FB Mathematik Thomas Markwig

Algebraic Geometry I

Due date: Monday, 14/12/2009, 10:00 Uhr **Exercise 25:** Which of the following algebraic sets are isomorphic?

$$\begin{split} \mathbb{A}^1_{\mathbb{C}} & Z(xy) \subseteq \mathbb{A}^2_{\mathbb{C}} & Z(x^2 + y^2) \subseteq \mathbb{A}^2_{\mathbb{C}} \\ \mathbb{Z}(x^2 - y^3) \subseteq \mathbb{A}^2_{\mathbb{C}} & Z(y - x^2, z - x^3) \subseteq \mathbb{A}^3_{\mathbb{C}}. \end{split}$$

Hint, in principle you have to consider the coordinate rings and show whether they are isomorphic or not. But you can determine the isomorphisms on the geometric side, and for non-isomorphic sets you may perhaps argue by geometric properties which prevent the existence of an isomorphism.

Exercise 26: Which of the following claims is correct? Prove or give a counter example.

a. A morphism $\phi:\mathbb{A}^2_K\longrightarrow\mathbb{A}^2_K$ is an isomorphism if there are $a,b,c,d,e,f\in K$ such that

$$\varphi(\mathbf{x},\mathbf{y}) = (\mathbf{a}\mathbf{x} + \mathbf{b}\mathbf{y} + \mathbf{e}, \mathbf{c}\mathbf{x} + \mathbf{d}\mathbf{y} + \mathbf{f})$$

for all $(x, y) \in \mathbb{A}^2_K$ with

$$\det \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \neq 0.$$

b. Every automorphism of $\mathbb{A}^2_{\mathsf{K}}$ is of this form.

Hint, the map ϕ^* on K[x, y] must be an isomorphism as well, i.e. it is a coordinate change given by $x \mapsto f(x, y)$ and $y \mapsto g(x, y)$, and the inverse is of the same type. Try to see how that restricts f and g.

Exercise 27:

a. Let $X \subseteq \mathbb{A}^n_K$ be an affine algebraic sets, $U \subseteq X$ open and $\varphi_1, \ldots, \varphi_m \in \mathcal{O}_X(U)$. Show that the map

$$\varphi: U \longrightarrow \mathbb{A}_{K}^{\mathfrak{m}}: \mathfrak{p} \mapsto (\varphi_{1}(\mathfrak{p}), \ldots, \varphi_{\mathfrak{m}}(\mathfrak{p}))$$

is a morphism.

- b. Let $\varphi : \mathbb{A}^n_{\mathsf{K}} \longrightarrow \mathbb{A}^m_{\mathsf{K}}$ be a morphism.
 - (a) Is the preimage $\phi^{-1}(Y) \subseteq \mathbb{A}_{K}^{n}$ an algebraic set if $Y \subseteq \mathbb{A}_{K}^{m}$ is an algebraic set?
 - (b) Is the graph $\Gamma = \{(p, \phi(p)) \in \mathbb{A}_{K}^{n+m} | p \in X\} \subseteq \mathbb{A}_{K}^{n+m}$ an algebraic set if $X \subseteq \mathbb{A}_{K}^{n}$ is an algebraic set?

Hint: a. It suffices to show that φ is continous. Consider the preimage of a closed subset $Y = Z(I) = \bigcap_{f \in I} Z(f) \subseteq \mathbb{A}_K^m$ under φ and show that it is closed. b.(b) Either look for a counter example among the algebraic sets you know, or try to find a set of polynomials whose zero locus Graph(φ) is, taking the ideal of X and the component functions of φ into account.

Exercise 28: Let K be an algebraically closed field and let $f \in K[x, y]$ be an irreducible polynomial of degree two. Show that Z(f) is isomorphic to either $Z(y - x^2)$ or to Z(xy - 1).

Hint, each polynomial f of degree two can be written uniquely as $f = (x, y) \cdot A \cdot (x, y)^t + v \cdot (x, y)^t + d$ for some 2×2 -Matrix A, some vector $v \in K^2$ and some constant d. Find a coordinate transformation as in Exercise 26 which transforms f into one of the two above normal forms, and do so by distinguishing the two cases that rank(A) = 2 respectively rank(A) = 1.