Algebraic Geometry I

Due date: Friday, 23/12/2005, 18:00 Uhr

Exercise 1: Let $X \subseteq \mathbb{A}^n_K$, $Y \subseteq \mathbb{A}^m_K$ be affine varieties, $f: X \to Y$ a morphism. Show that

$$\mathrm{I}_{\mathbb{A}_K^{\mathfrak{m}}}(\overline{f(X)}) = \mathrm{I}_{\mathbb{A}_K^{\mathfrak{n}+\mathfrak{m}}}(\Gamma_f) \cap K[y_1, \ldots, y_{\mathfrak{m}}],$$

where y_1, \ldots, y_m are coordinate functions of \mathbb{A}_K^m .

Exercise 2: Let $f: \mathbb{A}^2_{\mathbb{C}} \to \mathbb{A}^3_{\mathbb{C}}$ be a morphism given by

$$\mathsf{f}:\mathbb{A}^2_\mathbb{C} o \mathbb{A}^3_\mathbb{C}, \qquad (\mathsf{t},\mathsf{s}) \mapsto (\mathsf{t},\mathsf{ts},\mathsf{s}^2).$$

Compute the image of f using SINGULAR and draw its real part with the help of the ray tracer surf.

Exercise 3: Let X, Y be affine varieties, and let $p_1: X \times Y \to X$ and $p_2: X \times Y \to Y$ denote the canonical projections. Prove the following *universal property* of $X \times Y$: given morphisms of affine varieties $f: Z \to X$, $g: Z \to Y$, there exists a unique morphism $h: Z \to X \times Y$ such that $p_1 \circ h = f$, $p_2 \circ h = g$:

Exercise 4: Let I, I_1 , I_2 be homogeneous ideals in $K[x_0, \ldots, x_n]$. Prove the following statements.

- a. \sqrt{I} is a homogeneous ideal.
- b. $I_1: I_2 = \{f \in K[x_0, \dots, x_n] \mid f \cdot I_2 \subseteq I_1\}$ is a homogeneous ideal.
- c. I is a prime ideal if and only if for any homogeneous $f,g\in I$ holds:

$$f\cdot g\in I\Rightarrow f\in I \text{ or } g\in I.$$