Fachbereich Mathematik Thomas Markwig

Algebraische Strukturen

Abgabetermin: Montag, 05/01/2009, 12:00

Aufgabe Nummer 40 ist eine Präsenzaufgabe und braucht nur von den Fernstudenten zur Korrektur eingereicht zu werden.

Aufgabe 37: Überprüfe, ob die folgenden Nummern gültige EAN-13 sind:

- a. 9002986140573
- b. 4000171060055

Aufgabe 38: Es sei R ein kommutativer Ring mit Eins und $f = \sum_{k=0}^{\infty} \alpha_k \cdot t^k \in R[[t]]$ eine formale Potenzreihe über R. Zeige, f ist genau dann eine Einheit in R[[t]], wenn α_0 eine Einheit in R ist.

Hinweis, wenn a_0 eine Einheit in R ist, so ist eine Reihe $g = \sum_{k=0}^{\infty} b_k \cdot t^k$ mit $f \cdot g = t^0$ gesucht. Multipliziere die linke Seite der Gleichung aus und löse die Gleichungen, die sich für die Koeffizienten ergeben rekursiv.

Aufgabe 39:

- a. Es sei R ein Ring mit Eins und $S \subset R$ ein nicht-leere Teilmenge für die gilt:
 - $x + y \in S$ für alle $x, y \in S$,
 - $-x \in S$ für alle $x \in S$,
 - $x \cdot y \in S$ für alle $x, y \in S$ und
 - $1_R \in S$.

Zeige, S ist ein Ring mit Eins bezüglich der Einschränkung der Addition und der Multiplikation von R auf S.

- b. Zeige, $\mathbb{Z}[\mathfrak{i}] := \{a + \mathfrak{i} \cdot b \in \mathbb{C} \mid a, b \in \mathbb{Z}\}$ ist ein kommutativer Ring mit Eins, wobei die Addition und die Multiplikation einfach die Addition und Multiplikation komplexer Zahlen sein sollen.
- c. Bestimme die Einheitengruppe $\mathbb{Z}[i]^*$ des Ringes $\mathbb{Z}[i]$.

Aufgabe 40: Für $\omega \in \mathbb{Z}$, $\omega \ge 2$, bezeichnen wir mit $\sqrt{-\omega}$ die komplexe Zahl $i \cdot \sqrt{\omega}$.

- a. Zeige, $\mathbb{Z}[\sqrt{-\omega}] := \{a + b \cdot \sqrt{-\omega} \in \mathbb{C} \mid a,b \in \mathbb{Z}\}$ ist ein kommutativer Ring mit Eins, wobei die Addition und die Multiplikation einfach die Addition und Multiplikation komplexer Zahlen sein sollen.
- b. Zeige, $\mathbb{Z}[\sqrt{-\omega}]^* = \{1, -1\}.$