Algebraic Geometry I

Due date: Friday, 25/11/2005, 18:00 Uhr
Exercise 1: Let R be a ring, $I \unlhd R$ an ideal in R. If $J \unlhd R$ is an ideal of R such that $I \subset J$, then obviously $J / I=\{\bar{a} \mid a \in J\}$ is an ideal of R / I. Show that

$$
\{P \in \operatorname{Spec}(R) \mid I \subseteq P\} \longrightarrow \operatorname{Spec}(R / I): P \mapsto P / I
$$

is a bijection.
What is the relation between $\operatorname{Spec}(R / I)$ and $\operatorname{Spec}(R / \operatorname{rad}(I))$?
Recall that $\operatorname{Spec}(S)$ is the set of prime ideals of a ring S.

Exercise 2: Let K be an algebraically closed field and let $V \subseteq A_{K}^{n}$ be an affine variety. Show that the following statements are equivalent:
a. $|\mathrm{V}|=\mathrm{r}<\infty$.
b. $I(V)=\bigcap_{i=1}^{r} \mathfrak{m}_{i}$, where the $\mathfrak{m}_{i} \subset K\left[x_{1}, \ldots, x_{n}\right]$ are maximal ideals.
c. $\mathrm{K}[\mathrm{V}] \cong \mathrm{K}^{\mathrm{r}}$, as a K -algebras.
d. $\operatorname{dim}_{K}(\mathrm{~K}[\mathrm{~V}])=\mathrm{r}<\infty$.

Hint, the Chinese Remainder Theorem might be useful!
Exercise 3: Let $X=V\left(y z^{2}-y z, x z^{2}-x z, x y z+x z-y^{2} z-y z, y^{3} z-y z\right) \subseteq \mathbb{C}^{3}$. Compute:
a. the irreducible componemts of the variety X,
b. $\operatorname{dim}(X)$, and
c. the dimension of each irreducible component of X ,
without using a computer algebra system. Check your result by using Singular. How many connected components does X have? Draw by hand a picture of X.

Exercise 4: Is the following affine variety

$$
V=V\left(x z-y^{2}, z-x y\right) \subseteq A_{C}^{3}
$$

irreducible?

