Algebraic Geometry I

Due date: Friday, 11/11/2005, 18:00 Uhr
Exercise 1: Let K be a field and

$$
\begin{aligned}
& \mathrm{K}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right] \xrightarrow{\Phi} \mathrm{K}^{\mathrm{K}}=\left\{\mathrm{f}: \mathrm{K}^{n} \rightarrow \mathrm{~K} \mid \mathrm{f} \text { is a map }\right\} \\
& \Psi \\
& \Psi \\
& f \longmapsto\left(\widetilde{f}: K^{n} \rightarrow K:\left(k_{1}, \ldots, k_{n}\right) \mapsto f\left(k_{1}, \ldots, k_{n}\right)\right)
\end{aligned}
$$

be the map which associates to a polynomial the corresponding polynomial map from K^{n} to K. Show that Φ is injective if and only if K is infinite.

Hint, for the interesting direction do induction on n.
Exercise 2: Let X be a topological space and $\emptyset \neq Y \subseteq X$.
a. If Y is irreducible, then the closure \bar{Y} in X is irreducible.
b. If X is irreducible and Y is open in X, then Y is dense in X, i.e. $\bar{Y}=X$.
c. If Y is irreducible, there is a maximal irreducible subspace Y^{\prime} in X containing Y, i.e. there is a $Y^{\prime} \subseteq X$ irreducible such that $Y \subseteq Y^{\prime}$ and for all irreducible $Y^{\prime \prime} \subseteq X$ with $Y^{\prime} \subseteq Y^{\prime \prime}$ we have $Y^{\prime}=Y^{\prime \prime}$.

We call these maximal irreducible subsets of X its irreducible components.
Exercise 3: Find a parametrisation of the curve $C=\left\{y^{2}-x^{2}-x^{3}=0\right\} \subset \mathbb{R}^{2}$, i.e. find a map

$$
\varphi: \mathbb{A}_{K}^{1} \rightarrow \mathbb{A}_{K}^{2}: t \mapsto(f(t), g(t))
$$

whose image is C, where $f, g \in K[t]$ are polynomials.
Hint, draw the curve $C=\left\{y^{2}-x^{2}-x^{3}=0\right\}$ with Surf and you will find that it has a double point in $(x, y)=(0,0)$. Then consider the lines in \mathbb{R}^{2} through this point. Each such line cuts the curve in precisely one more point. Now consider the line L parallel to the y-axis through the point $(x, y)=(-1,0)$. Each line through the origin also cuts L in precisely one point. That way you can define a map from L to C which is a parametrisation as those considered in Exercise 3.

Exercise 4: Consider the three plane curves C_{i} in \mathbb{C}^{2} given by the equations $f_{i}=0$, $i=1,2,3$, where

$$
f_{1}=y^{2}-5 x^{2}-x^{3}, \quad f_{2}=x^{4}+y^{4}-2, \quad \text { respectively } \quad f_{3}=y^{2}+5 x^{2}+x^{3}
$$

How many intersection points have C_{1} and C_{2} respectively C_{1} and C_{3} ? How many of these points are real? You may use Singular for the calculations. Verify the real points by drawing the curves using Surf.

