Algebraic Geometry I

Due date: Tuesday, 08/11/2005, 10:00 Uhr

Exercise 1: Let K be any field, $I \unlhd K\left[x_{1}, \ldots, x_{n}\right]=K[\underline{x}]$ an ideal.
Prove the following statements, or find counterexamples.
a. If $V(I)=A^{n}(K)$, then $I=(0)$.
b. If $\mathrm{V}(\mathrm{I})=\emptyset$, then $\mathrm{I}=\mathrm{K}[\underline{\mathrm{x}}]$.
c. If I is a prime ideal, then $\mathrm{V}(\mathrm{I})$ is irreducible.*

Is it possible to weaken respectively to strengthen the hypotheses such that the results remain respectively become true?

Exercise 2: Let K be any field, $\mathrm{I}, \mathrm{J} \unlhd \mathrm{K}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right]$. Prove:

$$
\mathrm{V}(\mathrm{I}) \cup \mathrm{V}(\mathrm{~J})=\mathrm{V}(\mathrm{I} \cap \mathrm{~J})=\mathrm{V}(\mathrm{I} \cdot \mathrm{~J})
$$

Exercise 3: Let K be an infinite field, $V=V\left(y-x^{2}\right) \subset \mathbb{A}_{K}^{2}$ and $V^{\prime}=V(x y-1) \subset \mathbb{A}_{K}^{2}$. Show that $\mathrm{K}[\mathrm{V}]:=\mathrm{K}[\mathrm{x}, \mathrm{y}] / \mathrm{I}(\mathrm{V}) \cong \mathrm{K}[\mathrm{t}]$ and $\mathrm{K}\left[\mathrm{V}^{\prime}\right]:=\mathrm{K}[\mathrm{x}, \mathrm{y}] / \mathrm{I}\left(\mathrm{V}^{\prime}\right) \cong \mathrm{K}\left[\mathrm{t}, \frac{1}{\mathrm{t}}\right]$.

Exercise 4: With the aid of the ray tracer surf and the library surf. lib SinguLAR can draw curves in A_{R}^{2} and surfaces in A_{R}^{3}. Once the library is loaded and the ring and the polynomial are defined, then the command plot may be used to draw the zero-set of the polynomial, e. g.

```
LIB "surf.lib";
ring r=0,(x,y,z),lp;
poly f=x2-yz;
plot(f);
```

Draw the curve given by $f=y^{2}-x^{2}-x^{3}$ and the surface given by $g=(x+y+z-1)$. $(x-y-z-1) \cdot(y-x-z-1) \cdot(z-x-y-1) \cdot(x+y+z+1) \cdot(x-y-z+1) \cdot(y-x-z+1) \cdot$ $(z-x-y+1)+\left(x^{2}+y^{2}+z^{2}-1\right) \cdot\left(x^{2}+y^{2}+z^{2}-1\right) \cdot\left(x^{2}+y^{2}+z^{2}-2\right) \cdot\left(x^{2}+y^{2}+z^{2}-2\right) .^{\dagger}$
*A non-empty topological space V is called irreducible if it is not the union of two proper subsets which are both closed.
${ }^{\dagger}$ For g use the command plot (9, "scale_x=0.2; scale_y=0.2;");

