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CHAPTER IFinite Groups0 Motivation - Che
k Digit CodesNowadays produ
ts in shops all 
arry bar 
odes and are identi�ed by them. More-over, at the 
ash desk the bar 
ode is s
anned or typed in and that way you get
harged the pri
e. Sometimes the bar 
odes are not re
ognised 
orre
tly or thewrong number has been typed in. However, the error is re
ognised by the ma
hineand the bar 
ode is not a

epted.A) Have you ever wondered how it 
omes, that you are always
harged the right pri
e?Well, the ma
hine looks the bar 
ode up in some data base, and if the in
orre
t bar
ode was 
ontained in that data base as well, then the ma
hine 
ould not possiblydete
t any error. So, when assigning bar 
odes, you have to make sure that no bar
odes whi
h - in a 
ertain sense - are too similar are in the data base.Is this diÆ
ult? Well, to de
ide on that question we should know, what bar 
odesin prin
iple look like!Bar 
odes are also 
alled EAN-13 
odes, where EAN is short for European Arti
leNumber, and they 
onsist of a thirteen digit number. The �rst 2 to 3 digits standfor the organisation whi
h assigned the numbers to the produ
er, some of the nextdigits identify this produ
er and so on. So, the digits are not really arbitrary digits.In parti
ular, for a �xed produ
er a large part of the bar 
ode will always be thesame. I. e. the numbers will have to be similar!How 
an we get along with that problem?Idea: Store some redundant information whi
h is not needed to identify the arti
le,but only to dete
t possible errors.In the 
ase of the EAN-13 only 12 digits 
hara
terise the arti
le. Digit no. 13 is aso 
alled 
he
k digit.B) How is the 
he
k digit related to the (real) arti
le number?Basi
 Idea: It should be possible to 
al
ulate the 
he
k digit from the remainingdigits in an easy way, but su
h that (
ommon) errors are possibly dete
ted.First Idea: Repeat the whole number! This is a bit too mu
h redundan
y andin
reases the risk of falsely s
anned numbers.Se
ond Idea: Take the 
ross sum of the digits of the real produ
t number as 
he
k\digit". 1



2 I. FINITE GROUPSE. g. if the produ
t number is 013412547180, then the 
he
k digit would be0+ 1+ 3+ 4+ 1+ 2+ 5+ 4+ 7+ 1+ 8+ 0 = 36:This will usually be several digits long, and is still too mu
h redundan
y.Third Idea: Let's just take the last digit of the 
ross sum!E. g. in the above example the 
he
k digit would then be 6.This 
an be formulated in a more mathemati
al way by saying thatwe take the remainder of the 
ross sum by division with remainder modulo 10.And that's where groups 
ome into play as a ni
e way to formulate the pro
edure. Wemay identify the digits 0; : : : ; 9 with the elements of the additive group (Z=10Z;+),just via the mapf0; : : : ; 9g! Z=10Z : a 7! a = a+ 10Z = fa+ 10z j z 2 Zg;i. e. identifying the digit with the residue 
lass represented by the number. Viewingthe digits in the arti
le number as elements of Z=10Z that way, the 
he
k digitbe
omes just the sum of the \digits".E. g. 0+ 1+ 3+ 4+ 1+ 2+ 5+ 4+ 7+ 1+ 8+ 0 = 36 = 6.C) Does this allow to dete
t errors? Otherwise it is of no use.Certainly we will not be able to dete
t all errors, thus we have to distinguish 
ertaintypes of errors! Some statisti
s tell us that the following two types are the most
ommon ones.Type I: \Single Digit Errors" { i. e. just one digit is wrong. These are roughly80% of the o

uring errors.Type II: \Neighbour Transpositions" { i. e. two neighbouring digits have beeninter
hanged. These are about 10% of the errors.It is fairly obvious that the 
ross-sum-mod-10-approa
h 
annot dete
t errors of TypeII, sin
e the addition in Z=10Z is 
ommutative. However, does it dete
t errors ofType I?Suppose the 
orre
t number was a1a2 � � �a13 and instead of some ai we read a 0i 2f0; : : : ; 9g with ai 6= a 0i. Thena13 -  Xj 6=i;13aj + a 0i! = 12Xj=1 aj -  Xj 6=i;13aj + a 0i! = ai - a 0i 6= 0; (1)sin
e ai - a 0i is number between -9 and 9 whi
h is non-zero and thus 10 does notdivide ai - a 0i. That means \Single Digit Errors" are dete
ted.D) Ba
k to EAN-13.The en
oding of EAN-13 is, however, slightly di�erent. The 
he
k digit in a1a2 � � �a13satis�esa13 = (-1) � a1 + (-3) � a2 + (-1) � a3 + (-3) � a4 + : : :+ (-1) � a13or equivalently a1 + 3 � a2 + a3 + : : :+ a13 = 0:



0. MOTIVATION - CHECK DIGIT CODES 3We 
all these equations 
he
k digit equations.Does this still dete
t errors of Type I?Let's go ba
k to Equation (1) for this. The question �nally 
omes down to 
he
kingwhether ai 6= a 0i implies that ai - a 0i and 3 � (ai - a 0i) are not equal to 0, whi
h isthe 
ase sin
e ai-a 0i is not divisible by 10 and thus also three times this number isnot. Thus we are lu
ky.How about errors of Type II?If ai and ai+1 have been inter
hanged, then this 
omes down to the question whether3 � ai + ai+1 = 3 � ai+1 + ai, 2 � (ai - ai+1) = 0, 5 j ai - ai+1:Thus even errors of Type II will quite frequently be dete
ted, but not all of them.We a
hieved this by multiplying the digits in the 
ross sum by 
ertain weights wi {here wi = 1 and wi = 3.E) Whi
h weights wi would have been suitable in the 
he
k digitequation in order not to loose the property that errors of TypeI are dete
ted?The important point was thatai 6= a 0i ) !i � ai 6= !i � a 0i;i. e. that the map �!i : Z=10Z! Z=10Z : a 7! !i � ais inje
tive, and hen
e bije
tive sin
e Z=10Z is a �nite set. In other words, �!i is apermutation of the set Z=10Z.This leads to the following generalisation and de�nition.0.1 De�nitionLet (G; �) be a group, g0 2 G a �xed element, and let �1; : : : ; �n 2 Sym(G) bepermutations.a. We 
allC = CG(�1; : : : ; �n; g0) = �(g1; : : : ; gn)t 2 Gn �� �1(g1) � � ��n(gn) = g0	a 
he
k digit 
ode (CDC) of length n on the alphabet G.b. We say that C dete
ts errors of Type I if and only if (g1; : : : ; gn)t 2 C andg 0i 2 G with g 0i 6= gi implies that (g1; : : : ; gi-1; g 0i; gi+1; : : : ; gn)t 62 C.
. We say that C dete
ts errors of Type II if and only if (g1; : : : ; gn)t 2 C withgi 6= gi+1 implies that (g1; : : : ; gi-1; gi+1; gi; gi+2; : : : ; gn)t 62 C.0.2 Example (EAN-13)Let (G; �) = (Z=10Z;+), g0 = 0, n = 13, �i = �1 if i is odd and �i = �3 if i is even.This then des
ribes the EAN-13 
ode C = CZ=10Z(�1; �3; : : : ; �1; 0).



4 I. FINITE GROUPSA
tually, C = ker(�), where � : (Z=10Z)13 ! Z=10Z is the group homomorphismde�ned by multipli
ation with the matrix �1; 3; 1; : : : ; 1�.Having introdu
ed 
he
k digit 
odes over arbitrary groups it would be ni
e to knowsomething about their error dete
ting properties.0.3 Proposition (Error Dete
ting Properties)Let C = CG(�1; : : : ; �n; g0) be a CDC over the alphabet (G; �).a. C dete
ts errors of Type I.b. If n � 3, then C dete
ts errors of Type II if and only if 8 i = 1; : : : ; n -1; 8 g; h 2 G s. t. g 6= h:g � ��i+1 Æ �-1i �(h) 6= h � ��i+1 Æ �-1i �(g):Proof: a. Let (g1; : : : ; gn)t 2 C, g 0i 2 G su
h that g 0i 6= gi, and suppose (g1; : : : ; g 0i; : : : ; gn)t 2C. Then �1(g1) � � ��n(gn) = g0 = �1(g1) � � ��i�g 0i� � � ��n(gn):By the 
an
ellation law we thus dedu
e that�i(gi) = �i�g 0i�:But then also gi = g 0i, sin
e �i is inje
tive. This, however, is a 
ontradi
tionto our assumption.b. Let's �rst assume that the 
ondition of the proposition is satis�ed and let'sshow that then C dete
ts errors of Type II. For this let (g1; : : : ; gn)t 2 C begiven with gi 6= gi+1 and set g = �i(gi) and h = �i(gi+1). Sin
e �i is inje
tivewe have g 6= h. Thus by the 
ondition of the proposition we also have�i(gi) � �i+1(gi+1) = g � ��i+1 Æ �-1i �(h) 6= h � ��i+1 Æ �-1i �(g) = �i(gi+1) � �i+1(gi):Multiplying both sides with the same element of G the inequality is preservedand we get�1(g1) � � ��i(gi) � �i+1(gi+1) � � ��n(gn) 6= �1(g1) � � ��i(gi+1) � �i+1(gi) � � ��n(gn):This means that C dete
ts errors of Type II.Let's now suppose that C dete
ts errors of Type II and then prove the above
ondition. For this let g; h 2 G with g 6= h, and set gi = �-1i (g) and gi+1 =�-1i (h). Sin
e �i is bije
tive gi 6= gi+1. Choose now gj 2 G, j 6= i; i + 1 su
hthat (g1; : : : ; gn)t 2 C (here we need n � 3). Thus by assumption(g1; : : : ; gi+1; gi; : : : ; gn)t 62 C:But then�1(g1) � � ��n(gn) = g0 6= �1(g1) � � ��i(gi+1) � �i+1(gi) � � ��n(gn):Using the 
an
ellation law we deriveg � ��i+1 Æ �-1i �(h) = �i(gi) � �i+1(gi+1) 6= �i(gi+1) � �i+1(gi) = h � ��i+1 Æ �-1i �(g):This �nishes the proof.



0. MOTIVATION - CHECK DIGIT CODES 5Note: If (G; �) is abelian and inv : G ! G : g 7! g-1 denotes the inversion map,then the 
ondition in Proposition 0.3 
omes down tog � � inv Æ�i+1 Æ �-1i �(g) 6= h � � inv Æ�i+1 Æ �-1i �(h): (2)Sin
e inv Æ�i+1Æ�-1i 2 Sym(G) is a permutation of G, it seems that maps of the formg 7! g�(g) for some permutation � 2 Sym(G) are 
onne
ted to the error dete
tingproperties of 
odes.0.4 De�nitionLet (G; �) be a group and � 2 Sym(G). We 
all � a 
omplete mapping if and onlyif the map �� : G! G : g 7! g � �(g)is again a permutation of G.So far we know how to 
he
k whether a given CDC dete
ts errors of Typer II or not,but we have no means to �nd su
h a 
ode { or possibly to de
ide that their is non.0.5 CorollaryLet (G; �) be a �nite abelian group, n � 3. Then there is a CDC of length n whi
hdete
ts errors of Type II if and only if G admits a 
omplete mapping.Proof: Let's �rst suppose that G admits a 
omplete mapping � 2 Sym(G). Setg0 = eG and �i = (inv Æ�)i for i = 1; : : : ; n.Claim: C = CG(�1; : : : ; �n; g0) dete
ts errors of Type II.For this we only have to 
he
k that Equation (2) is satis�ed. Let g; h 2 G su
h thatg 6= h. Theng � � inv Æ�i+1 Æ �-1i �(g) = g � � inv Æ(inv Æ�)i+1-i�(g) = g � �(g) = ��(g)6= ��(h) = h � �(h) = h � � inv Æ(inv Æ�)i+1-i�(h) = h � � inv Æ�i+1 Æ �-1i �(h):Thus Equation (2) is ful�lled.Let's now suppose that there is a CDC CG(�1; : : : ; �n; g0) whi
h dete
ts errors ofType II. We de�ne � = inv Æ�2 Æ �-11 2 Sym(G) and we 
laim that this is then a
omplete mapping. In order to 
he
k this we let g; h 2 G su
h that g 6= h. Thus byEquation (2) we have��(g) = g ��(g) = g �� inv Æ�2 Æ�-11 �(g) 6= h �� inv Æ�2 Æ�-11 �(h) = h ��(h) = ��(h):Hen
e �� is inje
tive and thus bije
tive, sin
e G is �nite. But then � is a 
ompletemapping.0.6 Remarka. If jGj = 2 �m with m odd, then there exists no 
omplete mapping on G.1In parti
ular, there is no CDC on Z=10Z whi
h dete
ts all errors of Type II.b. If jGj is odd, then the identity mapping idG is a 
omplete mapping.1The proof is elementary, but lengthy. We refer the reader to H. Siemon, Anwendungen derelementaren Gruppentheorie in der Zahlentheorie, 1981.



