Algebraische Strukturen

Die Aufgaben des ersten Übungsblattes sind als Präsenzaufgaben für die Übungsstunden der ersten Woche gedacht.

Aufgabe 1: Untersuche, ob die folgende zweistellige Operation die Menge $G := \mathbb{Q} \times \mathbb{Q}$ zu einer Gruppe macht:

$$G \times G \longrightarrow G : ((a,b),(a',b')) \mapsto (a,b) \cdot (a',b') := (aa',bb').$$

Aufgabe 2: Untersuche, ob die folgende zweistellige Operation die Menge $G := \mathbb{Q}_{>0} \times \mathbb{Q}_{>0}$ zu einer Gruppe macht:

$$G \times G \longrightarrow G : ((a,b),(a',b')) \mapsto (a,b) \cdot (a',b') := (aa',bb').$$

Aufgabe 3: Sei M eine Menge. Für zwei Abbildungen $f: M \to M$ und $g: M \to M$ definieren wir die *Komposition* von f und g durch

$$f \circ g : M \to M : m \mapsto f(g(m)).$$

Wir nennen eine Abbildung $f: M \to M$ bijektiv, wenn es eine Abbildung $f': M \to M$ gibt, so daß

$$f \circ f' = f' \circ f = id_M$$

wobei $id_M:M\to M:m\mapsto m$ die Identität auf M ist. Die Menge aller bijektiven Selbstabbildungen von M bezeichnen wir mit

$$Sym(M) = \{f : M \to M \mid f \text{ ist bijektiv}\}.$$

Zeige, $(Sym(M), \circ)$ ist eine Gruppe.

Aufgabe 4: Es seien (G, \cdot) und (H, *) zwei Gruppen. Wir definieren auf der Menge $G \times H = \{(x, y) \mid x \in G, y \in H\}$ eine zweistellige Operation durch

$$(x,y)\circ(x',y'):=(x\cdot x',y*y')$$

für $(x,y),(x',y')\in G\times H.$ Zeige, daß dann $(G\times H,\circ)$ eine Gruppe ist.