FB Mathematik Gert-Martin Greuel Winterterm 2004/05, Set 7 Thomas Markwig

Algebraic Geometry I

Due date: Friday, 16/12/2005, 18:00 Uhr

Exercise 1: Show that every isomorphism $f : \mathbb{A}^1_K \to \mathbb{A}^1_K$ is of the form f(x) = ax + b for some $a, b \in K$ with $a \neq 0$.

Exercise 2: Let K be an algebraically closed field and let $X \subset A_K^2$ be a conic, i.e. X = V(f) for some $f \in K[x, y]$ with deg(f) = 2. Show that if X is irreducible, then X is *either* isomorphic to $V(y - x^2)$ *or* isomorphic V(1 - xy).

Exercise 3: Let K be an algebraically closed field, $X \subseteq \mathbb{A}_{K}^{k}$, $Y \subseteq \mathbb{A}_{K}^{m}$, $Z \subseteq \mathbb{A}_{K}^{n}$ be affine varieties, $f \in Mor(X, Y)$, $g \in Mor(Y, Z)$, and $\varphi \in Hom_{K-alg}(A[Z], A[Y])$, $\psi \in Hom_{K-alg}(A[Y], A[X])$. Show:

- a. $(id_X)^* = id_{A[X]}$ and $(id_{A[X]})^# = id_X$.
- b. $(g \circ f)^* = f^* \circ g^*$ and $(\psi \circ \phi)^{\#} = \phi^{\#} \circ \psi^{\#}$.
- c. $(f^*)^{\#} = f$ and $(\phi^{\#})^* = \phi$.

Exercise 4: Let K be an algebraically closed field, and $f : X \to Y$ be a morphism of affine varieties over K. Show:

- a. f is a closed embedding if and only if f* is surjective.
- b. f is dominant if and only if f^* is injective.

Recall, by definition f is a closed embedding if f(X) is closed in Y and $X \to f(X) : x \mapsto f(x)$ is an isomorphism; f is dominant if f(X) is dense in Y.