6 I. FINITE GROUPSProof: Let jGj = 2m + 1, then by the Theorem of Lagrange we have eG =gjGj = g2m+1. Multiplying by g we get �gm+1�2 = g, and thus the mappingid�G : g 7! g � idG(g) = g2 is surje
tive. But sin
e G is �nite, it is thenbije
tive.
. Problem: There is no CDC on (Z=10Z;+) whi
h dete
ts errors of Type II!How 
an we deal with that?Solution 1: Use an odd number of digits, i. e. 
al
ulate over Z=mZ with anodd m.E. g. the ISBN 
ode works over (Z=11Z;+), where the element 10 = 10 +11Z is denoted by X and is only used as 
he
k digit. The ISBN 
ode is aCZ=11Z(�1; : : : ; �10; 0) 
ode, where �i : Z=11Z! Z=11Z : a 7! i � a. We leaveit as an exer
ise to 
he
k that the 
ode a
tually dete
ts errors of Type II. Youonly have to 
he
k that Equation (2) is satis�ed.Solution 2: Use a non-abelian group with ten elements! There the non-existen
e of a 
omplete mapping is not related to the error dete
ting property.0.7 Example (German Curren
y)The 
he
k digits of the serial numbers of the German 
urren
y where a
tually en-
oded by a CD10��1; : : : ; �10; idD10; (1)� 
ode.Consider the dihedral groupD10 = 
(1 2 3 4 5); (1 5)(2 4)� � S5 = Sym �f1; : : : ; 5g�:In the exer
ises you show that, setting � = (1 2 3 4 5) and � = (1 5)(2 4), we maydes
ribe D10 as the setD10 = ��0 = (1); �1; : : : ; �4; � Æ �0 = �; � Æ �1; : : : ; � Æ �4	:And sin
e � Æ � = �-1 Æ � 6= � Æ �, the group is indeed not abelian.Verhoe� showed that the permutation � : D10 ! D10 of D10 de�ned byx �0 �1 �2 �3 �4 � Æ �0 � Æ �1 � Æ �2 � Æ �3 � Æ �4�(x) �1 � Æ �0 � Æ �2 � Æ � �2 � Æ �3 �3 �0 � Æ �4 �4satis�es that g; h 2 D10 with g 6= h implies g Æ �(h) 6= h Æ �(g). Hen
e, setting�i = �i 2 Sym(D10), the 
ode CD10��1; : : : ; �10; (1)� dete
ts errors of Type II byProposition 0.3.Of 
ourse for the serial numbers on the German 
urren
y they did not use su
h fan
ysymbols like �. They used the usual 10 digits and in addition 10 letters. However,they were identi�ed with the elements in D10 in the following way�0 �1 �2 �3 �4 � Æ �0 � Æ �1 � Æ �2 � Æ �3 � Æ �40 1 2 3 4 5 6 7 8 9A D G K L N S U Y Z:Thus, if you wanted to 
he
k whether a serial number on a German bank note wasvalid, you repla
ed the digits and letters by the appropriate elements of D10 andlooked whether this element belonged to CD10��1; : : : ; �10; idD10; (1)�.



1. BASICS 70.8 Exer
iseChe
k if AA6186305Z2 is a valid serial number for a German bank note.Question: Could we have used some other group with 10 elements as alphabet?Answer: No! Not really. The group only matters up to isomorphism, and we willshow at the end of the part on �nite groups that up to isomorphism there are onlytwo groups with 10 elements { (Z=10Z;+) and (D10; Æ).1 Basi
sLet's re
all some of the basi
 de�nitions and results from �rst year 
ourses.A) Groups1.1 De�nitionA group is a tuple (G; �) 
onsisting of a non-empty set G and a binary operation� : G�G! G : (g; h) 7! g � hsu
h that the following axioms are ful�lled:(i) g � (h � k) = (g � h) � k for all g; h; k 2 G, (Asso
iativity)(ii) 9 e 2 G : 8 g 2 G : e � g = g, (Existen
e of a Neutral)(iii) 8g 2 G 9h 2 G : h � g = e. (Existen
e of an Inverse)If moreover(iv) g � h = h � g for all g; h 2 Gis satis�ed, then we 
all (G; �) abelian.If jGj <1, we 
all the group �nite and jGj = o(G) = #G is 
alled its order.Notation: Instead of g �h we will usually just write gh. If a group is abelian, thenwe will usually denote the operation by \+" instead of \�".If no ambiguity 
on
erning the group operation 
an arise, we will just write G insteadof (G; �) in order denote a group.1.2 PropositionLet (G; �) be a group.a. The neutral element eG is uniquely determined and satis�es g � eG = g for allg 2 G as well. Instead of eG we also write 1G.b. For any element g 2 G the inverse element is uniquely determined and isdenoted by g-1 or invG(g). It satis�es g � g-1 = eG as well.
. Can
ellation Rule: If g; h; k 2 G with gh = gk or with hg = kg, then h = k.d. For g; h 2 G we have (g � h)-1 = h-1 � g-1 and �g-1�-1 = g.e. If we set g0 = eG and, re
ursively, gi+1 = g � gi and g-i = �gi�-1 for i � 0,then the exponential laws are ful�lled, i. e. for g 2 G and i; j 2 Z we havegi � gj = gi+j and �gi�j = gi�j:



8 I. FINITE GROUPSProof:a./b. Let's prove Parts a. and b. together in several steps, where eG denotes a �xed(left-)neutral in G for whi
h every element has a (left-)inverse as indi
ated bythe group axioms.Step 1 : If h � g = eG for g; h 2 G, then also g � h = eG.Sin
e G is a group, there is some k 2 G su
h that k � h = eG. Hen
eg � h = eG � (g � h) = (k � h) � (g � h) = k � (h � g) � h = k � eG � h = k � h = eG:Step 2 : We also have g � eG = g for all g 2 G.Let g 2 G and let h 2 G su
h that h � g = eG. Then, using Step 1,g � eG = g � (h � g) = (g � h) � g = eG � g = g:Step 3 : Let e 0 2 G su
h that for all g 2 G we have, e 0 � g = g, then e 0 = eG.Using Step 2, we have e 0 = eG � e 0 = e 0 � eG = eG.Step 4 : Let k; h 2 G su
h that k � g = eG = h � g, then k = h.By Step 1 we know that g � h = eG, thus we get with the aid of Step 2k = k � eG = k � (g � h) = (k � g) � h = eG � h = h:
. Let g; h; k 2 G su
h that h � g = k � g. Thenh = h � eG = h � �g � g-1� = (h � g) � g-1 = (k � g) � g-1 = k � �g � g-1� = k � eG = k:The other way round works analogously.d. Let g; h 2 G. In order to see that (g �h)-1 = h-1 � g-1, it suÆ
es to show thatthe right hand side has the property of the inverse element of g � h. Knowingthat that one is uniquely determined we are then done.�h-1 � g-1� � (g � h) = h-1 � �g-1 � g� � h = h-1 � eG � h = h-1 � h = eG:Thus h-1 � g-1 is the unique inverse of g � h, i. e. h-1 � g-1 = (g � h)-1.Analogously, for g 2 G we have by Part b.g � g-1 = eG;and hen
e g satis�es the property of the inverse element of g-1. Hen
e byuni
ity we get �g-1�-1 = g.e. Note that the de�nition implies right awaygk = �g-1�-k 8 g 2 G; 8 k 2 Z:Let's now prove the �rst exponential law, and for this let i; j 2 Z.1st Case: Let g 2 G be arbitrary, i � 0. We do the proof by indu
tion on i.i = 0 : Then gi � gj = g0 � gj = eG � gj = gj = gi+j:i 7! i+ 1 : By de�nition and indu
tion hypothesis:gi+1 � gj = �g � gi� � gj = g � �gi � gj� = g � gi+j = gi+1+j:



1. BASICS 92nd Case: Let g 2 G arbitrary, i < 0. Apply Case 1 to the element g-1, thenby de�nition we get (sin
e -i > 0!)gi � gj = �g-1�-i � �g-1�-j = �g-1�-i-j = gi+j:Let's now turn to the se
ond exponential law, and let again i; j 2 Z, g 2 G.1st Case: j � 0. We do the proof by indu
tion on j.j = 0 : Then �gi�j = �gi�0 = eG = g0 = gi�j:j 7! j+ 1 : By de�nition, indu
tion hypothesis and the �rst exponential law weget: �gi�j+1 = �gi� � �gi�j = gi � gi�j = gi+i�j = gi�(j+1):2nd Case: j < 0. By the �rst exponential law we have g-i � gi = g-i+i = g0 =eG, and thus �gi�-1 = g-i. By Case 1 and de�nition we get (sin
e -j > 0!):�gi�j = ��gi�-1�-j = �g-i�-j = g(-i)�(-j) = gi�j:Notation: If the group is abelian and the group operation is denoted by +, then wedenote the neutral element rather by 0G and the inverse of g 2 G by -g. Moreover,instead of gi we then write i � g.1.3 Example a. (Z;+) is an abelian group with neutral element 0.b. Let (R;+; �) be a ring (e. g. the integers) and n � 1 an integer. Mat(n�n; R),the set of all n � n-matri
es with entries in R forms a group with respe
t tomatrix addition as binary operation. The neutral element is the zero matrix,and the inverse of (aij) is just (-aij).
. Let (K;+; �) be any �eld (e. g. the real numbers) and let n � 1 be an integer.Gln(K) = f(aij) 2 Mat(n � n;K) j (aij) is invertibleg, the set of all invertiblen�n-matri
es with entries in the �eld K, forms a group with respe
t to matrixmultipli
ation as binary operation. The neutral element is the identity matrixand the inverse of an element is just its inverse matrix.d. Let M be any set. Sym(M) = f' : M ! M j ' is bije
tiveg, the set of allpermutations of M, is a group with respe
t to the 
omposition of maps. Theneutral element is the identity map idM, and the inverse of an element ' is itsinverse mapping.1.4 Example (The Symmetri
 Group Sn)When studying �nite groups one group attra
ts a parti
ular interest as an in�nitesour
e for interesting examples { this is the symmetri
 group of n lettersSn = Sym �f1; : : : ; ng�:An element � 2 Sn 
an be represented in the form 1 2 3 � � � n�(1) �(2) �(3) � � � �(n) !



10 I. FINITE GROUPSor, if f1; : : : ; ng = fa1; : : : ; ang by a1 a2 a3 � � � an�(a1) �(a2) �(a3) � � � �(an) ! :The elements of Sn are 
alled permutations, and there is a parti
ular type of per-mutations 
alled 
y
les { a permutation of the form a1 a2 � � � ak-1 ak ak+1 � � � ana2 a3 � � � ak a1 ak+1 � � � an !is 
alled a k-
y
le and we write instead just (a1 a2 � � � ak). Very simple 
y
les are2-
y
les (a b), and they are 
alled transpositions.Note: The representation of a k-
y
le is not unique {(a1 a2 � � � ak) = (a2 a3 � � � ak a1) = : : : :And the neutral element, i. e. the identity map on f1; : : : ; ng, is represented by any1-
y
le, i. e. (1) = (2) = : : : = (n). We usually denote it by (1).Fa
ts: a. Cy
le-De
omposition: Every permutation � 2 Sn has a unique repre-sentation as a produ
t of disjoint 
y
les (unique up to ordering).E. g. � =  1 2 3 4 5 6 73 2 1 5 6 7 4 ! 2 S7, then � = (1 3)(2)(4 5 6 7) =(1 3)(4 5 6 7).b. Every permutation � 2 Sn 
an be written as a produ
t of transpositions, andthe parity of the number of ne
essary transpositions is uniquely determined.If the parity is even, then we say � has sign sgn(�) = 1 and we 
all thepermutation even, otherwise sgn(�) = -1 and � is said to be odd.E. g. for the above permutation we have � =  1 2 3 4 5 6 73 2 1 5 6 7 4 ! =(1 3)(4 7)(4 6)(4 5) = (1 3)(4 7)(4 6)(4 5)(2 3)(2 3) { the parity is even.B) Subgroups1.5 De�nition and PropositionLet (G; �) be a group.a. A non-empty subset ; 6= U � G is 
alled a subgroup of G if and only if (one ofthe) following equivalent 
onditions is ful�lled:(i) U is itself a group with respe
t to the restri
tion of the binary operation� to U�U.(ii) For all u; v 2 U we have u � v 2 U and u-1 2 U.(iii) For all u; v 2 U we have u � v-1 2 U.If jUj <1, then these are also equivalent to:(iv) For all u; v 2 U we have u � v 2 U.We denote this by (U; �) � (G; �) or simply by U � G.Note, if U � G, then eG = eU 2 U!b. If U;V � G are two subsets, then we de�ne U � V = fu � v j u 2 U; v 2 Vg.
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. If M � G is any subset, then we 
allhMi = \M�U�GUthe subgroup generated by M, and this is by Proposition 1.7 indeed a group.Proof: We have to prove the equivalen
es in the de�nition of a subgroup. Forthis we denote throughout the proof for g 2 G by invG(g) the inverse of g inG and for u 2 U by invU(u) the inverse of u 2 U. We will show, that indeedinvU(u) = invG(u) for all u 2 U!(i) =) (ii): Let's �rst show that, if (U; �) is itself a group, then eU = eG andinvU(u) = invG(u) for all u 2 U. For this note thateG = invG(eU) � eU = invG(eU) � (eU � eU) = (invG(eU) � eU) � eU = eG � eU = eU;and thus invU(u) � u = eU = eG = invG(u) � u, whi
h then by the 
an
ellation lawimplies invU(u) = invG(u).Thus for any u 2 U we have invG(u) = invU(u) 2 U as desired, and for u; v 2 U itfollows u � v 2 U, sin
e by assumption the restri
tion of \�" to U � U takes valuesin U.(ii) =) (i): By assumption u � v 2 U for all u; v 2 U, and hen
e� : U�U! Uis a
tually a binary operation taking values in U. It, therefore, suÆ
es to 
he
kthat the group axioms are ful�lled. Asso
iativity 
omes for free, sin
e it is alreadysatis�ed for elements from the larger set G. Moreover, if we 
ould show that eG 2 Uand for any u 2 U also invG(u) 2 U, then we are done, sin
e these elementssatisfy the properties of the neutral respe
tively the 
orresponding inverse element.However, for u 2 U we have invG(u) 2 U by assumption, and sin
e U 6= ;, wemay 
hoose some v 2 U, so that again invG(v) 2 U and thus by the 
losednessassumption eG = v � invG(v) 2 U:(ii) =) (iii): Let u; v 2 U, then by assumption invG(v) 2 U and thus also u �invG(v) 2 U.(iii) =) (ii): Let again u; v 2 U. By assumption eG = u � invG(u) 2 U, and thusinvG(u) = eG � invG(u) 2 U and u � v = u � invG � invG(v)� 2 U.(ii) =) (iv): This is obvious no matter whether U is �nite or not.(iv) =) (ii): It remains to show that for every element u 2 U also invG(u) 2 U. We
laim, that invG(u) = uk for some k � 0, whi
h then by the 
losedness assumptionimplies that it belongs to U.Sin
e jUj <1, also the set �uk j k > 0	 is �nite. This implies that there are naturalnumbers i > j > 0, su
h that ui = uj. But then by the exponential laws we haveui-j-1 = u-1 and i- j- 1 � 0.1.6 Example a. 1 = feGg and G are the trivial subgroups of G.



