Algebra

Abgabetermin: Freitag, 23.04.2021, 10:00

Präsenzaufgaben werden in den Online-Übungsstunden in den Break-out-rooms in Kleingruppen bearbeitet. Man sollte sie sich aber schon im Vorfeld angesehen haben und mit ersten Ideen zu den Treffen kommen.

Aufgabe 1: Es sei R ein kommutativer Ring mit Eins.

Beweise die folgenden Aussagen:

(a) Sind $0 \neq f, g \in R[t]$, so gibt es Polynome $q, r \in R[t]$ und eine natürliche Zahl $0 \leq k \leq \deg(q) + 1$, so daß

$$lc(f)^k \cdot q = q \cdot f + r$$

und

$$deg(r) < deg(f)$$
.

- (b) Ist $a \in R$ eine Nullstelle von g, so gibt es ein Polynom $q \in R[t]$ mit $g = q \cdot (t a)$.
- (c) Ist R ein Integritätsbereich, so hat g höchstens deg(g) paarweise verschiedene Nullstellen in R.
- (d) Finde ein Beispiel für einen Ring R und ein Polynom $0 \neq g \in R[t]$ mit mehr als deg(g) Nullstellen.

Präsenzaufgabe 1: Es sei K ein Körper und $f \in K[t]$ ein Polynom vom Grad $2 \le \deg(f) \le 3$. Zeige, f ist genau dann irreduzibel, wenn f in K keine Nullstelle hat.

Präsenzaufgabe 2: Zeige, ist R ein faktorieller Ring und $a \in Quot(R)$ eine Nullstelle eines normierten Polynoms $0 \neq f \in R[t]$, dann gilt $a \in R$.

Präsenzaufgabe 3: Sei K ein Körper. Zeige, daß der Unterring*

$$R = \left\{ \left. \sum_{i=0}^n \alpha_i t^i \in K[t] \; \right| \; n \in \mathbb{N}, \alpha_1 = 0 \right\}$$

von K[t] nicht faktoriell ist.

^{*}Es braucht nicht gezeigt zu werden, daß R ein Unterring von K[t] ist.