FB Mathematik Gert-Martin Greuel

Algebraic Geometry I

Due date: Friday, 10/02/2006, 18:00 Uhr

Exercise 1: Let (X, \mathcal{O}_X) be an affine variety and (Y, \mathcal{O}_Y) a prevariety. Prove that the map

 $Mor(Y, X) \to Hom_{K-Alg}(\mathcal{O}_X(X), \mathcal{O}_Y(Y)), \qquad (f: Y \to X) \mapsto (f^*: \phi \mapsto f^*\phi = \phi \circ f)$

is bijective.

Exercise 2: Let (X, \mathcal{O}_X) , (Y, \mathcal{O}_Y) be ringed spaces. Define

$\pi_X \colon X \times Y \to X,$	$(x,y)\mapsto x,$
$\pi_{\mathrm{Y}}: \mathrm{X} imes \mathrm{Y} o \mathrm{Y},$	$(\mathbf{x},\mathbf{y})\mapsto\mathbf{y}.$

Prove that

- a. π_X and π_Y are morphisms of ringed spaces;
- b. π_X and π_Y are open maps (i.e., map open sets to open sets).

Exercise 3: Prove that $\mathbb{A}^m \times \mathbb{A}^n \cong \mathbb{A}^{m+n}$.

Hint. Use the universal property of the product and Exercise 1.

Exercise 4: Let (X, \mathcal{O}_X) , (Y, \mathcal{O}_Y) be ringed spaces and let X_1 resp. Y_1 be locally closed (open, closed) subspaces of X resp. Y. Then $X_1 \times Y_1$ is a locally closed (open, closed) subspace of X × Y (as a ringed space).