12 I. FINITE GROUPSb. Claim: (U;+) � (Z;+) if and only if there is an integer n � 0 su
h thatU = n � Z = fn � z j z 2 Zg.Proof: Let U = n � Z for some n � 0, then 0 2 U and thus U is non-empty.Let u = nz; v = nz 0 2 U, then u+v = n � (z+z 0) 2 U and -u = n � (-z) 2 U.Thus U � Z.Let now U � Z be an arbitrary subgroup of Z and suppose U 6= f0g. We haveto �nd n > 0, su
h that U = n � Z. Let's setn = minfu 2 U j u > 0g:For this note that U 
ontains some non-zero element u and hen
e its inverse-u, and one of these will thus be stri
tly greater than zero.We 
laim that U = n � Z. Note �rst of all that with n 2 U and U being asubgroup, we haven � z = n+ z-times: : : +n; n � (-z) = (-n)+ z-times: : : +(-n); n � 0 = 0 2 Ufor all z > 0. Hen
e, n � Z � U.On the other hand, if we 
hoose an arbitrary 0 6= u 2 U, then division withremainder modulo n gives uniquely determined integers z; r 2 Z su
h thatu = n � z+ r and 0 � r < n:Rearranging the equation and using the fa
t the U is a subgroup 
ontainingn � Z we �nd r = u- n � z 2 U:But then the minimality assumption on n implies that r = 0 and hen
e u =n � z 2 n � Z.
. An = f� 2 Sn j sgn(�) = 1g � Sn.E. g.A3 = �(1); (1 2 3); (1 3 2)	 � S3 = �(1); (1 2); (1 3); (2 3); (1 2 3); (1 3 2)	.d. �f1;-1g; �� � �R n f0g; ��.1.7 PropositionLet (G; �) be a group, U;V;Ui � G, i 2 I, M � G.a. Ti2IUi � G.b. U [ V � G if and only if U � V or V � U.
. hMi = �g�11 � � �g�nn j n � 0; g1; : : : ; gn 2M;�1; : : : ; �n 2 Z	.d. U � V � G if and only if U � V = V �U if and only if U � V = hU [ Vi.Proof: a. This is Exer
ise 2 on the Assignment Set 3.b. If U � V or V � U, then the union is obviously a subgroup. Let's thereforesuppose that U 6� V and V 6� U. Then there are elements u 2 U n V andv 2 V n U. It suÆ
es to show that u � v 62 U [ V. Suppose the 
ontrary. Ifu � v 2 U, then v = u-1 � (u � v) 2 U as well in 
ontradi
tion to the 
hoi
e of v.And if u � v 2 V, then u = (u � v) � v-1 2 V, whi
h gives again a 
ontradi
tion.
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. We set N = fg�11 � � �g�nn j n � 0; g1; : : : ; gn 2M;�1; : : : ; �n 2 Z	.Let's �rst show that N � hMi. If U � G su
h that M � U, then g�11 � � �g�nn 2U for all gi 2M and �1; : : : ; �n 2 Z. Thus N � U, and thus N � hMi.It remains to show hMi � N. For this it suÆ
es to show that N � G withM � N. Sin
e the empty produ
t by 
onvention is eG, N is non-empty.If h = g�11 � � �g�nn ; h 0 = g�i+1i+1 � � �g�mm 2 N are two arbitrary elements, thenh � h 0 = g�11 � � �g�mm 2 N and h-1 = g-�nn � � �g-�11 2 N. Thus N � G, andM � N is ful�lled anyway.d. Let's �rst show that U � V � G if and only if U � V = V �U.If U �V � G and u 2 U and v 2 V are given, then v �u = �u-1 � v-1�-1 2 U �V.Hen
e V �U � U �V, and by symmetry V �U = U � V.Suppose now V �U = U � V. Sin
e eG 2 U, V, we have eG = eG � eG 2 U � V,and the latter is non-empty. Let u; u 0 2 U and v; v 0 2 V be given. Then byassumption v �u 0 2 V �U = U �V, and thus there are elements u 2 U and v 2 Vsu
h that v � u 0 = u � v. Hen
e,(u � v) � �u 0 � v 0� = u � u � v � v 0 2 U � V;and (u � v)-1 = v-1 � u-1 2 V �U = U � V. But thus U � V � G.Let's now show that U �V � G if and only if U �V = hU [ Vi.If U �V = hU [ Vi, then in parti
ular U � V � G.It remains to show that U �V � G implies U �V = hU[Vi. For this note thatU � V 
ontains U [ V, sin
e both U and V 
ontain eG. But being a subgroupof G, then hU [ Vi= \U[V�H�GH � U � V:On the other handU �V � fg�11 � � �g�nn j n � 0; g1; : : : ; gn 2 U [ V;�1; : : : ; �n 2 Z	 = hU [ Vi:1.8 Example a. Let n;m � 0, then due to the unique fa
torisation of naturalnumbers we have n � Z \m � Z = l
m(n;m) � Z.b. Let n;m � 0, then due to the so 
alled B�ezout identity we have n �Z+m �Z =h
f(n;m) � Z.
. h(1 2); (1 2 3)i = S3, sin
e (1 2 3) = (1 2)Æ(1 2 3)Æ(1 2), (1 3) = (1 2 3)Æ(1 2)and (2 3) = (1 2) Æ (1 2 3).1.9 De�nition and PropositionLet (G; �) be a group, U � G.a. For g; h 2 G we de�neg �U;l h () g-1 � h 2 U:This de�nes an equivalen
e relation on G, and the equivalen
e 
lass of g is justg �U = fg � u j u 2 Ug. We 
all the equivalen
e 
lasses (left) 
osets.



14 I. FINITE GROUPSNote: For g; h 2 G we have either gU = hU or gU \ hU = ;. Moreover,sin
e any element of G belongs to some 
oset, G 
an be written as the disjointunion G =`i2I gi �U of 
ertain 
osets and we 
all fgi j i 2 Ig the a system ofrepresentatives.b. Similarly, for g; h 2 G we de�neg �U;r h () g � h-1 2 U:This de�nes again an equivalen
e relation on G, and the equivalen
e 
lass of gis just U � g = fu � g j u 2 Ug. We 
all the equivalen
e 
lasses right 
osets.Note: For g; h 2 G we have either Ug = Uh or Ug\Uh = ;. Moreover, sin
eany element of G belongs to some 
oset, G 
an be written as the disjoint unionof 
ertain right 
osets.Note: U = eG �U = U �eG itself is always a left and right 
oset! Moreover, g �U = Uif and only if g 2 U if and only if U � g = U.Proof: By symmetry it suÆ
es to prove Part a.Show : �U;l is an equivalen
e relation.Let g 2 G, then g-1 � g = eG 2 U, and thus g �U;l g, i. e. the relation is re
exive.If g; h 2 G su
h that g �U;l h, then g-1 � h 2 U. Thus h-1 � g = �g-1 � h�-1 2 U,whi
h means h �U;l g and gives the symmetry of the relation.If g; h; k 2 G su
h that g �U;l h and h �U;l k, then g-1 � h; h-1 � k 2 U. But thenalso �g-1 � h� � �h-1 � k� = g-1 � k 2 U;that is, the relation is transitive. So, �nally, �U;l is an equivalen
e relation.Show : The equivalen
e 
lass of g 2 G with respe
t to �U;l is just g �U.By de�nition, the equivalen
e 
lass of g 2 G is justfh 2 G j g �U;l hg = �h 2 G �� g-1 � h 2 U	 = fh 2 G j h 2 g �Ug = g �U:Taking general properties of equivalen
e relations into a

ount we know that twoequivalen
e 
lasses, whi
h are not disjoint, 
oin
ide, and we know that the disjointunion of the di�erent equivalen
e 
lasses is the whole set G.1.10 Example a. Consider the group (Z;+) and the subgroup nZ � Z for n � 0�xed. The 
osets are then all of the formx+ nZ with x 2 Z:Sin
e Z is abelian, left and right 
osets 
oin
ide! A possible system of repre-sentatives is f0; 1; : : : ; n- 1g. Note also that e. g. 4+ 11Z = 15+ 11Z.b. G = S3, U = h(1 2)i and � = (1 2 3), then� ÆU = �(1 2 3); (1 3)	 6= �(1 2 3); (2 3)	 = U Æ �:Thus in general the left and right 
oset 
orresponding to an element will not
oin
ide!



1. BASICS 151.11 Theorem (of Lagrange)Let (G; �) be a �nite group, V � U � G.a. #fgU j g 2 Gg = #fUg j 2 Gg, i. e. the number of di�erent left 
osets
oin
ides with the number of di�erent right 
osets. This number is 
alled theindex of U in G and is denoted by jG : Uj.b. jGj = jUj � jG : Uj.In parti
ular, the order of a subgroup always divides the order of the group!
. jG : Vj = jG : Uj � jU : Vj.d. jU � Vj = jUj�jV jjU\V j.Proof: We note that for g 2 G �xed the map � : U! g �U : u 7! g � u is bije
tivewith inverse � : g �U! U : v 7! g-1 � v. In parti
ular we have for any g 2 GjUj = jg �Uj:a./b. Sin
eG is �nite, �U;l and �U;r lead to �nite systems of representatives fg1; : : : ; gngand fh1; : : : ; hmg for left respe
tively right 
osets of U in G. In parti
ular, n isthe number of di�erent left 
osets and m the number of di�erent right 
osets.It follows nai=1 gi �U = G = maj=1 U � hj;and hen
e n � jUj = nXi=1 jgi �Uj = jGj = mXj=1 jU � hjj = m � jUj:This, however, implies n = m = jG : Uj and jGj = jUj � jG : Uj.
. The proof is Exer
ise 1 on the Assignment Set 3.d. By part b. it suÆ
es to show jUj = jVj � jU : U \ Vj. In order to see this,let fu1; : : : ; ung be a system of representatives of the 
osets of U \ V in U, inparti
ular n = jU : U \ Vj.Claim: U �V =`ni=1 ui �V.Let's show �rst that the union on the right hand side is disjoint. For that let'ssuppose that we have v;w 2 V su
h that ui � v = uj �w 2 ui � V \ uj � V withi 6= j. Then u-1j � ui = w � v-1 2 U \ V, thusui = uj � �w � v-1� 2 uj � (U \ V):This, however, is a 
ontradi
tion to the fa
t that the 
osets ui � (U \ V) anduj � (U \ V) have no interse
tion.We now show that indeed U � V = Sni=1 ui � V. Sin
e ui 2 U, we have of
ourse Sni=1 ui � V � U � V. Let now u 2 U be arbitrary. Then there is somei 2 f1; : : : ; ng su
h that u 2 ui � (U \ V). Hen
e there is some v 2 U \ Vsu
h that u = ui � v, and thus u � V = ui � v � V = ui � V. But this impliesU � V � Sni=1 ui � V.



