FB Mathematik Gert-Martin Greuel Winterterm 2004/05, Set 4 Thomas Markwig

Algebraic Geometry I

Due date: Friday, 25/11/2005, 18:00 Uhr

Exercise 1: Let R be a ring, $I \subseteq R$ an ideal in R. If $J \subseteq R$ is an ideal of R such that $I \subset J$, then obviously $J/I = \{\overline{a} \mid a \in J\}$ is an ideal of R/I. Show that

$$\{P \in \operatorname{Spec}(R) \mid I \subseteq P\} \longrightarrow \operatorname{Spec}(R/I) : P \mapsto P/I$$

is a bijection.

What is the relation between Spec(R/I) and Spec(R/rad(I))?

Recall that Spec(S) is the set of prime ideals of a ring S.

Exercise 2: Let K be an algebraically closed field and let $V \subseteq A_K^n$ be an affine variety. Show that the following statements are equivalent:

- a. $|V| = r < \infty$.
- b. $I(V) = \bigcap_{i=1}^{r} \mathfrak{m}_{i}$, where the $\mathfrak{m}_{i} \subset K[x_{1}, \ldots, x_{n}]$ are maximal ideals.
- c. $K[V] \cong K^r$, as a K-algebras.
- d. dim_K (K[V]) = $r < \infty$.

Hint, the Chinese Remainder Theorem might be useful!

Exercise 3: Let $X = V(yz^2 - yz, xz^2 - xz, xyz + xz - y^2z - yz, y^3z - yz) \subseteq \mathbb{C}^3$. Compute:

- a. the irreducible components of the variety X,
- b. dim(X), and
- c. the dimension of each irreducible component of X,

without using a computer algebra system. Check your result by using SINGULAR. How many connected components does X have? Draw by hand a picture of X.

Exercise 4: Is the following affine variety

$$V = V(xz - y^2, z - xy) \subseteq \mathbb{A}^3_{\mathbb{C}}$$

irreducible?