Fachbereich Mathematik Thomas Markwig

Algebraische Strukturen

Abgabetermin: Montag, 03/12/2007, 12:00

Aufgabe Nummer 4 ist eine Präsenzaufgabe und braucht nicht zur Korrektur eingereicht zu werden.

Aufgabe 1: Wir definieren für zwei Punkte $(x,y),(x',y') \in \mathbb{R}^2$

$$(x,y) \sim (x',y')$$
 : \iff $|x|+|y|=|x'|+|y'|$.

Zeige, \sim ist eine Äquivalenzrelation auf \mathbb{R}^2 . Zeichne die Äquivalenzklassen zu (1,1) und zu (-2,3) in die Zahlenebene \mathbb{R}^2 ein.

Aufgabe 2: Es sei (G, \cdot) eine Gruppe und $U \le G$. Zeige, die folgenden Aussagen sind äquivalent:

- a. $g^{-1}ug \in U$ für alle $u \in U$ und alle $g \in G$.
- b. $g^{-1}Ug = U$ für alle $g \in G$.
- c. gU = Ug für alle $g \in G$.
- $d. \ (gU) \cdot (hU) = ghU \ f\"{u}r \ alle \ g, h \in G.$

Hinweis: Um die Äquivalenz von mehreren Aussagen zu zeigen, kann man einen sogenannten Ringschluß machen. Es reicht zu zeigen: "a. \Rightarrow b. \Rightarrow c. \Rightarrow d. \Rightarrow a.", denn aus "a. \Rightarrow b." und "b. \Rightarrow c." folgt z.B. "a. \Rightarrow c.", d.h. die scheinbar noch fehlenden Implikationen ergeben sich von selbst.

Aufgabe 3: Sei (\mathbb{S}_n, \circ) die symmetrische Gruppe vom Grad n > 0 und $\sigma \in \mathbb{S}_n$ eine beliebige Permutation. Zeige, daß es eine disjunkte Zerlegung

$$\{1,\ldots,n\}=\coprod_{i=1}^t\{\alpha_{i1},\ldots,\alpha_{ik_i}\}$$

gibt, so daß

$$\sigma = (\alpha_{11} \cdots \alpha_{1k_1}) \circ \ldots \circ (\alpha_{t1} \cdots \alpha_{tk_t}).$$

Hinweis, verwende die Äquivalenzrelation von Aufgabe 3, Blatt 6 um die Zerlegung zu finden.

Aufgabe 4: Bestimme alle Untergruppen der Gruppe $\mathbb{D}_8 = \langle (1\ 2\ 3\ 4), (2\ 4) \rangle$ aus Aufgabe 4, Blatt 6.