Algebraic Geometry I

Due date: Monday, 23/11/2009, 10:00 Uhr
Exercise 13: Let K be an algebraically closed field.
a. Let $X \subset \mathbb{A}_{K}^{3}$ be the following affine algebraic set

$$
X=Z\left(x^{2}-y z, x z-y\right) .
$$

Find the irreducible components of X and their vanishing ideals.
b. Let $X=Z\left(y z^{2}-y z, x z^{2}-x z, x y z+x z-y^{2} z-y z, y^{3} z-y z\right) \subseteq \mathbb{C}^{3}$. Compute
(a) the irreducible componemts of the variety X,
(b) $\operatorname{dim}(X)$, and
(c) the dimension of each irreducible component of X
without using a computer algebra system. Check your result by using SinguLAR. How many connected components does X have? Draw by hand a picture of the real part of X, and compare it to the result you get using surfex.

Exercise 14:

a. Let $R=K[y]$ and let $f, g \in R[x]$ be such that no polynomial $p \in R[x] \backslash R$ divides both f and g. Then $\langle f, g\rangle \cap R \neq\{0\}$.
b. If $f, g \in K[x, y]$ are two coprime polynomials then the ideal $\langle f, g\rangle$ contains a polynomial $0 \neq p \in K[x]$ and a polynomial $0 \neq q \in K[y]$.

In particular, $\# Z(f, g) \leq \operatorname{deg}(p) \cdot \operatorname{deg}(q)<\infty$.
c. If K is algebraically closed then $\operatorname{dim}(K[x, y])=\operatorname{dim}_{c}\left(\mathbb{A}_{K}^{2}\right)=2$.

Note, the statement in c . holds also if K is not algebraically closed, but we cannot prove this with what we have learned so far in our lecture.

Exercise 15: Let $X \subseteq \mathbb{A}_{k}^{n}$ be an algebraic variety. Show that $\operatorname{dim}(X)=n-1$ if and only if there is an irreducible polynomial $f \in K\left[x_{1}, \ldots, x_{n}\right]$ such that $I(X)=\langle f\rangle$.

Exercise 16: [Tangent Cone]

Let $f \in K[x, y] \backslash K$ be a non-constant polynomial and $p=(0,0) \in Z(f)$. How could one define the tangent lines at p ? Consider the following examples for $K=\mathbb{R}: f=x$, $f=y-x^{2}, f=x^{2}-y^{3}, f=x^{2}-y^{2}, f=y^{2}-x^{4}$.