16 I. FINITE GROUPSHaving proved the 
laim, we dedu
e at on
ejUj = nXi=1 jui �Vj = n � jVj = jU : U \ Vj � jVj = jUj � jVjjU \ Vj:1.12 Remark a. If U � G, then jUj �� jGj!b. However, if d �� jGj, then there is not ne
essarily a subgroup of G of order d.E. g. d = 6 and G = A4.C) Normal Subgroups1.13 De�nition and PropositionLet (G; �) be a group. A subgroup N � G is 
alled a normal subgroup of G if andonly if one of the following equivalent properties is ful�lled:a. ng := g � n � g-1 2 N for all n 2 N, g 2 G.b. g �N � g-1 = N for all g 2 G.
. g �N = N � g for all g 2 G.d. (g �N) � (h �N) = (g � h) �N for all g; h 2 G.We denote this by (N; �)� (G; �) or simply by N� G.Proof: a. =) b.: By the assumption we have g �N � g-1 � N for any g 2 G. Let'snow �x an arbitrary g 2 G and apply this in
lusion to g-1. We then getg-1 �N � �g-1�-1 � N;and thus N = eG �N � eG = g � g-1 �N � �g-1�-1 � g-1 � g �N � g-1 � N:This, however, implies g �N � g-1 = N.b. =) 
.: Multiplying the equation g �N � g-1 = N by g on the desired equality.
. =) d.: Note that N �N = fn1 � n2 j n1; n2 2 Ng = N, sin
e eG 2 N! We thus getfor g; h 2 G(gN) � (hN) = (Ng) � (hN) = N � (gh) �N = (gh) �N �N = ghN:d. =) a.: Let g 2 G and n 2 N be given, theng � n � g-1 = g � n � g-1 � eG 2 gN � g-1N = g � g-1 �N = eG �N = N:1.14 Example a. The trivial subgroups 1 and G of a group (G; �) are alwaysnormal subgroups.b. If (G; �) is abelian, then every subgroup is a normal subgroup.
. h(1 2)i is not a normal subgroup of S3 by Example 1.10 b., while h(1 2 3)i�S3by Part d.However, (1 2) Æ (1 2 3) Æ (1 2)-1 = (1 3 2) 6= (1 2 3). Thus, gNg-1 = N doesnot imply gng-1 = n for all n 2 N!



1. BASICS 17d. An � Sn by Proposition 1.15. For this note that for n � 2 we 
an writeSn = An [ (1 2) ÆAn, where the �rst set 
ontains all even permutations andthe se
ond one 
ontains all odd ones.1.15 PropositionLet (G; �) be a group, N � G with jG : Nj = 2, then N�G.Proof: Let g 2 G.1st Case: gN = N. Then g = g � e 2 N, and hen
e Ng = N = gN.2nd Case: gN 6= N. Then g 62 N, and hen
e Ng 6= N. However, sin
e the indexis two, the 
omplement G n N of N in G must be a right and left 
oset. Hen
egN = G nN = Ng.1.16 PropositionLet (G; �) be a group, N;N1; N2 � G, U � G.a. N �U � G.b. N1 �N2 � G.
. N \U�U.d. N1 \N2 � G.e. If N1 \N2 = 1, then n1 � n2 = n2 � n1 for all ni 2 Ni.Proof: a. Sin
e N�G, we have N � u = u �N for all u 2 U, and hen
eN �U = [u2UN � u = [u2Uu �N = U �N:Thus N �U � G by Proposition 1.7.b. By Part a. N1 � N2 � G, it thus remains to 
he
k one of the 
onditions fornormality. Let g 2 G. Taking into a

ount, that N1 and N2 are normal, weget g �N1 �N2 = N1 � g �N2 = N1 �N2 � g:
. This is Exer
ise 3 on Assignment Set 3.d. This is Exer
ise 3 on Assignment Set 3.e. Let ni 2 Ni for i = 1; 2 be given. Sin
e N1 and N2 are normal subgroups, wehave n1 � n2 � n-11 2 N2 and n2 � n-11 � n-12 2 N1. But thenn1 � n2 � n-11 � n-12 2 N1 \N2 = feGg:Hen
e, n1 � n2 � n-11 � n-12 = eG, whi
h implies n1 � n2 = n2 � n1.1.17 De�nition and PropositionLet (G; �) be a group, N � G. We denote by G=N = fgN j g 2 Gg the set of (left)
osets of N in G. We then de�ne� : G=N� G=N! G=N : (gN; hN) 7! (gN) � (hN) = ghN;



18 I. FINITE GROUPSwhere the last equality is due to Proposition 1.13.Then (G=N; �) is a group, the so 
alled quotient group of G by N.The neutral element eG=N is just the 
oset N = eGN, and the inverse of gN is g-1N.If (G; �) is abelian, then (G=N; �) is abelian as well.Proof: Note that the multipli
ation is well-de�ned by Part d. in De�nition 1.13.Moreover, sin
e N = eGN 2 G=N is always a 
oset, G=N is a non-empty set. Itthus remains to verify the three group axioms.Let gN; hN; kN 2 G=N be given. Then the asso
iativity follows from the asso
ia-tivity of the multipli
ation in G:�gN�hN)�kN = ghN�kN = �(gh)�k��N = �g�(hk)��N = gN�hkN = gN�(hN�kN):The 
oset N = eGN a
ts as neutral element:eGN � gN = (eG � g) �N = gN:And for gN 2 G=N the inverse element is just g-1N:g-1N � gN = �g-1 � g� �N = eGN:If G was abelian, then for gN; hN 2 G=N we havegN � hN = ghN = hgN = hN � gN:1.18 Example a. Z=nZ = f0 + nZ; 1 + nZ; : : : ; (n - 1) + nZg, and we usuallywrite a instead of a+ nZ if no ambiguity 
an o

ur.E. g. (3+ 5Z) + (4+ 5Z) = 7+ 5Z = 2+ 5Z, sin
e 7 = 2+ 5 � 1 � 2(mod 5).b. S3=A3 = �A3; (1 2) ÆA3	.1.19 RemarkLet (G; �) be a group, N�G. Then there is one-to-one 
orresponden
e between thesubgroups G=N and the subgroups of G 
ontaining N given byfU � G j N � Ug �! �U � G=N	 : U 7! U=N:Under this 
orresponden
e the normal subgroups of G=N 
orrespond pre
isely tothe normal subgroups of G 
ontaining N.Proof: Proving this remark 
omes basi
ally down to showing that, given U � G=N,the set �u 2 G �� uN 2 U	 is a subgroup of G, 
ontaining N, and that it is normal,when U is normal. This establishes the inverse of the above map. We leave thedetails to the reader.D) Homomorphisms1.20 De�nitionLet (G; �) and (H; Æ) be groups. A map' : G! H is 
alled a (group-)homomorphismif and only if for all g; g 0 2 G we have '�g � g 0� = '(g) Æ'�g 0�.If, moreover, ' is inje
tive / surje
tive / bije
tive, then we 
all ' a monomorphism/ epimorphism / isomorphism.



1. BASICS 19If (H; Æ) = (G; �), then the homomorphisms are also 
alled endomorphisms and theisomorphisms are also 
alled automorphisms.We denote by Hom(G;H) the set of all homomorphisms from G to H, and by Aut(G)the set of all automorphisms of G.We say that (G; �) and (H; Æ) are isomorphi
 if there is an isomorphism from G toH, and we denote this by (G; �) �= (H; Æ) or just G �= H.1.21 Example a. The map' : Z=2Z! f1;-1g with'(0+2Z) = 1 and'(1+2Z)is an isomorphism from (Z=2Z;+) to �f1;-1g; ��.b. sgn : (Sn; Æ)! �f1;-1g; �� : � 7! sgn(�) is an epimorphism if n � 2.Note: sgn(a1 : : : ak) = (-1)k-1.
. det : �Gln(K); Æ� ! �K n f0g; �� : A 7! det(A) is an epimorphism by thedeterminant produ
t rule.d. exp : (R;+) ! �R n f0g; �� : x 7! ex is a monomorphism by the exponentiallaws.e. Let (G; �) be a group, and let g 2 G be some �xed element. We de�ne a map�g : G! G : h 7! hg = g � h � g-1:This map is an automorphism with inverse �g-1, sin
e �g�hh 0� = ghh 0g-1 =ghgg-1g 0g-1 = �g(h) � �g�h 0�.Automorphisms of this type are 
alled inner automorphisms. We denote byInn(G) the set of all inner automorphisms of G.f. Let (G; �) be a group, N� G. The map � : G ! G=N : g 7! gN is 
alled thequotient map onto G=N and is an epimorphism.1.22 PropositionLet � 2 Hom(G;H) and � 2 Hom(H;K), where (G; �), (H; �) and (K; �) are groups.a. �(eG) = eH and ��g-1� = ��(g)�-1.b. Im(�) := �(G) � G and is 
alled the image of �.
. Ker(�) := �-1(eH) = �g 2 G j �(g) = eH	� G and is 
alled the kernel of �.d. � is a monomorphism if and only if Ker(�) = feGg.e. Ker(� : G! G=N) = N for N�G.f. � Æ � 2 Hom(G;K).g. If � is bije
tive, then �-1 2 Hom(H;G).In parti
ular, �Aut(G); Æ� is a subgroup of �Sym(G); Æ�.Proof: a. NoteeH � �(eG) = �(eG) = �(eG � eG) = �(eG) � �(eG);and by the 
an
ellation law we have eH = �(eG). Moreover, for g 2 G we thenget ��g-1� � �(g) = ��g-1 � g� = �(eG) = eH = �(g)-1 � �(g)



20 I. FINITE GROUPSand applying the 
an
ellation law on
e more we end up with ��g-1� = �(g)-1.b. This is Exer
ise 1 on Assignment Set 4.
. We note �rst that by �(eG) = eH we get eG 2 Ker(�), so that the kernel is non-empty. Moreover, for g; g 0 2 Ker(�) we have that ��g � g 0� = �(g) � ��g 0� =eH � eH = eH, so that g � g 0 2 Ker(�). And ��g-1� = �(g)-1 = e-1H = eH,whi
h implies that g-1 2 Ker(�). Hen
e Ker(�) is a subgroup of G. It remainsto show that it satis�es the normality 
ondition. Let n 2 Ker(�) and g 2 G.Then��g � n � g-1� = �(g) � �(n) � ��g-1� = �(g) � eH � �(g)-1 = eH;and therefore, g � n � g-1 2 Ker(�).d. Let's �rst suppose that � is inje
tive. This implies that the kernel of �, whi
his the preimage of eH, 
ontains at most one element. However, by Part a.eG 2 Ker(�), hen
e Ker(�) = feGg.Suppose now, that Ker(�) = feGg, and let g; g 0 2 G su
h that �(g) = ��g 0�.We have to show that g = g 0. By assumption we haveeH = �(g)-1 � ��g 0� = ��g-1� � ��g 0� = ��g-1 � g 0�;whi
h implies that g-1 � g 0 2 Ker(�) = feGg. Hen
e g-1 � g 0 = eG, and thusg = g 0.e. g 2 Ker(�) if and only if gN = N if and only if g 2 N.f. Let g; g 0 2 G be given.(� Æ �)�g � g 0) = ���(g � g 0)� = ���(g) � �(g 0)�= ���(g)� � �(�(g 0)� = (� Æ �)(g) � (� Æ �)�g 0�:g. This is Exer
ise 1 on Assignment Set 4.1.23 Theorem (Homomorphismtheorem)Let � 2 Hom(G;H), then the mapG=Ker(�)! Im(�) : gKer(�) 7! �(g)is wellde�ned and an isomorphism.In parti
ular, G=Ker(�) �= Im(�).Proof: Let's do the proof in several steps.Step 1 : � is well-de�ned.Let gKer(�) = g 0Ker(�). We have to show that �(g) = ��g 0�, that is, � doesnot depend on the parti
ular representative of the 
oset. By assumption we haveg-1 � g 0 2 Ker(�). Hen
eeH = ��g-1 � g 0� = �(g)-1 � ��g 0�;and thus �(g) = ��g 0�.



