Fachbereich Mathematik Thomas Markwig

Algebraische Strukturen

Abgabetermin: Montag, 25/01/2010, 10:00

Aufgabe Nummer 48 ist eine Präsenzaufgabe und braucht nur von den Fernstudenten zur Korrektur eingereicht zu werden.

Aufgabe 45: Welche der folgenden Mengen ist ein Ideal in Q[t]?

- a. $I = \{ f \in \mathbb{Q}[t] \mid f(0) = 1 \}$.
- b. $J = \{f \in \mathbb{Q}[t] \mid f(1) = 0\}.$

Aufgabe 46: Es sei R ein kommutativer Ring mit Eins, der nur endlich viele Elemente enthält. Zeige, dann ist jedes Element von R entweder eine Einheit oder ein Nullteiler.

Hinweis, für $a \in R$ betrachte man die Abbildung $R \longrightarrow R : x \mapsto a \cdot x$.

Aufgabe 47: Es sei R ein kommutativer Ring mit Eins und $I, J \subseteq R$ seien Ideale, so daß es ein $x \in I$ und ein $y \in J$ gibt mit x + y = 1.

Zeige, die beiden Ringe $R/(I \cap J)$ und $(R/I) \times (R/J)$ sind isomorph.

Hinweis, man betrachte die Abbildung $\varphi: R \longrightarrow R/I \times R/J: \alpha \mapsto (\overline{\alpha}, \overline{\alpha}) = (\alpha + I, \alpha + J).$

Aufgabe 48:

- a. (a) Finde alle Gruppenhomomorphismen $\phi:(\mathbb{Z}_8,+)\longrightarrow(\mathbb{Z},+)$
 - (b) Finde alle Ringhomomorphismen $\varphi : \mathbb{Z}_8 \longrightarrow \mathbb{Z}$.
 - (c) Für eine positive ganze Zahl n definieren wir die Abbildung

$$\varphi_n: \mathbb{Z}[t] \longrightarrow \mathbb{Z}_n[t]: \sum_{k=0}^m \alpha_k \cdot t^k \mapsto \sum_{k=0}^m \overline{\alpha_k} \cdot t^k.$$

Zeige, daß ϕ_n ein Ringepimorphismus ist. Wir nennen ϕ_n Reduktion modulo n.

- b. (a) Bestimme \mathbb{Z}_8^* .
 - (b) Zeige, für alle $n \ge 2$ ist $\overline{n-1} \in \mathbb{Z}_n$ eine Einheit.