib"; LIB "inout.lib";

ring r=0,(x),lp;

matrix A[3][3]=1,2,3,4,5,6,7,8,9;

pmat(A,2);

7→ 1 2 3

4 5 6

7 8 9

matrix B=permcol(A,2,3);

pmat(B,2);

7→ 1 3 2

4 6 5

7 9 8

Variables, which are defined within a procedure, are only known there and may,
therefore, have the same name as objects which are defined outside the procedure.

1.7. Libraries. To make procedures available for more than one Singular session,
it makes sense to store them in files, which can be loaded as Singular libraries.
The library names always have the ending .lib. Libraries are read into Singular

through the command LIB followed by library name enclosed in ", such as

LIB "123456.lib";

A SHORT INTRODUCTION TO SINGULAR 5

(Library names should, if possible, only consist of eight letters, to guarantee com-
patibility with systems such as Dos!) If they are not builtin Singular libraries,
then they should be in the subdirectory from which Singular is started.

Of course, a library must conform to certain syntax rules, and procedures, which
are stored in libraries, should be extended by two explanatory additions. We show
this in an example:

//

version="1.0";

info="
LIBRARY: linalgeb.lib FIRST STEPS IN LINEAR ALGEBRA

AUTHOR: Thomas Markwig, email: keilen@mathematik.uni-kl.de

PROCEDURES:

permcol(matrix,int,int) vertauscht Spalten der Matrix

permrow(matrix,int,int) vertauscht Zeilen der Matrix
";

//

LIB "inout.lib";

//

proc permcol (matrix A, int c1, int c2)

"USAGE: permcol(A,c1,c2); A matrix, c1,c2 positive integers

RETURN: matrix, A being modified by permuting column c1 and c2

NOTE: space for important remark

can be stretched over several lines

EXAMPLE: example permcol; shows an example"

{
matrix B=A;

B[1..nrows(B),c1]=A[1..nrows(A),c2];

B[1..nrows(B),c2]=A[1..nrows(A),c1];

return(B);

}

example

{
"EXAMPLE:";

echo = 2;

ring r=0,(x),lp;

matrix A[3][3]=1,2,3,4,5,6,7,8,9;

pmat(A);

pmat(permcol(A,2,3));

}

...

If a double slash // in a line appears, the rest of the line is interpreted as a comment
and ignored.

The first section is the head of the library. The first line contains the reserved
name version, through which the version number of the library is fixed. General
information to the library follows the reserved name info.

6 THOMAS KEILEN

It should be noted that under the item PROCEDURES: all procedure names are listed
with a one-line description.

Singular shows this part when the help command is called on the library, that is

help linalgeb.lib;

It should also be noted that strings are allocated to version and info by means of
the sign of equality, =, so that the " are just as necessary as the semicolon at the
end of the line!

Section two serves the loading of further libraries, whose procedures one wants to
use. As an example, the library inout.lib, whose procedure pmat in the example

part of the procedure permcol is used.

In the third section the procedures follow one by one. (It should be noted that the
command proc is always shown at the beginning of a new line!)

It is recommended that the Syntax in section 1.6 is extended by two sections for
procedures. A commentary block can be inserted between the procedure head and
body, enclosed in ", which contains certain key words followed by the relative in-
formation. Under USAGE: should be shown how the command is invoked and of
which type the arguments are. RETURN: should contain information on the type of
the return value and, if necessary, any further information. NOTE: is used to show
important comments to the procedure, its use, etc. EXAMPLE: shows how an example
of the use of the procedure can be displayed in Singular. The commentary block
contains the information which is shown when the help command is called for the
procedure under, e.g. through

help permcol;

The second additional section at the end of the procedure is initiated through the
reserved name example, followed by a section in curly brackets which contains the
Singular code. The aim is to show an example for the operation of the procedure
which explains its use to the user. The user obtains the example by entering example

PROCEDURENAME;.