1. BASICS 21Step 2 : � is a homomorphism.Let gKer(�); g 0Ker(�) 2 G=Ker(�). Then��gKer(�) � g 0Ker(�)� = ��gg 0Ker(�)� = ��gg 0�= �(g) � ��g 0� = ��gKer(�)� � ��g 0Ker(�)�:Hen
e � is a homomorphism.Step 3 : � is surje
tive.Let h 2 Im(�) be given. Then there is some g 2 G su
h that �(g) = h. But then��gKer(�)� = �(g) = h, and thus � is surje
tive.Step 4 : � is inje
tive.Let gKer(�) 2 Ker ���. TheneH = ��gKer(�)� = �(g):Hen
e, g 2 Ker(�), and thus gKer(�) = Ker(�) is the neutral element ofG=Ker(�).This implies Ker ��� 
onsists only of the neutral element, and therefore � must beinje
tive by the previous proposition.1.24 Theorem (Isomorphismtheorems)Let (G; �) be a group, N;N 0;M� G su
h that M � N.a. �N �N 0�ÆN 0 �= NÆ�N \N 0�.b. (G=M)=(N=M) �= G=N.Proof: a. This is Exer
ise 2 on Assignment Set 4.b. We note that N=M is a
tually a normal subgroup of G=M, so that the doublequotient group on the left hand side makes sense. And we do the proof in asimilar way, de�ning a map by� : G=M! G=N : gM 7! gN;showing that this is an epimorphism with kernel N=M and then applying theHomomorphism Theorem.Step 0 : � is well-de�ned.Sin
e we de�ne the map � via the 
hoi
e of a (non-unique) representativeof the 
oset, we have to show that � is well-de�ned, i. e. that the de�nitionis independent of the 
hosen representative. Let therefore gM = g 0M, theng-1 � g 0 2 M � N, and thus = gN = g 0N, i. e. gN does not depend on therepresentative of gM.Step 1 : � is a homomorphism.Let gM; g 0M 2 G=M be given. Then��gM � g 0M� = ��gg 0M� = gg 0N = gN � g 0N = �(gM) � ��g 0M�:Step 3 : � is surje
tive.Let gN 2 G=N be given. Then gN = �(gM) 2 Im(�), so that � is surje
tive.



22 I. FINITE GROUPSStep 4 : Ker(�) = N=M.gM 2 Ker(�) if and only if gN = N if and only if g 2 N if and only ifgM 2 N=M.1.25 Example a. Ker(sgn) = An � Sn and (Sn=An; Æ) �= (Z=2Z;+).b. Sln(K) := Ker(det)�Gln(K) and �Gln(K)= Sln(K); Æ� �= �K n f0g; ��.
. Consider the group(Z;+) and normal subgroups N = nZ, N 0 = n 0Z. We thendedu
e from the Isomorphism Theorems:Z= n 0h
f(n;n 0)Z �= h
f(n; n 0)Z=n 0Z = (nZ+ n 0Z)=n 0Z�= nZ=(nZ \ n 0Z) = nZ= l
m(n; n 0)Z �= Z= l
m(n;n 0)n Z;whi
h 
orresponds to the fa
t that n � n 0 = h
f �n; n 0� � l
m �n; n 0�.1.26 Theorem (of Cayley)Let (G; �) be a �nite group of order n, then G is isomorphi
 to a subgroup of (Sn; Æ).Proof: We �rst note that by Exer
ise 3 on Assignment Set 4 the groups (Sn; Æ) and�Sym(G); Æ� are isomorphi
, so that it suÆ
es to show that G is a
tually isomorphi
to a subgroup of the latter one. We de�ne a map� : G! Sym(G) : g 7! �g;where �g : G ! G : h 7! g � h. Note that �g is a
tually a permutation of G withinverse �g-1.Show : � is a monomorphism.For g; g 0 2 G we have�g�g 0(h) = �g � g 0� � h = g � �g 0 � h) = �g��g 0(h)� = (�g Æ � 0g)(h)for all h 2 G, whi
h implies �g�g 0 = �g Æ �g 0. But then��g � g 0� = �g�g 0 = �g Æ �g 0 = �(g) Æ ��g 0�and � is a homomorphism. It remains to show that � is inje
tive, i. e. that the kernelof � 
onsists only of the neutral element eG.g 2 Ker(�) if and only if �g = �(g) = idG. However, the multipli
ation by g on theleft is the identity if and only if g = eG. Thus Ker(�) = feGg.Knowing that � is a monomorphism the Homomorphism Theorem givesG �= G=feGg = G=Ker(�) �= Im(�) � Sym(G):This theorem says basi
ally, that it would be suÆ
ient to study subgroups of thesymmetri
 groups (Sn; Æ), n 2 N, in order to get to know all possible �nite groupsup to isomorphism. This sounds in a 
ertain sense very promising. However, thefa
t that the symmetri
 groups 
ontain so mu
h information is re
e
ted by the fa
tthat they are very 
ompli
ated as well. The order of Sn is n!, so that already S10



2. CYCLIC GROUPS 23has 3628800 elements. If we wanted to use this approa
h to study groups of order10, we would have to 
ope with a very 
ompli
ated obje
t, while general methodsof group theory allow us to show that there are, up to isomorphism, only two quitesimple groups of order 10. 2 Cy
li
 GroupsIn this paragraph we would like to obtain a good understanding of the stru
ture ofthe simplest type of groups, namely those who 
an be generated by a single element.2.1 De�nitionA group (G; �) is said to be 
y
li
 if and only if there is a g 2 G su
h that G = hgi.We 
all g a generator of G.If (G; �) is any group, we then 
all o(g) := jhgij = min�n > 0 �� gn = eG	 the orderof g, and o(g) divides every integer n with gn = eG. (Cf. Exer
ise 1 on AssignmentSet 2.)2.2 Theorem (Classi�
ation of Cy
li
 Groups)Let (G; �) be a 
y
li
 group.a. If jGj =1, then (G; �) �= (Z;+).b. If jGj = n <1, then (G; �) �= (Z=nZ;+).Proof: Let G = hgi = �gz j z 2 Z	, where the last equality is due to Proposi-tion 1.7. The map � : Z! G : z 7! gzis, due to the exponential laws, an epimorphism of groups. By the HomomorphismTheorem we thus have Z=Ker(�) �= Im(�) = G:Due to Example 1.6 there is an integer n � 0 su
h that Ker(�) = nZ, so thatG �= Z=nZ. This implies the above statement, on
e we note that 0 � Z = f0g andZ=f0g �= Z in an obvious way.2.3 Proposition (Subgroups of Cy
li
 Groups)Let (G; �) be a 
y
li
 group with generator g.a. If jGj =1, then U � G if and only if 9 n � 0 : U = 
gn�.b. If jGj = n <1, then U � G if and only if 9 m j n : U = Dg nmE.In parti
ular, G has for every divisor of jGj pre
isely one subgroup of this order.Proof: Part a. is an immediate 
onsequen
e of Theorem 2.2 and Example 1.6 b.,where we 
lassi�ed the subgroups of (Z;+).For Par b. we note that a

ording to Remark 1.19 there is a one-to-one 
orrespon-den
e between the subgroups of Z=nZ and the subgroups of Z whi
h 
ontain nZ.However, U � Z with nZ � U if and only if 9 m : U = mZ and nZ � mZ if andonly if 9 m : U = mZ and m j n. This proves Part b.



24 I. FINITE GROUPS2.4 CorollaryEvery subgroup of a 
y
li
 group is 
y
li
.2.5 PropositionIf (G; �) is a group of prime order, then G is 
y
li
.Proof: Let eG 6= g 2 G. Then 1 6= hgi � G. By the Theorem of Lagrange we have1 < jhgij �� jGj:Sin
e the latter is a prime number, this implies jhgij = jGj and thus hgi = G.2.6 PropositionLet (G; �) be a group, g 2 G with o(g) = n and k 2 Z. Then o�gk� = nh
f(k;n) .Proof: Re
all that l
m(k; n) = k � nh
f(n;k) . We thus get by Exer
ise 1 on the As-signment Set 2o�gk� = min�a � 0 �� gka = eG	 = min�a � 0 �� n j ka	= min�a � 0 �� n j ka and k j ka	 = min�a � 0 �� l
m(k; n) j ka	 = nh
f(n; k) :2.7 PropositionLet (G; �) be a group, and let g; h 2 G su
h that gh = hg and h
f �o(g); o(h)� = 1.Then o(gh) = o(g) � o(h).In parti
ular, hg; hi = hghi is a 
y
li
 group of order o(g) � o(h).Proof: Let m = o(g), n = o(h) and k = o(gh).Note that (gh)mn = �gm�n � �hn�m = eG, sin
e gh = hg. Hen
e, k j mn.Moreover, eG = (gh)k = gk �hk implies that gk = �h-1�k. Taking into a

ount thato(h) = o�h-1�, Proposition 2.6 givesa := mh
f(k;m) = o�gk� = o��h-1�k� = nh
f(k; n) :In parti
ular, a divides m and n, hen
e a j h
f(m;n) = 1, and thus a = 1, i. e. gkand �h-1�k have order one. Thus gk = eG = hk. This however, implies the order ofg and the order of h divide k, hen
e their least 
ommon multiple divides k, i. e.mn = mnh
f(m;n) = l
m(m;n) �� k:Thus we must have mn = k.For the in parti
ular part we note that by Proposition 1.7 and sin
e gh = hg, wehave hg; hi = hgi � hhi:Moreover, by the Produ
t Formula in Theorem 1.11 we getjhg; hij = jhgij � jhhijjhgi \ hhij � mn:On the other hand hghi � hg; hi is a subgroup of order mn, thus hghi = hg; hi andjhg; hij = mn.



2. CYCLIC GROUPS 252.8 PropositionLet G be a �nite subgroup of the multipli
ative group (K�; �) of a �eld K, then G is
y
li
.In parti
ular, for a prime p the group �Z=pZ n f0g; �� is 
y
li
 of order p- 1.Sket
h of Proof: Let m = l
m�o(a) �� a 2 G	, then in parti
ular am = 1 for alla 2 G.With the aid of Proposition 2.6 and of Proposition 2.7 we 
an �nd an element g 2 Gsu
h that o(g) = m. Hen
e m = o(g) � jGj.Sin
e K is a �eld, the polynomial f = xm - 1 has at most m zeros in K. But sin
eam = 1 for all a 2 G, the elements of G are zeros of f, and thus jGj � m.We therefore have jGj = m, and G = hgi is 
y
li
.2.9 Theorem (Automorphisms of Cy
li
 Groups)Let (G; �) be a 
y
li
 group of order n with generator g.Then Aut(G) = f�k j h
f(k; n) = 1; 1 � k < ng, where �k : G! G : gi 7! gik.Proof: Due to the exponential laws the maps �k are a
tually group homomorphismsfor all k 2 Z. Moreover, �k is bije
tive if and only if it is surje
tive, sin
e G is �nite.This is the 
ase if and only ifn = jGj = j Im(�k)j = ��h�k(g)i�� = o�gk� = nh
f(k; n)by Proposition 2.6. Thus �k is an automorphism if and only if h
f(k; n) = 1.It remains to show that any automorphism of G is of this form. However, if � : G!G is any homomorphism, then � is �xed on
e we know the image of the generatorg, sin
e any element of G is a power of g. I. e. �(g) = gk for some k implies� = �k.2.10 CorollaryIf jGj = p has prime order, then Aut(G) is 
y
li
 of order p- 1.In parti
ular, invG 2 Aut(G) is the only automorphism of order 2.Proof: By Theorem 2.2 we may assume that (G; �) = (Z=pZ;+). Translatingthe result of Theorem 2.9 to the additive group gives Aut(Z=pZ) = f�k j k =1; : : : ; p- 1g with �k : Z=pZ! Z=pZ : a 7! k � a = k � a:Thus �k is just the multipli
ation with k, and we have a natural identi�
ation�Aut(Z=pZ); Æ� �= �Z=pZ n f0g; ��:Hen
e, we are done by Proposition 2.8.



26 I. FINITE GROUPS3 Group A
tions3.1 De�nition and PropositionLet (G; �) be group, let 
 be a non-empty set and let � : G! Sym(
) be a grouphomomorphism.a. � is 
alled an a
tion of G on 
.Note that �(g) : 
 ! 
 is a permutation of 
 for all g 2 G, in parti
ular itis a map whi
h may be evaluated at ! 2 
.We usually write g�! instead of �(g)(!) for g 2 G and! 2 
, if no ambiguity
an arise.Thus the fa
t that � is a group homomorphism translates to the rule(g � h) �! = g � (h �!)for g; h 2 G and ! 2 
, and we haveeG �! = !:b. De�ning for !;! 0 2 
! � ! 0 () 9 g 2 G : g �! = ! 0gives an equivalen
e relation on 
. The equivalen
e 
lass of ! is denoted byorbG(!) = fg �! j g 2 Gg and is 
alled the orbit of ! under G.Note, that in parti
ular
 is the disjoint union of the di�erent orbits, i. e. thereexist !i 2 
, i 2 I, su
h that
 =ai2I orbG(!i):
. StabG(!) = fg 2 G j g �! = !g � G is 
alled the stabiliser of !.d. If Ker(�) = 1, the a
tion is said to be faithful.e. If 
 = orbG(!) for some ! 2 
, then the a
tion is 
alled transitive.Proof: For Part b. we have to prove that � is an equivalen
e relation. Sin
e ! =eG �!, we have ! � ! and the relation is re
exive.Suppose that ! � ! 0, then there is a g 2 G su
h that g � ! = ! 0. Hen
e ! =eG �! = g-1 � (g �!) = g-1 �! 0, and thus ! 0 � !. The relation is therefore alsosymmetri
.Let ! � ! 0 and ! 0 � ! 00. Then there are g; h 2 G su
h that g � ! = ! 0 andh �! 0 = ! 00. This implies (gh) �! = g � (h �!) = g �! 0 = ! 00 and ! � ! 00. So�nally the relation is transitive, and thus an equivalen
e relation.It remains to show in Part 
. that the stabiliser of ! is a subgroup of G. Sin
eeG �! = !, the neutral element belongs ot StabG(!) and the latter is a non-emptyset. Let now g; h 2 StabG(!), then(g � h) �! = g � (h �!) = g �! = ! and g-1 �! = g-1 � (g �!) = eG �! = !and hen
e gh; g-1 2 StabG(!) as required.



