FB Mathematik Thomas Markwig Winterterm 2009/10, Set 4 Georges Francois

Algebraic Geometry I

Due date: Monday, 23/11/2009, 10:00 Uhr

Exercise 13: Let K be an algebraically closed field.

a. Let $X\subset \mathbb{A}^3_K$ be the following affine algebraic set

$$X = Z(x^2 - yz, xz - y).$$

Find the irreducible components of X and their vanishing ideals.

b. Let $X = Z(yz^2 - yz, xz^2 - xz, xyz + xz - y^2z - yz, y^3z - yz) \subseteq \mathbb{C}^3$. Compute

- (a) the irreducible components of the variety X,
- (b) $\dim(X)$, and
- (c) the dimension of each irreducible component of X

without using a computer algebra system. Check your result by using SINGU-LAR. How many connected components does X have? Draw by hand a picture of the real part of X, and compare it to the result you get using surfex.

Exercise 14:

- a. Let R = K[y] and let $f, g \in R[x]$ be such that no polynomial $p \in R[x] \setminus R$ divides both f and g. Then $\langle f, g \rangle \cap R \neq \{0\}$.
- b. If $f,g \in K[x,y]$ are two coprime polynomials then the ideal $\langle f,g \rangle$ contains a polynomial $0 \neq p \in K[x]$ and a polynomial $0 \neq q \in K[y]$.

In particular, $\#Z(f,g) \le deg(p) \cdot deg(q) < \infty$.

c. If K is algebraically closed then $\dim(K[x,y]) = \dim_c(\mathbb{A}^2_K) = 2$.

Note, the statement in c. holds also if K is not algebraically closed, but we cannot prove this with what we have learned so far in our lecture.

Exercise 15: Let $X \subseteq \mathbb{A}_{K}^{n}$ be an algebraic variety. Show that $\dim(X) = n - 1$ if and only if there is an irreducible polynomial $f \in K[x_{1}, \ldots, x_{n}]$ such that $I(X) = \langle f \rangle$.

Exercise 16: [Tangent Cone]

Let $f \in K[x, y] \setminus K$ be a non-constant polynomial and $p = (0, 0) \in Z(f)$. How could one define the tangent lines at p? Consider the following examples for $K = \mathbb{R}$: f = x, $f = y - x^2$, $f = x^2 - y^3$, $f = x^2 - y^2$, $f = y^2 - x^4$.