Algebraic Geometry I

Due date: Friday, 17/02/2006, 18:00 Uhr
Exercise 1: Let X, Y be Noetherian prevarieties. Then $X \times Y$ is a Noetherian prevariety and $\operatorname{dim}(X \times Y)=\operatorname{dim} X+\operatorname{dim} Y$.

Exercise 2: (1) Let ($x_{0}: x_{1}: \ldots: x_{m}$) resp. ($y_{0}: y_{1}: \ldots: y_{n}$) be homogeneous coordinates in \mathbb{P}^{m} resp. \mathbb{P}^{n}. Let $F_{1}, \ldots, F_{k} \in K\left[x_{0}, \ldots, x_{m}, y_{0}, \ldots, y_{n}\right]$ be homogeneous (separately) in the variables $x_{i}, i=0, \ldots, m$ and in the variables $y_{j}, j=0, \ldots, n$. Then the set

$$
V_{\mathbb{P}^{m} \times \mathbb{P}^{n}}\left(F_{1}, \ldots, F_{k}\right) \stackrel{\text { def }}{=}\left\{(x, y) \in \mathbb{P}^{m} \times \mathbb{P}^{n} \mid F_{s}(x, y)=0, \quad s=1, \ldots, k\right\}
$$

is closed in $\mathbb{P}^{m} \times \mathbb{P}^{n}$, and every closed subset of $\mathbb{P}^{m} \times \mathbb{P}^{n}$ is of this form.
(2) Let $\left(x_{0}: x_{1}: \ldots: x_{m}\right)$ be homogeneous coordinates in $\mathbb{P}^{m},\left(y_{1}, \ldots, y_{n}\right)$ coordinates in \mathbb{A}^{n}. Let $F_{1}, \ldots, F_{k} \in K\left[x_{0}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right]$ be homogeneous in the variables x_{i}, $i=0, \ldots, m$. Then the set

$$
V_{\mathbb{P}^{m} \times \mathbb{A}^{n}}\left(F_{1}, \ldots, F_{k}\right) \stackrel{\text { def }}{=}\left\{(x, y) \in \mathbb{P}^{m} \times \mathbb{A}^{n} \mid F_{s}(x, y)=0, \quad s=1, \ldots, k\right\}
$$

is closed in $\mathbb{P}^{m} \times \mathbb{A}^{n}$, and every closed subset of $\mathbb{P}^{m} \times \mathbb{A}^{n}$ is of this form.
Exercise 3: Let X be a separated prevariety, $U, V \subset X$ open affine subsets. Show that $U \cap V$ is an open affine subset of X.

Exercise 4: Let X be a closed subset of $\mathbb{P}^{m} \times \mathbb{A}^{n}$. By Exercise 2,(2) there exist polynomials $F_{1}, \ldots, F_{k} \in K\left[x_{0}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right]$ homogeneous in $x_{i}, i=0, \ldots, m$ such that $X=V_{\mathbb{P}^{m} \times \mathbb{A}^{n}}\left(F_{1}, \ldots, F_{k}\right)$. Let I denote the ideal generated by F_{1}, \ldots, F_{k}. Let π denote the projection $\mathbb{P}^{m} \times \mathbb{A}^{n} \rightarrow \mathbb{A}^{n}$. Prove that

$$
\pi(X)=V\left(\bigcap_{i=0}^{n}\left(I_{x_{i}=1}\right) \cap K\left[y_{1}, \ldots, y_{n}\right]\right)
$$

