FB Mathematik Thomas Markwig Winterterm 2009/10, Set 6 Georges Francois

Algebraic Geometry I

Due date: Monday, 07/12/2009, 10:00 Uhr

Exercise 21: Let X be a topological space and B a basis of the topology. Suppose that for every $U \in B$ we have a subring $\mathcal{A}(U)$ of the ring $K^U = \{f : U \longrightarrow K \mid f \text{ function}\}$ of all functions from U to K, and suppose that whenever $U, V \in B$ with $U \subseteq V$ then the restriction

$$res_{V\!, U}: \mathcal{A}(V) \longrightarrow \mathcal{A}(U): f \mapsto f_{|U}$$

is defined, i.e. $f_{|U} \in \mathcal{A}(U)$.

- a. Define $\mathcal{A}(U)$ for an arbitrary open subset U of X such that \mathcal{A} is a presheaf.
- b. Give a condition on the $\mathcal{A}(V)$ for basic open subsets $V \in B$ such that the presheaf \mathcal{A} is actually a sheaf.

Exercise 22: Let X be a topological space and let \mathcal{F} be a presheaf of rings on X. We denote by $\coprod_{p \in X} \mathcal{F}_p$ the disjoint union of the stalks of \mathcal{F} . For an open subset $U \subseteq X$ we call a function

$$s: U \longrightarrow \coprod_{p \in X} \mathcal{F}_p$$

a *section* of $\coprod_{p \in X} \mathcal{F}_p$ over U if $s(p) \in \mathcal{F}_p$ for all $p \in U$ and if, moreover, for every $p \in U$ there is an open neighbourhood V in U and there is a $g \in \mathcal{F}(V)$ such that

$$s(q) = g_q$$
 for all $q \in V$.

Show, that if we denote by

$$\mathcal{G}(\boldsymbol{U}) = \left\{ \boldsymbol{s}: \boldsymbol{U} \longrightarrow \coprod_{\boldsymbol{p} \in \boldsymbol{X}} \mathcal{F}_{\boldsymbol{p}} \; \Big| \; \boldsymbol{s} \; \text{is a section} \right\}$$

the set of sections over U, then the collection of the $\mathcal{G}(U)$ together with the obvious restriction maps is a sheaf of rings on X.

Moreover, if \mathcal{F} is a sheaf then the map

$$\mathcal{F}(U) \longrightarrow \mathcal{G}(U): f \mapsto \left(U \rightarrow \coprod_{\mathfrak{p} \in X} \mathcal{F}_\mathfrak{p}: \mathfrak{p} \mapsto f_\mathfrak{p} \right)$$

is an isomorphism of rings for any $U \subseteq X$ open.

Exercise 23: Let K be algebraically closed, $X = Z(x) \subset \mathbb{A}^2_K$ and $Y = Z(x^2 - y^3) \subset \mathbb{A}^2_K$.

a. Is the K-algebra K[X] isomorphic to K[Y]?

b. Is the field K(X) isomorphic to the field K(Y)?

Exercise 24: Let $\varphi : X \longrightarrow Y$ be a morphism of affine algebraic sets. Is it true that the image $\varphi(A)$ of a closed subset of $A \subseteq X$ is always closed in Y?