Algebraic Geometry I

Due date: Monday, 30/11/2009, 10:00 Uhr

Exercise 17:

a. Let $U=\mathbb{A}_{\mathbb{C}}^{2} \backslash Z\left(y^{3}-y^{2}, y^{2}+y-2\right)$. Are all regular functions on U globally given by rational functions? If so, explain why, if not, give a counter example.
b. Let K be an algebraically closed field. Show that all regular functions on $\mathrm{U}=$ $\mathbb{A}_{K}^{2} \backslash\{(0,0)\}$ are globally given by rational functions and determine the subring of $K(x, y)$ isomorphic to $\mathcal{O}_{\mathbb{A}_{K}^{2}}(U)$.

Exercise 18: Let $X \subseteq \mathbb{A}_{K}^{n}$ be an affine algebraic set. If $U \subseteq X$ is open and dense then there exists a basic open subset $X_{f} \subseteq U$ of X which is dense in X.

Hint, use Prime Avoidance, see Prop. 1.17 in http://www.mathematik.uni-kl.de/~keilen/download/Lehre/MGSS09/CommutativeAlg.pdf.

Exercise 19: Let K be an algebraically closed field and $X \subseteq \mathbb{A}_{k}^{n}$ be an affine algebraic set with irreducible decomposition $X=X_{1} \cup \ldots \cup X_{k}$. Show that

$$
K(X) \cong K\left(X_{1}\right) \oplus \ldots \oplus K\left(X_{k}\right) .
$$

Hint, use the Chinese Remainder Theorem, see Thm. 1.12 in http://www.mathematik.uni-kl.de/~keilen/download/Lehre/MGSS09/CommutativeAlg.pdf.

Exercise 20:

a. Let $K \subset L$ be a field extension, where L is algebraically closed. Let $f=\sum_{|\alpha|=0}^{n} a_{\alpha} \underline{\chi}^{\alpha} \in$ $\mathrm{K}[\mathrm{x}]$ be a polynomial and consider the ideal

$$
\mathrm{I}=\left(\sum_{\beta+\gamma=\alpha} \mathrm{b}_{\beta} \cdot \mathrm{c}_{\gamma}-\mathrm{a}_{\alpha}| | \alpha \mid=0, \ldots, 2 \mathrm{n}-2\right) \triangleleft \mathrm{L}\left[\mathrm{~b}_{\beta}, \mathrm{c}_{\gamma}| | \beta|,|\gamma|=0, \ldots, \mathrm{n}-1]\right.
$$

where $a_{\alpha}=0$ for $|\alpha|=n+1, \ldots, 2 n-2$.
Show that f is irreducible over L if and only if $I=L\left[b_{\beta}, c_{\gamma}| | \beta|,|\gamma|=0, \ldots, n-1]\right.$.
Remark: This gives a criterion to check, whether a hypersurfes given by a polynomial $f \in \mathbb{Q}[x]$ is irreducible over \mathbb{C}.
b. Check, using this criterion and Singular, whether the polynomials $f=x^{4}+$ $4 x^{3} y+2 x^{2} y^{2}-4 x y^{3}+y^{4}+2 x^{2}+4 x y+1$ and $g=x^{4}+4 x^{3} y+2 x^{2} y^{2}-4 x y^{3}+y^{4}+2 x^{2}+4 x y-1$ are irreducible over \mathbb{Q} and / or \mathbb{C}.

