Algebraic Geometry I

Due date: Monday, 14/12/2009, 10:00 Uhr
Exercise 25: Which of the following algebraic sets are isomorphic?
A_{C}^{1}
$Z(x y) \subseteq \mathbb{A}_{\mathbb{C}}^{2}$
$Z\left(x^{2}+y^{2}\right) \subseteq \mathbb{A}_{\mathbb{C}}^{2}$
$Z\left(x^{2}-y^{3}\right) \subseteq A_{\mathbb{C}}^{2}$
$Z\left(y-x^{2}, z-x^{3}\right) \subseteq \mathbb{A}_{\mathbb{C}}^{3}$.

Hint, in principle you have to consider the coordinate rings and show whether they are isomorphic or not. But you can determine the isomorphisms on the geometric side, and for non-isomorphic sets you may perhaps argue by geometric properties which prevent the existence of an isomorphism.
Exercise 26: Which of the following claims is correct? Prove or give a counter example.
a. A morphism $\varphi: \mathbb{A}_{K}^{2} \longrightarrow \mathbb{A}_{K}^{2}$ is an isomorphism if there are $a, b, c, d, e, f \in K$ such that

$$
\varphi(x, y)=(a x+b y+e, c x+d y+f)
$$

for all $(x, y) \in \mathbb{A}_{K}^{2}$ with

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \neq 0
$$

b. Every automorphism of \mathbb{A}_{K}^{2} is of this form.

Hint, the map φ^{*} on $K[x, y]$ must be an isomorphism as well, i.e. it is a coordinate change given by $x \mapsto f(x, y)$ and $y \mapsto g(x, y)$, and the inverse is of the same type. Try to see how that restricts f and g.

Exercise 27:

a. Let $X \subseteq \mathbb{A}_{K}^{n}$ be an affine algebraic sets, $\mathrm{U} \subseteq X$ open and $\varphi_{1}, \ldots, \varphi_{m} \in \mathcal{O}_{X}(\mathrm{U})$. Show that the map

$$
\varphi: U \longrightarrow \mathbb{A}_{\mathrm{K}}^{m}: p \mapsto\left(\varphi_{1}(\mathfrak{p}), \ldots, \varphi_{\mathrm{m}}(\mathfrak{p})\right)
$$

is a morphism.
b. Let $\varphi: \mathbb{A}_{K}^{n} \longrightarrow \mathbb{A}_{K}^{m}$ be a morphism.
(a) Is the preimage $\varphi^{-1}(Y) \subseteq \mathbb{A}_{K}^{n}$ an algebraic set if $Y \subseteq \mathbb{A}_{K}^{m}$ is an algebraic set?
(b) Is the graph $\Gamma=\left\{(p, \varphi(p)) \in \mathbb{A}_{K}^{n+m} \mid p \in X\right\} \subseteq \mathbb{A}_{k}^{n+m}$ an algebraic set if $X \subseteq \mathbb{A}_{k}^{n}$ is an algebraic set?

Hint: a. It suffices to show that φ is continous. Consider the preimage of a closed subset $Y=Z(I)=\bigcap_{f \in I} Z(f) \subseteq \mathbb{A}_{K}^{m}$ under φ and show that it is closed. b.(b) Either look for a counter example among the algebraic sets you know, or try to find a set of polynomials whose zero locus $\operatorname{Graph}(\varphi)$ is, taking the ideal of X and the component functions of φ into account.
Exercise 28: Let K be an algebraically closed field and let $f \in K[x, y]$ be an irreducible polynomial of degree two. Show that $Z(f)$ is isomorphic to either $Z\left(y-x^{2}\right)$ or to $Z(x y-1)$.

Hint, each polynomial f of degree two can be written uniquely as $f=(x, y) \cdot A \cdot(x, y)^{t}+v \cdot(x, y)^{t}+d$ for some 2×2-Matrix A, some vector $v \in K^{2}$ and some constant d. Find a coordinate transformation as in Exercise 26 which transforms f into one of the two above normal forms, and do so by distinguishing the two cases that $\operatorname{rank}(A)=2 \operatorname{respectively} \operatorname{rank}(A)=1$.

