FB Mathematik Gert-Martin Greuel Winterterm 2004/05, Set 2 Thomas Markwig

Algebraic Geometry I

Due date: Friday, 11/11/2005, 18:00 Uhr

Exercise 1: Let K be a field and

be the map which associates to a polynomial the corresponding polynomial map from K^n to K. Show that Φ is injective if and only if K is infinite.

Hint, for the interesting direction do induction on n.

Exercise 2: Let X be a topological space and $\emptyset \neq Y \subseteq X$.

- a. If Y is irreducible, then the closure \overline{Y} in X is irreducible.
- b. If X is irreducible and Y is open in X, then Y is dense in X, i.e. $\overline{Y} = X$.
- c. If Y is irreducible, there is a maximal irreducible subspace Y' in X containing Y, i.e. there is a Y' \subseteq X irreducible such that Y \subseteq Y' and for all irreducible Y" \subseteq X with Y' \subseteq Y" we have Y' = Y".

We call these maximal irreducible subsets of X its irreducible components.

Exercise 3: Find a parametrisation of the curve $C = \{y^2 - x^2 - x^3 = 0\} \subset \mathbb{R}^2$, i.e. find a map

$$\varphi: \mathbb{A}^1_{\mathsf{K}} \to \mathbb{A}^2_{\mathsf{K}}: \mathsf{t} \mapsto \big(\mathsf{f}(\mathsf{t}), \mathsf{g}(\mathsf{t})\big)$$

whose image is C, where $f, g \in K[t]$ are polynomials.

Hint, draw the curve $C = \{y^2 - x^2 - x^3 = 0\}$ with Surf and you will find that it has a double point in (x, y) = (0, 0). Then consider the lines in \mathbb{R}^2 through this point. Each such line cuts the curve in precisely one more point. Now consider the line L parallel to the y-axis through the point (x, y) = (-1, 0). Each line through the origin also cuts L in precisely one point. That way you can define a map from L to C which is a parametrisation as those considered in Exercise 3.

Exercise 4: Consider the three plane curves C_i in \mathbb{C}^2 given by the equations $f_i = 0$, i = 1, 2, 3, where

$$f_1 = y^2 - 5x^2 - x^3$$
, $f_2 = x^4 + y^4 - 2$, respectively $f_3 = y^2 + 5x^2 + x^3$.

How many intersection points have C_1 and C_2 respectively C_1 and C_3 ? How many of these points are real? You may use SINGULAR for the calculations. Verify the real points by drawing the curves using Surf.

Hint, have a look at the SINGULAR example sing-02 at the web page of Prof. Greuel.