FB Mathematik
Dr. Bernd Kreußler

Winterterm 2005/06, Set 11
24 January 2006

## Algebraic Geometry I

Problem 1: Let $C \subset \mathbb{P}^{3}$ be the twisted cubic curve, given as the image of the morphism $v_{3}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$, which sends $\left(t_{0}: t_{1}\right)$ to $\left(t_{0}^{3}: t_{0}^{2} t_{1}: t_{0} t_{1}^{2}: t_{1}^{3}\right)$.
Show that C is not the complete intersection of two surfaces in $\mathbb{P}^{3}$, i.e. the ideal $\mathrm{I}(\mathrm{C})$ is not generated by two elements. Moreover, describe the intersection of any two quadrics $\mathrm{Q}_{1} \neq \mathrm{Q}_{2}$ in $\mathbb{P}^{3}$, both containing C .

Problem 2: Describe the blow-up of the following curves in $\mathbb{A}^{2}$ :
(a) $x_{1}^{k+1}+x_{2}^{2} \quad k \geq 1$
(b) $x_{1}^{a}+x_{2}^{b} \quad \operatorname{gcd}(a, b)=1$

Problem 3: Verify that the (minimal) desingularisation of each of the following surface singularities has an exceptional locus, all components of which are isomorphic to $\mathbb{P}^{1}$. These components intersect as indicated by the dual graph.


Problem 4: For each integer $0 \leq k \leq 16$ find a quartic surface $S \subset \mathbb{P}^{3}$ with precisely $k$ ordinary double points and no other singularities.

