Algebraic Geometry I

Due date: Friday, 20/01/2006, 18:00 Uhr
Exercise 1: Prove that every quasiaffine variety is quasiprojective.
Exercise 2: Let $X \subseteq \mathbb{P}^{n}, Y \subseteq \mathbb{P}^{m}$ be quasiprojective varieties, $i: Y \hookrightarrow \mathbb{P}^{m}$ the natural embedding, $U_{i}=\left\{x \in \mathbb{P}^{n} \mid x_{i} \neq 0\right\}, i=0, \ldots, n$, and $V_{j}=\left\{y \in \mathbb{P}^{m} \mid y_{j} \neq 0\right\}, j=0, \ldots, m$, the standard charts.
a. A map $\varphi: X \rightarrow K$ is regular if and only if the restrictions $\varphi: X \cap U_{i} \rightarrow K$ are regular for $i=0, \ldots, n$ (as functions on quasiaffine varieties).
b. A map $f: X \rightarrow Y$ is a morphism if and only if the composition $i \circ f: X \rightarrow Y \hookrightarrow P^{m}$ is a morphism.
c. A map $f: X \rightarrow \mathbb{P}^{m}$ is a morphism if and only if for each $j=0, \ldots, m$ the restriction $f: f^{-1}\left(V_{j}\right) \rightarrow V_{j} \cong \mathbb{A}^{m}$ is a morphism.
d. A map $f: X \rightarrow \mathbb{A}^{m}$ is a morphism if and only if the k-th coordinate function $f_{k}=x_{k} \circ f: X \rightarrow \mathbb{A}^{m} \rightarrow K$ is regular for each $k=1, \ldots, m$.

Exercise 3: Let $I=\left\{\left(i_{0}, \ldots, i_{n}\right) \in \mathbb{N}^{n+1} \mid \sum_{v=0}^{n} i_{v}=d\right\}$. Note that I indexes the monomials of degree d in $n+1$ variables. It has $\binom{n+d}{n}$ elements. Write $N=\binom{n+d}{n}-1$, and consider the projective space \mathbb{P}^{N} whose coordinates are indexed by I; thus a point of \mathbb{P}^{N} can be written $\left(\ldots: z_{\mathrm{i}_{0} \ldots i_{n}}: \ldots\right)$. The Veronese mapping is defined to be

$$
\rho_{\mathrm{d}}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{N}, \quad\left(x_{0}: \ldots: x_{n}\right) \mapsto\left(\ldots: z_{i_{0}} \ldots i_{n}: \ldots\right)
$$

where $z_{i_{0} \ldots i_{n}}=x_{0}^{i_{0}} \ldots x_{n}^{i_{n}},\left(i_{0}, \ldots, i_{n}\right) \in I$. Prove that
a. $\operatorname{Im}\left(\rho_{\mathrm{d}}\right)$ is a projective variety in \mathbb{P}^{N} defined by the system of equations:

$$
z_{i_{0} \ldots i_{n}} z_{j_{0} \ldots j_{n}}=z_{k_{0} \ldots k_{n}} z_{\mathrm{l}_{0} \ldots i_{n}}, \quad i_{s}+j_{s}=k_{s}+l_{s}, \quad s=0, \ldots, n
$$

b. $\rho_{d}: \mathbb{P}^{n} \rightarrow \operatorname{Im}\left(\rho_{d}\right)$ is an isomorphism.

Exercise 4: Let $n \geq 2$ and $p \in \mathbb{P}^{n}$. Prove that $\mathbb{P}^{n} \backslash\{p\}$ is not an affine variety. Hint. We may assume without loss of generality that $p=(1: 0: \ldots: 0)$. Denote $U=\mathbb{P}^{n} \backslash\{p\}=\bigcup_{i=1}^{n} U_{i}$ and show that $\mathcal{O}_{\mathrm{u}}(\mathrm{U})=K$. You may proceed as follows. For each $i=1, \ldots, n$ consider the restriction of $f \in \mathcal{O}_{u}(\mathrm{U})$ to U_{i}, and show that it has the form $F_{i}\left(x_{0}, \ldots, x_{n}\right) / x_{i}^{d_{i}}$, where F_{i} is a homogeneous polynomial of degree d_{i}. Compare these restrictions on the intersection $\mathrm{U}_{\mathrm{i}} \cap \mathrm{U}_{\mathrm{j}}$.

