FB Mathematik Gert-Martin Greuel Winterterm 2004/05, Set 1 Thomas Markwig

Algebraic Geometry I

Due date: Tuesday, 08/11/2005, 10:00 Uhr

Exercise 1: Let K be any field, $I \leq K[x_1, ..., x_n] = K[\underline{x}]$ an ideal. Prove the following statements, or find counterexamples.

- a. If $V(I) = \mathbb{A}^{n}(K)$, then I = (0).
- b. If $V(I) = \emptyset$, then $I = K[\underline{x}]$.
- c. If I is a prime ideal, then V(I) is irreducible.*

Is it possible to weaken respectively to strengthen the hypotheses such that the results remain respectively become true?

Exercise 2: Let K be any field, $I, J \leq K[x_1, \dots, x_n]$. Prove:

$$V(I) \cup V(J) = V(I \cap J) = V(I \cdot J).$$

Exercise 3: Let K be an infinite field, $V = V(y - x^2) \subset \mathbb{A}^2_K$ and $V' = V(xy - 1) \subset \mathbb{A}^2_K$. Show that $K[V] := K[x, y]/I(V) \cong K[t]$ and $K[V'] := K[x, y]/I(V') \cong K[t, \frac{1}{t}]$.

Exercise 4: With the aid of the ray tracer surf and the library surf.lib SINGU-LAR can draw curves in $A_{\mathbb{R}}^2$ and surfaces in $A_{\mathbb{R}}^3$. Once the library is loaded and the ring and the polynomial are defined, then the command plot may be used to draw the zero-set of the polynomial, e. g.

Draw the curve given by $f = y^2 - x^2 - x^3$ and the surface given by $g = (x + y + z - 1) \cdot (x - y - z - 1) \cdot (y - x - z - 1) \cdot (z - x - y - 1) \cdot (x + y + z + 1) \cdot (x - y - z + 1) \cdot (y - x - z + 1) \cdot (z - x - y + 1) + (x^2 + y^2 + z^2 - 1) \cdot (x^2 + y^2 + z^2 - 1) \cdot (x^2 + y^2 + z^2 - 2) \cdot (x^2 + y^2 + z^2 + z^2 - 2) \cdot (x^2 + y^2 + z^2 + z^2 - 2) \cdot (x^2 + y^2 + z^2 + z^2 - 2) \cdot (x^2 + y^2 + z^2 +$

^{*}A non-empty topological space V is called *irreducible* if it is not the union of two proper subsets which are both closed.

[†]For g use the command plot(g, "scale_x=0.2; scale_y=0.2; ");.