3. GROUP ACTIONS 273.2 Examplea. Consider the additive group of real numbers (R;+), the set C of 
omplexnumbers and the map� : R! Sym(C) : t 7! ��(t) : C! C : 
 7! 
 � e2t�i�:Due to the exponential laws for 
omplex numbers this map is a group homo-morphism, whi
h means that R a
ts on C. More 
on
retely, the real number ta
ts on C by multipli
ation with e2t�i, whi
h is a rotation by the angle 2t�.The kernel of � is the set of numbers t for whi
h �(t) = idC, that is, for whi
hthe rotation by 2t� does not do anything. This is, of 
ourse, the 
ase if andonly if t is an integer, so that Ker(�) = Z. In parti
ular, � is not faithful.The orbit of 
 2 C is justorbR(
) = �
 � e2t�i �� t 2 R	the 
ir
le of radius j
j with the origin as 
entre, and the stabiliser of 
 6= 0 isStabR(
) = �t 2 R j 
 � e2t�i = 
	 = �t 2 R �� e2t�i = 1	 = Z;while for 
 = 0 we have StabR(0) = R:b. Let (G; �) be any group, k � 1 and
 = �U � G �� jUj = k	:We de�ne a homomorphism� : G! Sym(
) : g 7! �gwith �g : 
! 
 : U 7! gU. I. e. �(g) = �g is the left-multipli
ation by g, andwe say for short G a
ts on 
 by left-multipli
ation.If k < jGj, then the a
tion is faithful. For this just note that for a set U oforder k 
ontaining eG but not g we always have U 6= gU. This means that�g 6= id
 and hen
e the kernel of � 
ontains only the neutral element eG.If k = jGj > 1, then the a
tion 
annot be faithful, sin
e 
 
ontains only oneelement, and thus Sym(
) has order one, while G has an order stri
tly greaterthan one.Consider the spe
ial 
ase of U 2 
 where U is a subgroup of G. ThenorbG(U) = fgU j g 2 Gg = set of left 
osets of U in G:Moreover, StabG(U) = fg 2 G j gU = Ug = U:In parti
ular j orbG(U)j = jG : Uj = jG : StabG(U)j:We will see in Theorem 3.3 that the last equality does not only hold by 
han
e.
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. Using the notation of b. let U � G with jUj = k and let H = StabG(U). Thenthe group H a
ts on the set U by left-multipli
ation, i. e. the map� : H! Sym(U) : h 7! �h;with �h : U ! U : u 7! hu, is a group homomorphism. The important pointfor this is that hu 2 U, sin
e h 2 StabG(U).For u 2 U we �nd orbH(u) = H � u:Sin
e the a
tion of H divides the set U into a disjoint union of orbits, there areu1; : : : ; ur 2 U su
h that U = rai=1 H � ui:Knowing that jH � uij = jHj we getjUj = r � jHj;whi
h in parti
ular means that jHj divides jUj = k! I. e. the stabiliser of U 2 
in Part b. will be a subgroup of G of an order whi
h divides k.d. Let (G; �) be a group and A � G be a �xed subset. We then 
onsider the set
 = �Ag �� g 2 G	;where Ag = gAg-1. The group homomorphism� : G! Sym(
) : h 7! �h;with �h : 
 ! 
 : Ag 7! �Ag�h = Ahg, de�nes an a
tion of G on 
, whi
hwe 
all 
onjugation. 
 is 
alled the 
onjuga
y 
lass of A.The a
tion is transitive, sin
e 
 = orbG(A), and we 
allNG(A) := StabG(A) = �g 2 G �� Ag = A	the normaliser of A in G.3.3 Orbit Stabiliser TheoremLet (G; �) be a group a
ting on the �nite set 
, and let ! 2 
. Thenj orbG(!)j = jG : StabG(!)j:In parti
ular, the order of an orbit always divides of the order of the group.Proof: Let U = StabG(!), and M = fgU j g 2 Gg be the set of left-
osets of U inG. We then have to show that j orbG(!)j = jMj, i. e. we have to �nd a bije
tionbetween the 
orresponding sets. De�ne
 :M! orbG(!) : gU 7! g �!:Sin
e the de�nition of 
 a priori depends on the 
hosen representative g of the 
osetgU, we �rst have to show that 
 is well-de�ned, i. e. that it is independent of g.Suppose that gU = hU, then there is a u 2 U = StabG(!) su
h that g = hu. Thusg �! = (h � u) �! = h � (u �!) = h �!:
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e, 
 is well-de�ned, and we may go on showing, that 
 is bije
tive.Suppose that gU; hU 2 M su
h that 
(gU) = 
(hU), i. e. g �! = h �!. Then! = eG �! = �g-1 � g) �! = g-1 � (g �!) = g-1 � (h �!) = �g-1 � h� �!:Hen
e, g-1 � h 2 StabG(!) = U, and thus gU = hU. This proves, 
 is inje
tive.Obviously, 
 is also surje
tive, sin
e for g �! 2 orbG(!) arbitrary, we have g �! =
(gU).This adds up to the fa
tj orbG(!)j = jMj = jG : StabG(!)j:3.4 CorollaryLet (G; �) be a �nite group, and A � G any subset. ThenjG : NG(A)j = ���Ag �� g 2 G	��;where the latter is the order of the 
onjuga
y 
lass of A in G.Proof: By Exer
ise 3.2 d., the group G a
ts transitively on the set 
 = �Ag �� g 2G	 via 
onjugation, and 
 = orbG(A). Moreover, by de�nition the normaliser ofA in G is just StabG(A) = NG(A). Hen
e the statement follows from the OrbitStabiliser Theorem 3.3.3.5 CorollaryLet (P; �) be a group of order pn for some prime p, and suppose that P a
ts on a�nite set 
 with h
f �j
j; p� = 1. Then there is an ! 2 
 su
h thatorbP(!) = f!g;i. e. ! is a �x point of the a
tion.Proof: By the Orbit Stabiliser Theorem and the Theorem of Lagrange we havej orbP(!)j = jP : StabP(!)j �� jPj = pnfor all ! 2 
, and thus there is some integer 0 � m = m(!) � n, depending on!, su
h that j orbP(!)j = pm(!):Suppose that m(!) > 0 for all ! 2 
. We know that there are !1; : : : ; !r su
hthat 
 = rai=1 orbP(!i):By assumption p divides j orbP(!i)j for all i = 1; : : : ; r, thus it divides the sum ofthese numbers, i. e. p �� rXi=1 j orbP(!i)j = j
j:This, however, is a 
ontradi
tion to the fa
t that h
f �j
j; p� = 1.Hen
e, there is at least one ! 2 
, su
h that m(!) = 0, whi
h is the same assaying the j orbP(!)j = 1, or that orbP(!) = f!g.



30 I. FINITE GROUPS4 The Theorem of SylowThe Theorem of Lagrange was one of the highlights of this le
ture so far, even thoughit was not hard to prove. When interested whether a 
ertain subset U of a group G
ould be a subgroup, we may 
he
k �rst, if the number of elements in U is a divisorof G. If jUj does not divide jGj, then it 
annot possibly be a subgroup, that's whatwe inherit from the Theorem of Lagrange.Knowing that the order of a subgroup must divide the order of the group, it is quitenatural to ask, whether for every divisor of jGj there is a subgroup of that orderin G? We know that this is true for 
y
li
 groups and we will show later that italso holds for abelian groups. However, it does not hold in general, as the followingexample shows.4.1 ExampleThe group A4 has no subgroup of order 6, even though its order is 12.We postpone the proof for a moment, so that we 
an use the result of the nexttheorem, whi
h is - so to say - a 
onverse of the Theorem of Lagrange for powers ofprimes. We introdu
e the notationNG(k) = ���U � G �� jUj = k	��to denote the number of subgroups of G of order k, when G is a �nite group.4.2 TheoremLet (G; �) be a group of order jGj = pa �m with p a prime, a � 0 and m > 0. ThenNG�pa� � 1 (mod p):Proof (due to Wieland): Having introdu
ed some notation we will do the proofin several steps. De�ne 
 = �U � G �� jUj = pa	:Then G a
ts on 
 by left-multipli
ation, as we have seen in Example 3.2 b., i.e.� : G! Sym(
) : g 7! (�g : 
! 
 : U 7! gU)is a group homomorphism.Step 1 : 8 U 2 
 9 0 � b = b(U) � a : j StabG(U)j = pb.We note that by Example 3.2 
., the group H = StabG(U) � G a
ts on the set U byleft-multipli
ation. Moreover, we have shown there that there is a number r su
hthat r � jHj = jUj = pa:Hen
e, jHj = pb for some 0 � b � a, of 
ourse depending on U.Step 2 : For all U 2 
 we have either j orbG(U)j = m or j orbG(U)j � 0 (mod pm).By the Orbit Stabiliser Theorem and Step 1 be havej orbG(U)j = jG : StabG(U)j = pa �mpb(U) = pa-b(U) �m:So, if b(U) = a, then j orbG(U)j = m, otherwise j orbG(U)j � 0 (mod pm).



4. THE THEOREM OF SYLOW 31Step 3 : j
j � l �m (mod pm), where l = ��� orbG(U) �� j orbG(U)j = m	��.Sin
e G a
ts on 
, there are U1; : : : ; Un 2 
 su
h that
 = nai=1 orbG(Ui):But then by Step 2 j
j = nXi=1 j orbG(Ui)j � l �m (mod pm):Step 4 : l = NG�pa�.We set M = fU 2 
 j U � Gg and N = � orbG(U) �� j orbG(U)j = m	. Thenl = jN j and NG�pa� = jMj. It thus suÆ
es to �nd a bije
tion between M and N .We de�ne � :M! N : U 7! orbG(U) = fg �U j g 2 Ggand we 
laim that � is a bije
tion.Note �rst of all, that for U 2 M we have already shown in Example 3.2 b. thatj orbG(U)j = jG : Uj = jGjjUj = pa �mpa = m;so that � a
tually takes its values in N !Let's now show the inje
tivity of �. For this suppose that we have U;U 0 2 M su
hthat orbG(U) = �(U) = ��U 0� = orbG �U 0�. Then there is a g 2 G su
h thatU = gU 0. However, sin
e eG 2 U = gU 0, we see that g-1 2 U 0, and hen
e g 2 U 0as well. But then U 0 = gU 0 = U.It remains to show the surje
tivity of �. For this let orbG(U) 2 N be given.As we have seen in Example 3.2 
., the group H = StabG(U) a
ts on U by left-multipli
ation and we have u1; : : : ; uk 2 U su
h thatU = kai=1 orbG(ui) = kai=1 H � ui:Note, that due to the Orbit Stabiliser Theorem and the Theorem of Lagrange wehave jHj = jGjjG : Hj = jGjj orbG(U)j = pa �mm = pa:This implies pa = jUj = k � jHj = k � pa;whi
h is only possible if k = 1 and U = Hu1. We set now U 0 = u-11 Hu1 whi
h is asubgroup of G of order pa, hen
e is an element of M. And that way we getorbG(U) = fgHu1 j g 2 Gg = fgu-11 Hu1 j g 2 Gg= �gU 0 �� g 2 G	 = orbG �U 0� = ��U 0� 2 Im(�):Hen
e, � is surje
tive.Step 5 : j
j � NG�pa� �m (mod pm).Just 
ombine Step 3 and Step 4.