1.8. Write to files / read from files. The command write offers the possibility
to store the values of variables or any string in a file. For this, the variable values
are converted to strings. The following lines store variable values, resp. a string, in
the file hallo.txt:

int a=5;

int b=4;

write("hallo.txt",a,b);

write("hallo.txt","This is Singular.");

Several variables or strings can be stored at a time, separated by commas. The
value of each variable is written in a separate line.

Data contained in a file can be read in by the command read. They are, however,
interpreted as strings, e.g.

read("hallo.txt");

7→ 5

4

This is Singular.

A SHORT INTRODUCTION TO SINGULAR 7

Should Singular code, which is read in from a file, be recognised as such, then the
read command must be passed on to the command execute. If the file hallo.txt

contains the following lines,

4*5-3;

6/3;

then the command

execute(read("hallo.txt"));

leads to the following Singular output:

7→ 17

2

A short form for execute(read(...)) is <, e.g.

< "hallo.txt";

Anyone wanting to document a Singular session for security in a file, e.g. hallo.txt,
can do this with the command monitor, e.g.

monitor("hallo.txt","io");

The option "io" causes input as well as output to be stored. The omission of one
of the letters leads to only the input or only the output being stored. The option
monitor is very helpful when working on an operating system on which Singular

is instable.

Please note that monitor opens a file, but does not terminate it. This can be done
by the following input:

monitor("");

2. Types of data in Singular and rings

In Singular different data types are available, and when introducing a variable
first one has to specify the data type of the variable. Most data types in Singular

depend on a meta structure, the base ring, over which they exist. Exceptions are
string, int, intvec und intmat. To perform a computation in Singular it is
first absolutely necessary to define the ring over which one is working.

ring r=0,x(0..2),lp; The ring of polynomials in the variables
x(0), x(1), x(2) with coefficients in the rational
numbers Q and global lexicographical ordering.

ring r=(0,a,b),(x,y,z),dp; The ring of polynomials in the variables x, y, z,
where the coefficients are rational functions in
the variables a and b. The global degree reverse
lexicographical ordering is used.

ring r=(real,15),x,ls; The localised ring of polynomials in the variables
x with coefficients in real numbers R — for com-
putations with 15 places after the decimal point.
The local lexicographical ordering is used.

ring r=5,x,ds; The localised ring of polynomials in the variables
x with coefficients in Z/5Z and local degree re-
verse lexicographical ordering.

A list of the available data types in Singular is given below.

8 THOMAS KEILEN

int i=1; The data type int represents the machine
integers (between −231 und 231 − 1). In
addition, boolean values are represented as
integers, 0 = FALSE, 1 = TRUE.

string s="Hallo"; strings are chains of letters enclosed by ”.
intvec iv=1,2,3,4; A vector of integers.
intmat im[2][3]=1,2,3,4,5,6; A matrix with two lines and three columns

with integer entries.
ring R=(0,a),(x,y),lp; Q(a)[x, y] with lexicographical order.
number n=4/6; numbers are the elements of the field based

on the ring. By ring r=0,x,lp; the ratio-
nal numbers, by ring r=(0,a),x,lp; also
fractions of polynomials in a with complete
number coefficients, i.e. a2+1

a−1
.

list l=n,iv,s; A list can contain objects of different types.
l[2] refers to the second entry of l.

matrix m[2][3]=1,2,3,4,5,6; A matrix with two lines and three columns,
the entries being of type poly,

vector v=[1,2,3]; A vector in the module R3.
proc The data type procedure is discussed at

length in 1.6.
poly f=x2+2x+1; A polynomial in the indeterminates of the

ring with numbers as coefficients, here f =
x2 + 2x + 1. Note that numbers in front of
the monomials are interpreted as coefficients,
whereas Singular interprets integers after
single variables as exponents.

ideal i=f,x3; The ideal generated by f and x3.
qring Q=i; The quotient ring R/i.
map g=R,x; A map from the ring R to the current ring

sending the first variable of R to x.
module mo=v,[x,x2,x+1]; The module generated v and (x, x2, x + 1).
def j; In case one does not want to specify the data

type yet, one can use the type def. The first
time a value is assigned to j this value deter-
mines the data type of j.

link For the data type link, we refer to the hand-
book [DGPS10].

resolution For the data type resolution, we refer to
the handbook [DGPS10].

