FB Mathematik Thomas Markwig

Algebraic Geometry I

Due date: Monday, 04/01/2010, 10:00 Uhr

Exercise 29: Let $\varphi : (X, \mathcal{F}) \longrightarrow (Y, \mathcal{G})$ be a morphism of affine varieties over an algebraically closed field K (as defined in Definition 3.1 of the lecture), and let $\varphi^* : \mathcal{G}(Y) \longrightarrow \mathcal{F}(X)$ be the pull-back on the global section. Which of the following statements is correct?

- a. φ^* is injective if and only if φ is surjective.
- b. φ^* is surjective if and only if φ is injective.

Either prove the statement or give a counterexample. Can you weaken incorrect statements so that they become correct?

Hint, you can right away reduce to the case where X and Y are affine algebraic sets. An interesting example in this context is the projection of the hyperbola Z(xy - 1) onto the x-axis.

Exercise 30: Let (X, \mathcal{F}) be a prevariety.

- a. Show that X is a noetherian topological space.
- b. Show that $(U, \mathcal{F}_{|U})$ is a prevariety for any open subset $U \subseteq X$.

Hint: a. cover X by finitely many affine varieties and cut a descending chain of closed subspaces down to the affine pieces. b. cover X by affine varieties X_1, \ldots, X_k and use Proposition 2.7 for $U \cap X_i$ to cover it by affines.

Exercise 31: Let (X, \mathcal{F}) be a prevariety and let $Y \subseteq X$ be a closed subset. For an open subset $U \subset Y$ we define

 $\mathcal{G}(U) = \{g : U \longrightarrow K \mid \forall \ p \in U \ \exists \ p \in V \subseteq X \ open \ \& \ f \in \mathcal{F}(V) \ : \ g \equiv f \ on \ U \cap V \}.$

- a. Show that \mathcal{G} together with the usual restriction maps is a sheaf of K-algebras, and thus (Y, \mathcal{G}) is a space with K-valued functions.
- b. Show that (Y, G) is actually a prevariety.
- c. Show that $\mathcal{F}(V)/I_Y(V) \longrightarrow \mathcal{G}(V \cap Y) : \overline{f} \mapsto f_{|V \cap Y}$ is a monomorphism for any open subset $V \subseteq X$ where $I_Y(V) = \{f \in \mathcal{F}(V) \mid f(p) = 0 \forall p \in V \cap Y\}$. Is this map always an isomorphism?

Hint: b. use an affine covering of X and cut it down to Y. In part c. you might want to consider $X = V = \mathbb{P}^1_{\mathbb{C}}$ and $Y = \{0, 1\}$, or $X = \mathbb{A}^2_{\mathbb{C}}$, $Y = \mathbb{A}^1_{\mathbb{C}}$ and $V = X \setminus \{(0, 0)\}$.

Exercise 32: Show that the prevariety \mathbb{P}^1_K is a variety.

Hint, \mathbb{P}_{K}^{1} is covered by two affine varieties X and Y, so that $\mathbb{P}_{K}^{1} \times \mathbb{P}_{K}^{1}$ is covered by the four affine varieties X × X, X × Y, Y × X and Y × Y. Use this to show that $\Delta(\mathbb{P}_{K}^{1})$ is closed in $\mathbb{P}_{K}^{1} \times \mathbb{P}_{K}^{1}$.