32 I. FINITE GROUPSStep 6 : The tri
k of Shaw!Note, that the number j
j does not depend on the group stru
ture of G! It is thenumber of subsets with pa elements of a set with pa �m elements. This number isfor any group of order pa �m the same. In parti
ular, we may apply Step 5 to thegiven group G as well as to the 
y
li
 group �Z=pamZ;+� and we �ndNG�pa� �m � j
j � NZ=pamZ�pa� �m = m (mod pm);sin
e this 
y
li
 group has pre
isely one subgroup of order pa by Proposition 2.3.This implies pm ��� �NG�pa�- 1� �m;and hen
e p �� NG�pa�- 1, whi
h is the same as sayingNG�pa� � 1 (mod p):Proof of Example 4.1: Suppose U � A4 and jUj = 6.We �rst note that A4 
ontains the Kleinian subgroup K4 and, apart from that, theeight 3-
y
les in S4.Moreover, we note that any subgroup P � U of order 3 must be of the formP = �(1); (a b 
); (a 
 b)	for some fa; b; 
g � f1; 2; 3; 4g, sin
e it is 
y
li
 as a group of prime order.By Theorem 4.2 NU(3) � 1 (mod 3), and sin
e U 
annot possibly 
ontain 8 di�erent3-
y
les, NU(3) 
annot be 4 or even larger. Hen
e, NU(3) = 1 and U has a uniquesubgroup P � U of order 3.In parti
ular, apart from the elements in P the subgroup U 
an only 
ontain elementsof order 2, sin
e A4 only 
ontains elements of order 1, 2 and 3. Thus we haveU = �(1); (1 2)(3 4); (1 3)(2 4); (1 4)(2 3); (a b 
); (a 
 b)	:That implies that K4 � U, whi
h is a 
ontradi
tion to the Theorem of Lagrange,sin
e 4 6 j 6.An immediate 
onsequen
e of Theorem 4.2 is the Theorem of Cau
hy.4.3 Corollary (Theorem of Cau
hy)Let (G; �) be a �nite group su
h that pa �� jGj, then G has a subgroup of order pa.In parti
ular, if p �� jGj, then G 
ontains an element of order p.4.4 CorollaryLet (G; �) be a �nite abelian group and d �� jGj, then G has a subgroup of order d.Proof: We do the proof by indu
tion on d, where the 
ase d = 1 is obviouslysatis�ed by the trivial subgroup 1.Let's therefore assume that d > 1. If d is a power of a prime number, we are doneby the Theorem of Cau
hy. Otherwise, there is a prime number p, a > 0 andm > 0su
h that d = pa �m, where p 6 j m. Sin
e m < d and pa < d, by indu
tion thereare subgroups N1; N2 � G su
h that jN1j = m and jN2j = pa.



4. THE THEOREM OF SYLOW 33However, sin
e G is abelian, N1 and N2 are normal subgroups and thus N1 �N2 � Gis a subgroup of G. We 
laim that its order is just d. For this note thatN1\N2 � Ni,i = 1; 2, and hen
e its order divides the orders of both, N1 and N2, i. e.jN1 \N2j �� h
f �jN1j; jN2j) = h
f �m;pa� = 1:Thus jN1 \N2j = 1. Applying now the Produ
t Formula 1.11 we may 
al
ulate theorder of N1 �N2 as jN1 �N2j = jN1j � jN2jjN1 \N2j = m � pa = d:4.5 De�nitionLet (G; �) be a group of order pa �m with h
f(p;m) = 1. We 
all the elements ofSylp(G) := �U � G �� jUj = pa	p-Sylow subgroups of G.4.6 Theorem of SylowLet (G; �) be a �nite group and let p be a prime.a. �� Sylp(G)�� � 1 (mod p), in parti
ular, G has p-Sylow subgroups.b. G a
ts transitively on the set Sylp(G) by 
onjugation, i. e. if P;Q 2 Sylp(G),then there is some g 2 G su
h that Q = Pg = gPg-1.In parti
ular, j Sylp(G)j = jG : NG(P)j is a divisor of jGj.Proof: Part a. is just a spe
ial 
ase of Theorem 4.2. It thus only remains to provePart b. Let P;Q 2 Sylp(G) be given, and 
onsider the set
 = �Pg �� g 2 G	:Step 1 : h
f �j
j; p� = 1.By Corollary 3.4 and Theorem 1.11 we havej
j = jG : NG(P)j = jG : PjjNG(P) : Pj = mjNG(P) : Pj:In parti
ular, j
j is a divisor of m, and thus the prime p does not divide j
j.Step 2 : 9 g 2 G : Q = Pg.The p-groupQ a
ts on
 by 
onjugation as well asG does, and by Step 1 h
f �j
j; p� =1. Thus Corollary 3.5 applies and we �nd a �x point of the a
tion of Q on 
, i. e.there is some Pg 2 
 su
h that orbQ �Pg� = �Pg	:This means hPgh-1 = Pg for all h 2 Q, or equivalently hPg = Pgh for all h 2 Q.Thus we have in parti
ular QPg = PgQ:



34 I. FINITE GROUPSApplying Proposition 1.7 this implies that QPg is a subgroup of G. Sin
e Q\ Pg isa subgroup of Q, its order is pb for some 0 � b � a. By the Produ
t Formula 1.11we then �nd jQPgj = jQj � jPgjjQ \ Pgj = pa � papb = p2a-b:Sin
e pa is the maximal power of p whi
h divides the order of jGj, 2a-b � a, whi
his only possible if a = b. This however impliesQ = Q \ Pg = Pg:Sin
e a subgroup P is normal if and only if 
oin
ides with all its 
onjugates Pg, thefollowing is an immediate 
orollary.4.7 CorollaryLet (G; �) be a �nite group, p a prime and P 2 Sylp(G).Then P� G if and only if Sylp(G) = fPg.4.8 TheoremLet (G; �) be a group of order 2p, where p > 2 is some prime.Then either (G; �) �= (Z=2pZ;+) is 
y
li
 or (G; �) �= (D2n; Æ) is not abelian.Proof: By Theorem 4.6 there are subgroups P 2 Sylp(G) of order p and U 2Syl2(G) of order 2. Sin
e their orders are prime numbers, they must be 
y
li
 byProposition 2.5, i. e. P = hgi and U = hui for some g; u 2 G. Note, that U\P = 1,sin
e the order of the interse
tion must be a divisor of 2 and of p.By the Theorem of Lagrange jG : Pj = 2, and thus by Proposition 1.15 P � G.Moreover, by the Produ
t Formula 1.11 we see that jUPj = 2p, and hen
e G =UP = hu; gi.Case 1 : U� G.Then, sin
e U \ P = 1, Proposition 1.16 e. applies and we haveu � g = g � u:However, then by Proposition 2.7 the element ug has order o(ug) = 2p. ThusG = hugi is 
y
li
 of order 2p, and by Theorem 2.2 its isomorphi
 to (Z=2pZ;+).Case 2 : U is not normal in G.Sin
e P is a normal subgroup of G, the map�u : P! P : h 7! hu = uhu-1takes values in P and is thus an automorphism of P. However, sin
e �2u = �u2 =�eG = idG, the automorphism �u has order 2. By Corollary 2.10 the inversioninvP : P! P : h 7! h-1is the only automorphism of P of order 2, i. e. �u = invP. But thenu � g � u-1 = g-1:



4. THE THEOREM OF SYLOW 35In parti
ular, the generators u and g of G satisfy the relations of the generators �and � of the group D2p in Exer
ise 1 on Assignment Set 1. This 
an be used tode�ne an isomorphism G! D2p : u 7! �; g 7! �:We leave the details of this to the reader.4.9 RemarkWe have just proved in parti
ular that up to isomorphism there are only two groupswith 10 elements, whi
h may serve as alphabets for a CDC, namely the 
y
li
 groupZ=10Z of order 10 and the dihedral groupD10 of order 10. This answers the questionat the end of Paragraph 0.
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CHAPTER IINormal Forms of Linear and Bilinear Maps1 Jordan Normal Form1.0 General Assumptions and ReminderThroughout this se
tion K will be a �eld and V a �nite-dimensional K-ve
tor spa
e.A basis B = (v1; : : : ; vn) of V is a family of ve
tors in V su
h that(i) B is linearly independent, i. e.Pni=1 �ivi = 0, �i 2 K, implies �1 = : : : = �n = 0.(ii) B generates V, i. e. 8 v 2 V 9 �1; : : : ; �n 2 K : v =Pni=1 �ivi.Moreover, if B is a basis, then by (i) the 
oeÆ
ients �i in (ii) for the representationof v are uniquely determined, and we 
allMB(v) = (�1; : : : ; �n)t 2 Knthe basis representation of v w. r. t. B. Thus a basis B determines an isomorphismMB : V! Kn : v 7!MB(v):Re
all also, that all bases of V have the same number of elements, and this numbern = dimK(V) is 
alled the dimension of V.A typi
al example is the ve
tor spa
e Kn with the standard basisE = (e1; : : : ; en);where ei is the 
olumn ve
tor whi
h has entry 1 in the i-th row and entry 0 else.When 
onsidering ve
tors of the form (x1; : : : ; xn)t 2 Kn, we will frequently denotethem just by x.1.1 De�nition and Proposition (Matrix Representation)Let1 f 2 EndK(V) = ff : V! V j f is K-linearg and B = (v1; : : : ; vn) be a basis of V.a. As we have noti
ed above, there exist uniquely determined 
oeÆ
ients aij 2 K,i; j = 1; : : : ; n, su
h that f(vj) = nXi=1 aijvi:We 
all the n� n-matrixMBB(f) = (aij)i;j=1;:::;n = 0B� a11 : : : a1n... ...an1 : : : ann 1CA1K-linear maps from V to V are 
alled endomorphisms.37



38 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPSthe matrix representation of f w. r. t. the basis B.2 In the le
ture \LinearAlgebra" it was shown that this establishes a one-to-one 
orresponden
e be-tween linear maps from V to V and n � n-matri
es, i. e. the following map isa bije
tion3 MBB : EndK(V)! Mat(n� n;K) : f 7!MBB(f):Note that in the 
ase V = Kn and B = E the inverse map of MEE is justMat(n� n;K)! EndK(B) : A 7! fA;where the map fA is de�ned byfA : Kn ! Kn : x 7! A � x:Moreover, it has been shown in \Linear Algebra" how the matrix representa-tions of ve
tors and of linear maps �t together. Let v 2 V and f 2 EndK(V),then MB�f(v)� = MBB(f) �MB(v); (3)i. e. if v =Pni=1 �ivi, f(v) =Pni=1 �ivi and MBB(f) = (aij)i;j=1;:::;n then0B� �1...�n 1CA = 0B� a11 : : : a1n... ...an1 : : : ann 1CA �0B� �1...�n 1CA :b. If B 0 = (v 01; : : : ; v 0n) is another basis of V, then the matrixTBB 0 = (tij)i;j=1;:::;n 2 Gln(K)with the property that v 0j = nXi=1 tijvifor j = 1; : : : ; n is 
alled the base 
hange from B to B 0.In \Linear Algebra" it was shown that the matrix representation of f w. r. t.the bases B respe
tively B 0 satisfy the following relationMB 0B 0(f) = �TBB 0�-1 �MBB(f) � TBB 0: (4)Note also that �TBB 0�-1 = TB 0B :As an easy example let us 
onsider V = K2, f : K2 ! K2 : (x; y)t 7! (2x -y;-x)t, B = E = (e1; e2) and B 0 = (v 01; v 02) with v 01 = (1; 1)t and v 02 = (1;-1)t.Sin
ef(v 01) = (1;-1)t = 0 � v 01 + 1 � v 02 and f(v 02) = (3;-1)t = 1 � v 01 + 2 � v 022The j-th 
olumn of MBB(f) is thus just thebasis representation of the ve
tor f(vj) w. r. t. the basis B.3A
tually, EndK(V) and Mat(n�n;K) both 
arry the stru
ture of a K-algebra, making MBB aK-algebra isomorphism.



1. JORDAN NORMAL FORM 39we have MB 0B 0 =  0 11 2 ! :Dealing with the standard basis is even easier and leads toMBB =  2 -1-1 0 ! :We may 
al
ulate TBB 0 by just taking the ve
tors of B 0 as 
olumns, sin
e B isthe standard basis; 
al
ulating the inverse as well we getTBB 0 =  1 11 -1 ! and �TBB 0) = 12 � 1 11 -1 ! :It is now an easy exer
ise to verify Equation (4).Let us also 
he
k Equation (3) for one ve
tor, say v = (2; 0)t. Sin
e v =1 � v 01 + 1 � v 02 and f(v) = (4;-2)t = 1 � v 01 + 3 � v 02 we getMB 0B 0(f) �MB 0(v) =  0 11 2 ! � 11 ! =  13 ! = MB 0�f(v)�:1.2 De�nition and Proposition (Base Change)We 
all two matri
es A;B 2 Mat(n � n;K) similar and write A � B if and only ifthere is a T 2 Gln(K) su
h that B = T-1 �A � T:Similarity of matri
es is an equivalen
e relation, as one easily sees, and the equiva-len
e 
lass of A is 
alled the similarity 
lass of A.1.3 AimGiven f 2 EndK(V) we want to �nd a basis B of V su
h thatMBB(f)is as simple as possible.Taking the interplay between matri
es and linear maps into 
onsideration, this isequivalent to the following problem:Given A 2 Gln(K) �nd a T 2 Gln(K) su
h that T-1 � A � T is assimple as possible.That is, we are looking for a simple representative of the similarity 
lass of A. Su
ha representative would be 
alled a normal form of A.Of 
ourse, we have to spe
ify, what we mean by simple! The pre
ise meaning hasto be looked up in Remark 1.21, where we des
ribe what it means that a matrix isin Jordan normal form. For the moment it is suÆ
ient to say that simple means itshould be 
lose to being diagonal.1.4 De�nition and PropositionLet f 2 EndK(V) and A 2 Mat(n� n;K) be given.We 
all � 2 K an eigenvalue of f (resp. of A) if and only if one of the followingequivalent 
onditions is ful�lled:1) 9 0 6= v 2 V (resp. 0 6= x 2 Kn) su
h that f(v) = � � v (resp. A � x = � � x).2) Eig(f; �) := Ker(f- � � idV) 6= f0g (resp. Eig(A; �) := Ker(A- � � 1) 6= f0g).