At first glance it might seem as though the matrices im and m are identical. In the
case of Singular that is not the case as they are of different types!

3. Some elements of the programming language Singular

3.1. Allocations. In Singular the operator = is used to assign a value to a vari-
able. It is possible to assign a value at the time of the definition of the variable,

int i=1;

or later,

A SHORT INTRODUCTION TO SINGULAR 9

int i;
...

i=2;

3.2. Loops. There are two types of loops, the for and the while loop.

The for loop is used typically, if a command sequence is to be performed several
times and the number of times is known beforehand. E.g.

int s=0;

int i;

for (i=1; i<=10; i=i+1)

{
s=s+i;

}

The command sequence in curly brackets are the commands executed when passing
the loop. The commands in round brackets determine how often the loop is to be
passed. The first entry fixes the control variable and is here of type int; the second
entry shows the termination condition, i.e. the loop is passed through as long as this
condition is fulfilled; the third entry fixes how the control variable should change in
each passage. The example computes the sum of the first ten natural numbers.

while loops are used, when the number of passages is not a priori clear. E.g.

int s=10000;

int i=1;

while (s > 50)

{
i=i*i;

s=s-i;

}

Again the command sequence is shown in curly brackets, whilst the termination
conditions are shown in round brackets. As long as these show the value TRUE, the
loop is performed.

The termination condition is checked before the first entry into the loop.

3.3. Branchings. Singular offers as a branching the if-else command, where,
however, the else part could be missing. E.g.

int i=10;

int s=7;

if (i<5 or s<10)

{
s=5;

}
else

{
s=0;

}

Again the command sequences are shown as a block in curly brackets, where as the
branching conditions are in round brackets.

10 THOMAS KEILEN

3.4. Comparison operators. In Singular we have the comparison operators ==
and =!, with which objects of the same type (e.g. int, string, matrix, etc.) can
be compared to one another. == tests for equality and supplies the value 1 if the
objects are the same and otherwise 0. != checks for inequality. <> has the same
effect.

For the data types int, number, poly and vector, the operators <, >, <= and >=

are available. Its significance for integers and monomials is clear. We refer to the
handbook for further data types [DGPS10].

3.5. Some further operators in Singular. As we have already seen, the opera-
tors may depend on the data types.

boolean: For boolean variables, the connecting operators and and or as well
as the negating operator not are defined.

not ((1==0) or (1!=0));

7→ 0
int: For integers the operations +, - and * are entirely clear. ^ means raising

to some power
int i=4;

i^3;

7→ 64
The commands div and mod are more difficult, whereby the first is synony-
mous to /. If, for two integers, a division with rest is performed, then mod

supplies the rest, and div the result without rest. E.g. 7 = 2 ∗ 3 + 1, also
7 div 3;

7→ 2

7 mod 3;

7→ 1
list: The following operators are given for the data type list.

+ Combines the elements of two lists.
delete Deletes an element from a list, delete(L,3) deletes the third

element of the list L.
insert Inserts an element into a list. insert(L,4) inserts the ele-

ment 4 at the start of the list L, insert(L,4,2) inserts four
into into the second position.

matrix: The operators +, - and * are available with their obvious meaning.
We show, by examples, how single entries of a matrix, resp. whole lines or
columns of a matrix, can by accessed:

matrix m[2][3]=1,2,3,4,5,6;

print(m);

7→ 1,2,3,

4,5,6

m[1,2];

7→ 2;

m[1,1..3];

7→ 1 2 3

m[1..2,3];

7→ 3 6

4. Some selected functions in Singular

Singular has a quite notable arsenal of functions available, which are, in part,
integrated in the Singular core, in part made available via libraries. We only

A SHORT INTRODUCTION TO SINGULAR 11

wish to show a small selection of function names, which are useful for computations
in linear algebra. Information on their syntax can be found via help or in the
handbook.

