Algebraic Geometry I

Due date: Monday, 16/11/2009, 10:00 Uhr

Exercise 9: [Generalised Division with Remainder]

a. Let R be any commutative ring with one, and let $0 \neq f, g \in R[t]$ be two polynomials with coefficients in R. Show, if $f=\sum_{i=0}^{n} f_{i} \cdot t^{i}$ with $f_{n} \neq 0$, then there exists a natural number k and two polynomials $q, r \in R[t]$ such that

$$
a_{n}^{k} \cdot g=q \cdot f+r \quad \text { with } \quad \operatorname{deg}(r)<\operatorname{deg}(f) .
$$

b. Let K be an infinite field and $X=Z\left(x^{2}-y^{3}\right) \subset \mathbb{A}_{K}^{2}$.

Use part a. to show that $I(X)=\left\langle x^{2}-y^{3}\right\rangle$.
Exercise 10: For a polynomial $f \in K[\underline{x}]$ we define the basic open set

$$
X_{f}=A_{K}^{n} \backslash Z(f)
$$

Show the following statements:
a. $X_{f} \cap X_{g}=X_{f . g}$.
b. A_{K}^{n} and \emptyset are basic open sets.
c. Every open subset in \mathbb{A}_{K}^{n} is a finite union of basic open sets. In particular, the basic open sets form a basis of the topology of A_{k}^{n}.
d. Every open subset in \mathbb{A}_{K}^{n} is quasi compact, i.e. each open covering contains a finite subcovering.
e. If K is algebraically closed, $X_{f} \subseteq X_{g}$ if and only if g divides some power of f.

Exercise 11: Consider $X=Z(x y-1) \subset \mathbb{A}_{K}^{2}, \varphi: X \rightarrow \mathbb{A}_{k}^{1}:(x, y) \mapsto x$, and the set $Y=\operatorname{Im}(\varphi) \subset \mathbb{A}_{K}^{1}$. What is $I(Y)$? Is $Y=Z(I(Y))$? Draw a schematic image for $K=\mathbb{R}$.
Note, your answer will depend on the field K ! Consider the cases K finite or infinite, or, if you prefer, $K=\mathbb{Z} / 2 \mathbb{Z}$ and $K=\mathbb{R}$.

Exercise 12:

a. Consider the surface $V(f) \subset \mathbb{C}^{3}$ defined by the polynomials $f=x^{2}+y^{2}+x y z$ and consider the planes $H_{c}=V(x-c) \subset \mathbb{C}^{3}$ for $c \in \mathbb{C}$ arbitrary. Determine $I\left(X_{c}\right)$ for $X_{c}=H_{c} \cap V(f)$.
b. Draw image of the surface $V\left(x^{2}+y^{2}+x y z\right) \subset \mathbb{R}^{3}$ and its intersecions with the planes $\mathrm{H}_{\mathrm{c}}=\mathrm{V}(\mathrm{x}-\mathrm{c})$ for $\mathrm{c} \in\{-1,0,1\}$. You may use surfex.

[^0] You may use Eisenstein's Criterion for irreducibility without proof.

[^0]: Note that if you want to show that a certain ideal is a prime ideal it makes sense to consider the quotient ring by the ideal. -

