Algebraic Geometry I

Due date: Friday, 18/11/2005, 18:00 Uhr
Exercise 1: Consider the variety $V=V(x y-1) \subset \mathbb{A}_{K}^{2}$, the map $\varphi: V \rightarrow \mathbb{A}_{K}^{1}:(x, y) \mapsto$ x, and the set $X=\operatorname{Im}(\varphi) \subset \mathbb{K}_{\mathrm{K}}^{1}$. What is $\mathrm{I}(X)$? Is $X=V(I(X))$? Draw a schematic image for $K=\mathbb{R}$.

Note, your answer will depend on the field K ! Consider the cases K finite or infinite, or, if you prefer, $K=\mathbb{Z} / 2 \mathbb{Z}$ and $K=\mathbb{R}$.

Exercise 2:

a. Consider the surface $V(f) \subset \mathbb{C}^{3}$ defined by the polynomials $f=x^{2}+y^{2}+x y z$ and consider the planes $H_{c}=V(x-c) \subset \mathbb{C}^{3}$ for $c \in \mathbb{C}$ arbitrary. Determine $I\left(X_{c}\right)$ for $X_{c}=H_{c} \cap V(f)$.
b. Draw image of the surface $V\left(x^{2}+y^{2}+x y z\right) \subset \mathbb{R}^{3}$ and its intersecions with the planes $H_{c}=V(x-c)$ for $c \in\{-1,0,1\}$. You may use Surf.

Note that if you want to show that a certain ideal is a prime ideal it makes sense to consider the quotient ring by the ideal. You may use Eisenstein's Criterion for irreducibility without proof. - As shown in the example class, if you call Surf from SinGULAR via plot (f); and you edit the script in Surf, then you may add at the end of the script plane=x-1; cut_with_plane; and execute the script once more. What you get is the surface and a curve, which is the intersection of the surface with the plane $V(x-1)$. If you have problems with that, just come along and ask for help.

Exercise 3: Let $K=\bar{K}$ be an algebraically closed field and $I \unlhd K[\underline{\chi}]$ an ideal. Use Hilbert's Nullstellensatz to show that:

$$
\sqrt{\mathrm{I}}=\bigcap_{\mathrm{I} \subseteq \mathfrak{m} \triangleleft \cdot \mathrm{~K}[\underline{\underline{x}}]} \mathfrak{m}
$$

where $\mathfrak{m} \triangleleft \cdot \mathrm{K}[\underline{x}]$ means that \mathfrak{m} is a maximal ideal in $K[\underline{x}]$. Interprete this equality geometrically!

Exercise 4: Let $I \unlhd K\left[x_{1}, \ldots, x_{n}\right]$ and G a Groebner basis of I w.r.t. the lexicographical ordering. Show that $V(I)$ is a finite set if for $i=1, \ldots, n$ there exists an $f \in G$ such that lead $(f)=x_{i}^{n_{i}}$ for some $n_{i} \geq 0$.

Proposition (Eisenstein's Criterion)

Let R be an integral domain and $0 \neq f=\sum_{i=0}^{n} a_{i} y^{i} \in R[y]$. If there is a prime ideal P such that $a_{0}, \ldots, a_{n-1} \in P, a_{n} \notin P$ and $a_{0} \notin P^{2}$, then f has no non-constant divisor in $R[y]$ of degree strictly less than $\operatorname{deg}(f)$.
In particular, if R is a unique factorisation domain, $p \in R$ prime, $\operatorname{gcd}\left(a_{0}, \ldots, a_{n}\right)=1$, $p \mid a_{0}, \ldots, a_{n-1}, p^{2} \nmid a_{0}$, then f is irreducible in $R[y]$.

Beweis: Let $f=g \cdot h$ for polynomials $g=\sum_{k=0}^{\mu} g_{k} y^{k}, h=\sum_{k=0}^{v} h_{k} y^{k} \in R[y]$. Since R is an integral domain we know $\operatorname{deg}(g)+\operatorname{deg}(h)=\operatorname{deg}(f)$.
Suppose now that $0<\operatorname{deg}(g)<\operatorname{deg}(f)$, then also $0<\operatorname{deg}(h)<\operatorname{deg}(f)$. Consider the ringhomomorphism

$$
R[y] \longrightarrow(R / P)[y]: F=\sum_{k=0}^{m} b_{k} y^{k} \mapsto \bar{F}=\sum_{k=0}^{m} \overline{b_{k}} y^{k}
$$

induced by taking the coefficients modulo P. By assumption we have

$$
\begin{equation*}
\overline{a_{n}} \cdot y^{n}=\bar{f}=\bar{g} \cdot \overline{\mathrm{~h}}=\overline{g_{\mu}} \cdot \overline{\mathrm{h}_{v}} \cdot y^{n}+\text { terms of lower degree. } \tag{1}
\end{equation*}
$$

In particular $g_{\mu}, h_{\nu} \notin P$. Let μ^{\prime} and ν^{\prime} be minimal such that $g_{\mu^{\prime}}, h_{\nu^{\prime}} \notin P$ then

$$
\overline{\mathrm{g}} \cdot \overline{\mathrm{~h}}=\overline{\mathrm{g}_{\mu^{\prime}}} \cdot \overline{\mathrm{h}_{\nu^{\prime}}} \cdot y^{\mu^{\prime}+v^{\prime}}+\text { terms of higher degree },
$$

and since P is prime thus $g_{\mu^{\prime}} \cdot h_{\nu^{\prime}} \notin P$, i.e. $\overline{g_{\mu^{\prime}}} \cdot \overline{h_{\nu^{\prime}}} \neq 0$. Taking (1) into account we deduce that $\mu^{\prime}=\mu=\operatorname{deg}(g)>0$ and $v^{\prime}=v=\operatorname{deg}(h)>0$. In particular, $g_{0} \in P$ and $h_{0} \in P$. But then

$$
a_{0}=g_{0} \cdot h_{0} \in P^{2}
$$

in contradiction to our assumption.
Let us now proof the in particular part. By the above proof we know that if $f=g \cdot h$ then we may assume that $\operatorname{deg}(g)=0$ and $\operatorname{deg}(h)=\operatorname{deg}(f)$. However, if $\operatorname{deg}(g)=0$ then g is a constant and thus divides every coefficient of f. Thus by assumption it is a unit since $\operatorname{gcd}\left(a_{0}, \ldots, a_{n}\right)=1$. This shows that f is irreducible.