4.1. Functions which are connected to the data type matrix. ncols, nrows,

print, size, transpose, det, as functions in the core of Singular. Further the
functions of the library matrix.lib, in particular permrow, permcol, multrow,

multcol, addrow, addcol, concat, unitmat, gauss row, gauss col, rowred,

colred. Also the function pmat from the library inout.lib is interesting.

4.2. Functions which are connected to the data type int. random, gcd,

prime as functions in the core of Singular.

5. ESingular - or the editor Emacs

There are many editors in which Singular procedures and libraries can be written.
On Unix or similar systems the editor emacs (oder Xemacs) should be considered, as
it simplifies the entered code through using coloured underlaying of the key words,
and they offer many options which simplify editing and error correction.

There is another reason for the recommendation to use Emacs. Singular can be
started in a special Emacs mode, as ESingular. This means that first the editor
Emacs is started and then inside Emacs the programme Singular. The advantage
is that apart from the full functionality of the editor Emacs for editing files, a bunch
of further options can be made available, which simplify the use — in particular for
the inexperienced user, for whom pulldown menu buttons are available. By calling

ESingular --emacs=xemacs

it is possible to fix the version of Emacs which is to be used, in this case Xemacs.
Alternatively, the standard can be changed by means of the environment variable
EMACS.

6. Exercises

Exercise 6.1

Write a procedure binomi, which reads in two natural numbers n and k and returns

the binomial coefficient
(

n

k

)

. (Convention, if k < 0 or k > n, then
(

n

k

)

= 0.)

Exercise 6.2

Write a procedure squaresum, which reads in the natural number n and returns the

sum of the square numbers 12, 22, 32, . . . , n2.

Exercise 6.3

Write a procedure minimum, which reads in a vector of natural numbers and returns

the minimum of the numbers.

Exercise 6.4

Write a procedure rowsumnorm, maximumnorm and q eukl norm, which read in a

(m× n) matrix A of real numbers and calculate

(1) the row-sum-norm of A (i.e. maxi=1,...,m

(

Σn
j=1|Aij|

)

),

12 THOMAS KEILEN

(2) the maximum norm of A (i.e. max
(

|Aij|
∣

∣ i = 1, . . . ,m, j = 1, . . . , n
)

),

respectively

(3) the square of the euclidian norm of A (i.e. Σi,j|Aij|
2).

Use the function abs from the library linalg.lib for the absolute value.

7. Solutions

Solution to Exercise 7.1

proc binomi (int n, int k)

"USAGE: binomi(n,k); int n, int k

RETURN: int, binomial coefficient n over k

EXAMPLE: example binomi; shows an example"

{

if ((k < 0) or (k > n))

{

return(0);

}

else

{

int i;

int denominator,nominator1,nominator2 = 1,1,1;

for (i=1;i<=n;i++)

{

denominator = denominator * i;

}

for (i=1;i<=k;i++)

{

nominator1 = nominator1 * i;

}

for (i=1;i<=n-k;i++)

{

nominator2 = nominator2 *i;

}

return (denominator / (nominator1 * nominator2));

}

}

example

{

"Example:";

echo = 2;

binomi(5,2);

binomi(7,5);

}

A SHORT INTRODUCTION TO SINGULAR 13

Solution to Exercise 7.2

proc squaresum (int n)

"USAGE: squaresum(n); int n

RETURN: int, Sum of the first n square numbers

EXAMPLE: example squaresum; shows an example"

{

if (n < 0)

{

return (0);

}

else

{

int i;

int result = 0;

for (i=1;i<=n;i++)

{

result = result + i*i;

}

return (result);

}

}

example

{

"Example:";

echo = 2;

squaresum(3);

squaresum(5);

}

Solution to Exercise 7.3

proc minimum (intvec iv)

"USAGE: minimum(iv); iv intvector

RETURN: int, the minimum of the entries in iv

EXAMPLE: example minium; shows an example"

