Fachbereich Mathematik Thomas Markwig

Algebraische Strukturen

Abgabetermin: Montag, 14/12/2009, 10:00

Aufgabe Nummer 32 ist eine Präsenzaufgabe und braucht nur von den Fernstudenten zur Korrektur eingereicht zu werden.

Aufgabe 29: Es seien $\pi, \sigma \in \mathbb{S}_n$ zwei Permuatationen.

a. Zeige, ist $\sigma = (a_1 \dots a_k)$ ein k-Zykel, so ist

$$\pi \circ \sigma \circ \pi^{-1} = (\pi(\alpha_1) \ldots \pi(\alpha_k)).$$

b. Zeige, ist $\sigma=(\alpha_{1,1}\ \dots\ \alpha_{1,k_1})\circ\dots\circ(\alpha_{t,1}\ \dots\ \alpha_{t,k_t})$ die disjunkte Zyklenzerlegung von σ , so ist

$$\pi \circ \sigma \circ \pi^{-1} = \left(\pi(\alpha_{1,1}) \ldots \pi(\alpha_{1,k_1})\right) \circ \ldots \circ \left(\pi(\alpha_{t,1}) \ldots \pi(\alpha_{t,k_t})\right)$$

die disjunkte Zyklenzerlegung von $\pi \circ \sigma \circ \pi^{-1}$.

Aufgabe 30:

- a. Ist $\mathbb{K}_4 = \{ id, (12) \circ (34), (13) \circ (24), (14) \circ (23) \}$ ein Normalteiler von \mathbb{S}_4 ?
- b. Ist $\langle (1\ 2\ 3\ 4) \rangle \leq \mathbb{S}_4$ ein Normalteiler von \mathbb{S}_4 ?

Aufgabe 31: Zeige, daß jede Gruppe von Primzahlordnung zyklisch ist.

Aufgabe 32:

a. Betrachte für $\mathfrak{m},\mathfrak{n},\mathfrak{a},\mathfrak{b}\in\mathbb{Z}_{>0}$ das Element $\left(\overline{\mathfrak{a}}_{\mathfrak{m}},\overline{\mathfrak{b}}_{\mathfrak{n}}\right)\in\mathbb{Z}_{\mathfrak{m}}\times\mathbb{Z}_{\mathfrak{n}}$ in der Gruppe $(\mathbb{Z}_{\mathfrak{m}}\times\mathbb{Z}_{\mathfrak{n}},+)$. Zeige, daß sich die Ordnung dieses Elementes wie folgt berechnen läßt

$$o\Big(\big(\overline{a}_{m}, \overline{b}_{n}\big)\Big) = kgv\left(o\big(\overline{a}_{m}\big), o\big(\overline{b}_{n}\big)\right) = kgv\left(\frac{kgv(a, m)}{a}, \frac{kgv(b, n)}{b}\right)$$

und daß sie ein Teiler von kgv(m, n) ist.

- b. Zeige, $\mathbb{Z}_m \times \mathbb{Z}_n$ ist nicht zyklisch, wenn m und n nicht teilerfremd sind.
- c. Berechne die Ordnung von $(\overline{10}_{24}, \overline{12}_{34}) \in \mathbb{Z}_{24} \times \mathbb{Z}_{34}$.