Algebra

Abgabetermin: Donnerstag, 20.05.2021, 10:00

Aufgabe 9: Bestimme für folgende $\alpha \in \mathbb{R}$ das Minimalpolynom von α über \mathbb{Q} und den Grad der Körpererweiterung $\mathbb{Q}(\alpha)/\mathbb{Q}$:

- (a) $\alpha = \sqrt[n]{p}$, $n \in \mathbb{Z}_{>2}$ und p Primzahl.
- (b) $\alpha = \sqrt{3} + \sqrt[3]{5}$.

(c)
$$\alpha = \sqrt[3]{\sqrt{5} + 2} - \sqrt[3]{\sqrt{5} - 2}$$

Hinweis: in Teil c. berechne man den Wert zunächst näherungsweise mit einem Rechner.

Aufgabe 10: Es sei L/K mit L = $K(\alpha)$ eine einfache Körpererweiterung und α sei algebraisch über K mit Minimalpolynom $\mu_{\alpha}^K \in K[t]$. Ferner sei

$$\mathcal{Z}(L/K) = \{ N \mid K < N < L \}$$

die Menge der Zwischenkörper von L/K und

$$P = \{f \in L[t] \mid f \text{ teilt } \mu_{\alpha}^K \text{ in } L[t] \text{ und } lc(f) = 1\}$$

die Menge der normierten Teiler des Polynoms μ_{α}^{K} im Polynomring L[t].

(a) Zeige, die Abbildung

$$\phi: \mathcal{Z}(L/K) \longrightarrow P: N \mapsto \mu_{\alpha}^{N},$$

wobei $\mu_\alpha^N\in N[t]$ das Minimalpolynom von α über N bezeichnet, ist wohldefiniert und hat die Linksinverse

$$\psi: P \longrightarrow \mathcal{Z}(L/K): t^n + \alpha_{n-1}t^{n-1} + \ldots + \alpha_0 \mapsto K(\alpha_0, \ldots, \alpha_{n-1}),$$

d.h. es gilt $\psi \circ \phi = id_{ZK(L/K)}$.

(b) Zeige, L/K hat höchstens $2^{|L:K|-1}$ Zwischenkörper.

Präsenzaufgabe 9: Es sei p eine Primzahl, $L = Quot(\mathbb{F}_p[x,y])$ und $K = Quot(\mathbb{F}_p[x^p,y^p])$. Zeige, die Körpererweiterung L/K ist endlich, aber nicht einfach.

Hinweis, betrachte $K(x + \alpha y)$ für $\alpha \in K$ und zeige u.a. $|L : K(y)| = |K(y) : K| = |K(x + \alpha y) : K| = p$.

Präsenzaufgabe 10: Beweise oder widerlege: man kann mit Zirkel und Lineal zu einem gegebenen Dreieck ein flächengleiches Quadrat konsturieren.