{

int i;

int k=size(iv);

int result=iv[1];

for (i=2;i<=k;i++)

{

if (iv[i] < result)

{

result=iv[i];

}

14 THOMAS KEILEN

}

return(result);

}

example

{

"EXAMPLE:";

echo=2;

intvec iv=3,2,5,2,1;

print(iv);

minimum(iv);

iv =-3,4,5,3,-6,7;

print(iv);

minimum(iv);

}

Solution to Exercise 7.4

We write first a short procedure to compute the absolute value. proc abs val

(poly r)

"USAGE: abs val(r); poly r - a rational/real number

RETURN: poly, the absolute value of r

EXAMPLE: example abs value; shows an example"

{

if (r < 0)

{

return(-r);

}

else

{

return(r);

}

}

example

{

"Example:";

echo = 2;

ring r=real,x,lp;

abs val(-5.45);

ring s=0,x,lp;

abs val(-4/5);

}

proc rowsumnorm (matrix A)

"USAGE: rowsumnorm(A); matrix A with rational/real entries

RETURN: poly, the row-sum-norm of A

EXAMPLE: example rowsumnorm; shows an example"

A SHORT INTRODUCTION TO SINGULAR 15

{

int i,j;

int n,m = ncols(A),nrows(A);

poly r,s = 0,0;

for (i=1;i<=m;i++)

{

for (j=1;j<=n;j++)

{

r = r + abs(A[i,j]);

}

if (r > s)

{

s = r;

}

r = 0;

}

return (s);

}

example

{

"Example:";

echo = 2;

ring r=real,x,lp;

matrix A[3][2]=-3,-2,-1,3,-4,2;

print(A);

rowsumnorm(A);

ring r=0,x,lp;

matrix B[3][2]=-7,0,0,3,-4,2;

print(B);

rowsumnorm(B);

}

proc maximumnorm (matrix A)

"USAGE: maximumnorm(A); matrix A with rational/real entries

RETURN: poly, the maximum norm of A

EXAMPLE: example maximumnorm; shows an example"

{

int i,j;

int n,m = ncols(A),nrows(A);

poly r = 0;

for (i=1;i<=m;i++)

{

for (j=1;j<=n;j++)

{

16 THOMAS KEILEN

if (abs(A[i,j]) > r)

{

r = abs(A[i,j]);

}

}

}

return(r);

}

example

{

"Example:";

echo = 2;

ring r=real,x,lp;

matrix A[3][2]=-3,-2,-1,3,-4,2;

print(A);

maximumnorm(A);

ring r=0,x,lp;

matrix B[3][2]=-7,0,0,3,-4,2;

print(B);

maximumnorm(B);

}

proc q eukl norm (matrix A)

"USAGE: q eukl norm(A); matrix A with rational/real entries

RETURN: poly, the square of the euclidean norm of A

EXAMPLE: example q eukl norm; shows an example"

{

int i,j;

int n,m = ncols(A),nrows(A);

poly r = 0;

for (i=1;i<=m;i++)

{

for (j=1;j<=n;j++)

{

r = r + abs(A[i,j]) * abs(A[i,j]);

}

}

return (r);

}

example

{

"Example:";

echo = 2;

ring r=real,x,lp;

A SHORT INTRODUCTION TO SINGULAR 17

matrix A[3][2]=-3,-2,-1,3,-4,2;

print(A);

q eukl norm(A);

ring r=0,x,lp;

matrix B[3][2]=-7,0,0,3,-4,2;

print(B);

q eukl norm(B);

}

References

[DGPS10] Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, and Hans Schönemann,

Singular 3-1-1 — A computer algebra system for polynomial computations,

Tech. report, Centre for Computer Algebra, University of Kaiserslautern, 2010,

http://www.singular.uni-kl.de.

Thomas Keilen, Fachbereich Mathematik, Universität Kaiserslautern, 67553 Kaiser-

slautern

E-mail address: keilen@mathematik.uni-kl.de

