FB Mathematik Gert-Martin Greuel

Algebraic Geometry I

Due date: Friday, 09/12/2005, 18:00 Uhr

Exercise 1: Let $I = \langle -x^2 - y^2 + z^2 + x^2z + y^2z - z^3, -x^3 - xy^2 + xz^2 + x^3y + xy^3 - xyz^2, -x^3 - xy^2 + xz^2 + x^4 + x^2y^2 - x^2z^2 \rangle \leq \mathbb{C}[x, y, z]$. Compute the dimension of X = V(I) at p = (0, 0, 0), q = (0, 0, 1) and r = (1, 1, 1). Compute the irreducible components of X in $\mathbb{A}^3_{\mathbb{C}}$ (not only in a neighbourhood of 0) and draw pictures of them to confirm your computations geometrically.

Exercise 2: Let X be a topological space, \mathcal{F} a presheaf of abelian groups on X, $U \subseteq X$ open, and $s \in \mathcal{F}(U)$.

Show that the support supp(s) = { $p \in U | s_p \neq 0$ } of s is a closed subset of U, and find an example which shows that the support supp(\mathcal{F}) = { $x \in X | \mathcal{F}_x \neq 0$ } of \mathcal{F} in X need not be closed.

Exercise 3: Let (X, \mathcal{R}_X) and (Y, \mathcal{R}_Y) be ringed spaces and let $f : X \to Y$ be a continous map. Then the following are equivalent:

- a. f is a morphism, i.e. $\forall U \subseteq Y$ open $f^*(\mathcal{R}_Y(U)) \subseteq \mathcal{R}_X(f^{-1}(U))$.
- b. For all $p \in X$ we have $f_p^*(\mathcal{R}_{Y,f(p)}) \subseteq \mathcal{R}_{X,p}$.

Note that the map $f^* : \mathcal{A}_{Y/K}(U) \to \mathcal{A}_{X/K}(f^{-1}U) : \phi \mapsto \phi \circ f$ induces a map $f_p^* : \mathcal{A}_{Y/K,f(p)} \to \mathcal{A}_{X/K,p} : [(V,\phi)] \mapsto [(f^{-1}(V), \phi \circ f)]$ for $p \in U$, and that in a natural way $\mathcal{R}_{X,p} \subseteq \mathcal{A}_{X/K,p}$.

Exercise 4: Let K be any field and let $X = V(x^2 - y^3) \subset \mathbb{A}^2_K$ be the cuspidal cubic.

- a. Show that the map $\varphi : \mathbb{A}^1_K \to \mathbb{A}^2_K : t \mapsto (t^3, t^2)$ induces a homeomorphism from \mathbb{A}^1_K to X which is a morphism, but NOT an isomorphism.
- b. Consider the map $\psi:X\to \mathbb{A}^1_K:(x,y)\mapsto x.$ Is this map an isomorphism when $K=\mathbb{R}?$

Recall, a homeomorphism is a bijective map f such that f and f^{-1} are continous.