FB Mathematik Thomas Markwig Winterterm 2009/10, Set 2 Georges Francois

Algebraic Geometry I

Due date: Monday, 09/11/2009, 10:00 Uhr

Exercise 5: Let K be an infinite field and $X \subseteq \mathbb{A}^3_K$ be the union of the three coordinate axis. Find the ideal I(X) and show that it cannot be generated by less than three elements.

Exercise 6: Let X be a topological space and $\emptyset \neq Y \subseteq X$.

- a. If Y is irreducible, then the closure \overline{Y} in X is irreducible.
- b. If X is irreducible and Y is open in X, then Y is dense in X, i.e. $\overline{Y} = X$.
- c. If Y is irreducible, there is a maximal irreducible subspace Y' in X containing Y, i.e. there is a Y' \subseteq X irreducible such that Y \subseteq Y' and for all irreducible Y'' \subseteq X with Y' \subseteq Y'' we have Y' = Y''.

We call these maximal irreducible subsets of X its *irreducible components*.

Exercise 7: Find a polynomial parametrisation of the curve $C = Z(y^2 - x^2 - x^3) \subset \mathbb{A}^2_R$, i.e. find a map

$$\varphi: \mathbb{A}^1_{\mathbb{R}} \to \mathbb{A}^2_{\mathbb{R}}: \mathsf{t} \mapsto \big(\mathsf{f}(\mathsf{t}), \mathsf{g}(\mathsf{t})\big)$$

whose image is C, where $f, g \in \mathbb{R}[t]$ are polynomials.

Hint, draw the curve $C = Z(y^2 - x^2 - x^3)$ with surf (see *my* lecture notes p. 12 for explantions on how to use surf) and you will find that it has a double point in (x, y) = (0, 0). Then consider the lines in \mathbb{R}^2 through this point. Each such line cuts the curve in precisely one more point. Now consider the line L parallel to the y-axis through the point (x, y) = (-1, 0). Each line through the origin also cuts L in precisely one point. That way you can define a map from L to C which is a parametrisation.

Exercise 8: Consider the three plane curves C_i in \mathbb{C}^2 given by the equations $f_i = 0$, i = 1, 2, 3, where

$$f_1 = y^2 - 5x^2 - x^3$$
, $f_2 = x^4 + y^4 - 2$, respectively $f_3 = y^2 + 5x^2 + x^3$.

How many intersection points do C_1 and C_2 respectively C_1 and C_3 have? How many of these points are real? You may use SINGULAR for the calculations. Verify the real points by drawing the curves using Surf.

Hint, have a look at the SINGULAR example sing-02 on the web page

http://www.mathematik.uni-kl.de/~greuel/courses/WS05-06-AG1/index.html

of Prof. Greuel to see how SINGULAR can be used to compute the intersection points.