FB Mathematik Thomas Markwig Winterterm 2009/10, Set 5 Georges Francois

Algebraic Geometry I

Due date: Monday, 30/11/2009, 10:00 Uhr

Exercise 17:

- a. Let $U = \mathbb{A}^2_{\mathbb{C}} \setminus Z(y^3 y^2, y^2 + y 2)$. Are all regular functions on U globally given by rational functions? If so, explain why, if not, give a counter example.
- b. Let K be an algebraically closed field. Show that all regular functions on $U = \mathbb{A}^2_K \setminus \{(0,0)\}$ are globally given by rational functions and determine the subring of K(x,y) isomorphic to $\mathcal{O}_{\mathbb{A}^2_V}(U)$.

Exercise 18: Let $X \subseteq \mathbb{A}_{K}^{n}$ be an affine algebraic set. If $U \subseteq X$ is open and dense then there exists a basic open subset $X_{f} \subseteq U$ of X which is dense in X.

Hint, use Prime Avoidance, see Prop. 1.17 in http://www.mathematik.uni-kl.de/~keilen/download/Lehre/MGSS09/CommutativeAlg.pdf.

Exercise 19: Let K be an algebraically closed field and $X \subseteq \mathbb{A}_{K}^{n}$ be an affine algebraic set with irreducible decomposition $X = X_{1} \cup \ldots \cup X_{k}$. Show that

$$K(X) \cong K(X_1) \oplus \ldots \oplus K(X_k).$$

Hint, use the Chinese Remainder Theorem, see Thm. 1.12 in http://www.mathematik.uni-kl.de/~keilen/download/Lehre/MGSS09/CommutativeAlg.pdf.

Exercise 20:

a. Let $K \subset L$ be a field extension, where L is algebraically closed. Let $f = \sum_{|\alpha|=0}^{n} a_{\alpha} \underline{x}^{\alpha} \in K[\underline{x}]$ be a polynomial and consider the ideal

$$I = \left(\sum_{\beta+\gamma=\alpha} b_{\beta} \cdot c_{\gamma} - a_{\alpha} \mid |\alpha| = 0, \dots, 2n-2\right) \lhd L[b_{\beta}, c_{\gamma} \mid |\beta|, |\gamma| = 0, \dots, n-1],$$

where $a_{\alpha} = 0$ for $|\alpha| = n + 1, \dots, 2n - 2$.

Show that f is irreducible over L if and only if $I = L[b_{\beta}, c_{\gamma} | |\beta|, |\gamma| = 0, ..., n-1].$

 $\label{eq:remark: This gives a criterion to check, whether a hypersurfes given by a polynomial \ f \in \mathbb{Q}[\underline{x}] \ is \ irreducible \ over \ \mathbb{C}.$

b. Check, using this criterion and SINGULAR, whether the polynomials $f = x^4 + 4x^3y + 2x^2y^2 - 4xy^3 + y^4 + 2x^2 + 4xy + 1$ and $g = x^4 + 4x^3y + 2x^2y^2 - 4xy^3 + y^4 + 2x^2 + 4xy - 1$ are irreducible over \mathbb{Q} and / or \mathbb{C} .

Hint: The command reduce(1, std(1)); returns zero if and only if the ideal I is the whole ring.