Fachbereich Mathematik Thomas Markwig

Algebraische Strukturen

Abgabetermin: Montag, 16/11/2009, 10:00

Aufgabe Nummer 16 ist eine Präsenzaufgabe und braucht nur von den Fernstudenten zur Korrektur eingereicht zu werden.

Aufgabe 13: Überprüfe, ob die folgende Abbildung

$$\alpha: \mathbb{Z} \longrightarrow \mathbb{Z}: z \mapsto 4 \cdot z + 2$$

ein Endomorphismus der additiven Gruppe $(\mathbb{Z}, +)$ ist.

Aufgabe 14: Betrachte die Gruppe (G, \cdot) aus Blatt 2, Aufgabe 5b. und die Gruppe (U, \cdot) aus Blatt 3, Aufgabe 12. Zeige, die Abbildung

$$\alpha: G \longrightarrow U: (a,b) \mapsto \left(\begin{array}{cc} a & -b \\ b & a \end{array} \right)$$

ist ein Gruppenisomorphismus.

Aufgabe 15: Es sei (G, \cdot) eine Gruppe und $g \in G$. Zeige:

a. Die Abbildung

$$\alpha: \mathbb{Z} \longrightarrow G: n \mapsto g^n$$

ist ein Gruppenhomomorphismus mit Bild $Im(\alpha) = \langle g \rangle$.

b. Gibt es ganze Zahlen $k \neq l$ mit $g^k = g^l$, so existiert die Zahl

$$n = \min\{m \in \mathbb{N} \mid m > 0, g^m = e_G\}$$

und es gelten:

(a)
$$\{m \in \mathbb{Z} \mid g^m = e\} = n\mathbb{Z}$$
,

(b)
$$\langle g \rangle = \{e_G, g, g^2, \dots, g^{n-1}\}, \text{ und }$$

(c)
$$|\langle g \rangle| = n$$
.

Hinweis: In Teil b. verwende man die Division mit Rest für ganze Zahlen, d.h. die Eigenschaft, daß es für zwei ganze Zahlen m und n eindeutig bestimmte ganze Zahlen q und r gibt mit $m=q\cdot n+r$ und $0\leq r<|n|$. r heißt der Rest von m durch n bei Division mit Rest. Diese Art, ganze Zahlen zu teilen kennt Ihr schon aus der Grundschule.

Aufgabe 16: Wir wissen bereits, daß \mathbb{R}^2 mit der komponentenweisen Addition eine Gruppe ist. Welche der folgenden Abbildungen ist ein Gruppenhomomorphismus / -monomorphismus / -epimorphismus / -isomorphismus?

a.
$$\alpha: \mathbb{R}^2 \longrightarrow \mathbb{R}^2: (x,y) \mapsto (x-y,y-x)$$
.

b.
$$\beta: \mathbb{R}^2 \longrightarrow \mathbb{R}^2: (x,y) \mapsto (x+x \cdot y, 2x).$$

c.
$$\gamma: \mathbb{R}^2 \longrightarrow \mathbb{R}^2: (x,y) \mapsto (x-3y,2x)$$
.

Welche der Aussagen bleiben richtig, wenn wir \mathbb{R}^2 durch \mathbb{Z}^2 ersetzen?