40 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPS3) �f(�) = 0 (resp. �A(�) = 0), where �f = det(f-t�idV) (resp. �A = det(A-t�1))denotes the 
hara
teristi
 polynomial of f (resp. A).Ve
tors whi
h satisfy the equation in 1) are 
alled eigenve
tors of f (resp. A) w. r.t. the eigenvalue �, and the kernel in 2) is 
alled the 
orresponding eigenspa
e.1.5 ExampleLet A = ( 1 10 1 ) 2 Mat(2� 2; K). Then�A = det 1- t 10 1- t! = (1- t)2:That is, � = 1 is the only eigenvalue of A, and we say, it has multipli
ity two, sin
ethe fa
tor (1- t) o

urs twi
e in the 
hara
teristi
 polynomial.Let's now 
al
ulate the eigenspa
e of A w. r. t. �. By de�nition this is the set ofsolutions of the following homogeneous system of linear equations: 0 10 0! � xy! = (A- 1 � 1) � xy! =  00! :Of 
ourse (x; y)t satis�es this equation if and only if x = 0. ThusEig(A; 1) = Ker(A- 1) = * 01!+ :1.6 PropositionLet f 2 EndK(V) and A 2 Mat(n�n;K). Then f (resp. A )is diagonalisable4 if andonly if V (resp. Kn) has a basis of eigenve
tors of f (resp. A).Proof: Let's �rst suppose that there is a basis B = (v1; : : : ; vn) of eigenve
tors, andlet �1; : : : ; �n be the 
orresponding eigenvalues. Thenf(vi) = �i � vi resp. A � vi = �i � vi:This however impliesMBB(f) = 0BBBBBBBB�
�1 0 : : : : : : 00 . . . . . . ...... . . . . . . . . . ...... . . . . . . 00 : : : : : : 0 �n

1CCCCCCCCA resp. T-1 �A � T = 0BBBBBBBB�
�1 0 : : : : : : 00 . . . . . . ...... . . . . . . . . . ...... . . . . . . 00 : : : : : : 0 �n

1CCCCCCCCA ; (5)where T is the matrix whose 
olumns are the ve
tors v1; : : : ; vn.Let's now suppose that there is a basis B = (v1; : : : ; vn) (resp. a matrix T 2 Gln(K))su
h that Equation (5) is ful�lled, and 
all in the latter 
ase the 
olumn ve
tors ofT just v1; : : : ; vn. Thenf(vi) = �ivi resp. A � vi = �ivi:Thus (v1; : : : ; vn) is a basis of eigenve
tors.4Re
all, f is said to be diagonalisable if and only if there is a basis B of V su
h that MBB(f) is adiagonal matrix. Analogously, A is diagonalisable if and only if it is similar to a diagonal matrix,i. e. if there is a T 2 Gln(K) su
h that T-1 �A � T is a diagonal matrix.



1. JORDAN NORMAL FORM 411.7 Example (Example 1.5 
ontinued)Sin
e dimK �Eig(A; 1)� = 1 < 2 = dimK �K2� and sin
e A has no other eigenvalues,K2 does not possess a basis of eigenve
tors of A, and hen
e A is not diagonalisable.In parti
ular, not every endomorphism and not every square matrix 
an have adiagonal matrix as normal form!1.8 CorollaryLet f 2 EndK(V) with dimK(V) = n and let A 2 Mat(n�n;K). Suppose that f (resp.A) has pairwise distin
t eigenvalues �1; : : : ; �n, then f (resp. A) is diagonalisable.Proof: 5 Let v1; : : : ; vn 2 V be the 
orresponding eigenve
tors of f. By Proposition1.6 it suÆ
es to prove that B = (v1; : : : ; vn) is a basis of V. For that, however, itsuÆ
es that B is linearly independent, sin
e V has dimension n.We proof by indu
tion on k, that the ve
tors v1; : : : ; vk are linearly independent.For k = 1, there is nothing to show sin
e by hypothesis an eigenve
tor is non-zero.Let now k > 1 and let's assume that we have already shown that v1; : : : ; vk-1 arelinearly independent.Let �1; : : : ; �k 2 K su
h thatPki=1 �ivi = 0. We have to show that then �1 = : : : =�k = 0.kXi=1 �k�ivi = �k kXi=1 �ivi = 0 = f(0) = f kXi=1 �ivi! = kXi=1 �if(vi) = kXi=1 �i�ivi:Subtra
ting both sides from ea
h other, we get0 = kXi=1 (�k�i - �i�i) � vi = k-1Xi=1 (�k - �i) � �i � vi:Sin
e by indu
tion v1; : : : ; vk-1 are linearly independent, this implies that(�k - �i) � �i = 0for i = 1; : : : ; k- 1. And sin
e by assumption �k - �i 6= 0, this implies�i = 0for i = 1; : : : ; k - 1. We are thus left with 0 = Pki=1 �ivi = �kvk, and sin
e theeigenve
tor vk 6= 0, we �nally get �k = 0. Thus v1; : : : ; vk are linearly independent,and in parti
ular B is a basis of V.1.9 PropositionAn endomorphism f 2 EndK(V) (resp. a square matrix A 2 Mat(n � n;K)) istriangulable6 if and only if the 
hara
teristi
 polynomial �f (resp. �A) fa
torisesinto linear fa
tors.5We do the proof for endomorphisms, the proof for matri
es is identi
al, if you repla
e f by Aand V by Kn.6Re
all, f is said to be triangulable if and only if there is a basis B of V su
h that MBB(f) isan upper triangular matrix. Analogously, A is triangulable if and only if it is similar to an uppertriangular matrix, i. e. if there is a T 2 Gln(K) su
h that T-1 �A � T is an upper triangular matrix.



42 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPSProof: 7 Let's �rst suppose we have a basis B su
h thatMBB(f) = 0BBBBB��1 � : : : : : : �0 . . . . . . ...... . . . . . . . . . ...... . . . . . . �0 : : : : : : 0 �n
1CCCCCA;where � represents an entry whi
h need not be zero. Then the 
hara
teristi
 poly-nomial of f is�f = det(f-t idV) = det �MBB(f)-t1� = det0BBBBB��1 - t � : : : : : : �0 . . . . . . ...... . . . . . . . . . ...... . . . . . . �0 : : : : : : 0 �n - t

1CCCCCA= nYi=1 (�i-t);in parti
ular it fa
torises into linear fa
tors.The other dire
tion is somewhat harder to proof. We do the proof by indu
tionon n = dimK(V). If n = 1, then there is nothing to prove, sin
e every n � n-matrix is automati
ally a \diagonal" matrix. Let therefore n > 1 and suppose thatendomorphisms of ve
tor spa
es of dimension n-1 whose 
hara
teristi
 polynomialfa
torises are diagonalisable.By assumption �f = (�1 - t) � � � (�n - t), and �1 is therefore an eigenvalue of f. Let0 6= v1 2 V be an eigenve
tor of f w. r. t. �1. We set U = hv1i, the subspa
e ofV generated by v1. Sin
e v1 is an eigenve
tor of f, this spa
e is f-invariant, i. e.f(u) 2 U for all u 2 U. We may therefore 
onsider the restri
tion of f to U, denotedby fU : U! U : u 7! f(u):Moreover, f indu
es an endomorphism on V=U byfV=U : V=U! V=U : v+U 7! f(v) +U;whi
h is well-de�ned sin
e U is f-invariant.If we extend B 0 = (v1) to a basis of V by ve
tors v2; : : : ; vn, then the residue
lasses B 00 = (v2 + U; : : : ; vn + U) form a basis of the quotient spa
e V=U. It isstraightforward to see that the matrix representations of f, fU and fV=U w. r. t. thebases B, B 0 and B 00 satisfy the following relation:MBB(f) = 0BBBB� MB 0B 0(fU) � � � � �0... MB 00B 00(fV=U)0
1CCCCA ; (6)where the �'s are suitable entries. In parti
ular, for the 
hara
teristi
 polynomialswe have (�1 - t) � � � (�n - t) = �f = �fU � �fV=U = (�1 - t) � �fV=U:7On
e again we do the proof only for the 
ase of endomorphisms and leave it to the reader todo the ne
essary repla
ements for matri
es.



1. JORDAN NORMAL FORM 43But then fV=U is an endomorphism of an n - 1-dimensional ve
tor spa
e whose
hara
teristi
 polynomial fa
torises. So, by indu
tion, there is a basis of V=U whi
htriangulates fV=U. W. l. o. g. we may assume that B 00 = (v2+U; : : : ; vn+U) is su
ha matrix. But then by Equation 6 we see that B triangulates f.1.10 RemarkProposition 1.9 says that, if we want a normal form for f (resp. A) whi
h is at least anupper triangular matrix, then we have to request that the 
hara
teristi
 polynomialfa
torises! We will therefore restri
t in the theorems on the Jordan normal form tothis 
ase!1.11 De�nitionLet f 2 EndK(V) and A 2 Mat(n � n;K) be given with 
hara
teristi
 polynomial�f = (t - �)n � p resp. �A = (t - �)k � p, where p 2 K[t℄ is a polynomial su
h thatp(�) 6= 0.We then 
all multalg(f; �) := k resp. multalg(A; �) := k the algebrai
 multipli
ity of� as an eigenvalue of f resp. A. That is, the algebrai
 multipli
ity is the multipli
ityof � as a zero of the 
hara
teristi
 polynomial.And we 
all multgeo(f; �) := dimK �Eig(f; �)� resp. multgeo(A; �) := dimK �Eig(A; �)�the geometri
 multipli
ity of � as an eigenvalue of f resp. of A.The following proposition gives a dire
t relation between the geometri
 and thealgebrai
 multipli
ity of an eigenvalue, so that a look at the fa
torised 
hara
teristi
polynomial suÆ
es to �nd upper bounds for the dimension of the eigenspa
es.1.12 Proposition (Geometri
 and Algebrai
 Multipli
ity)Let f 2 EndK(V) and A 2 Mat(n�n;K), and let � 2 K. The geometri
 multipli
ityof � as an eigenvalue of f resp. A is less than or equal to the algebrai
 multipli
ityof � as an eigenvalue of f resp. A, i. e.multgeo(f; �) � multalg(f; �) and multgeo(A; �) � multalg(A; �):Proof: We do the proof for the 
ase of an endomorphism only.Let m := multgeo(f; �) and let (v1; : : : ; vm) be a basis of Eig(f; �). Extend this to abasis B = (v1; : : : ; vn) of V. We know thatf(vj) = � � vjfor j = 1; : : : ;m and that there aij 2 K, j = m + 1; : : : ; n and i = 1; : : : ; n, su
hthat f(vj) = nXi=1 aij � vifor j = m + 1; : : : ; n. If we now setM = 0B�am+1;m+1 : : : am+1;n... ...an;m+1 : : : ann 1CA and M 0 = 0B�a1;m+1 : : : a1;n... ...am;m+1 : : : amn1CA



44 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPSthen MBB(f) =  � � 1m M 00(m-n)�m M ! :Thus we have�f = det (�- t) � 1m M 00(m-n)�m M- t � 1n-m ! = (�- t)m � �M:In parti
ular, the multipli
ity multalg(f; �) of � as a zero of �f is at least m =multgeo(f; �).The Theorem of Cayley-Hamilton is one of the key ingredients in the proof of the ex-isten
e of the Jordan normal form and at the same time it helps a
tually 
al
ulatingthem.1.13 Theorem (Cayley-Hamilton)Let f 2 EndK(V) and A 2 Mat(n� n;K), then �f(f) = 0 and �A(A) = 0.Proof: 8 Let's �rst prove the statement for matri
es.Consider the matrix Bt = A - t � 1 2 M := Mat(n � n;K)[t℄ = Mat �n � n;K[t℄�.Linear Algebra tells us that the adjoint matrix adj(Bt) 2 M of Bt satis�es thefollowing equation Bt � adj(Bt) = det(Bt) � 1 = �A � 1: (7)However, remembering how the adjoint of a matrix is a
tually de�ned, we �nd thatif adj(Bt) = (bij)i;j=1;:::;n then bij = (-1)i+j � det(Cji);where Cji is derived from the matrix Bt by erasing the j-th row and the i-th 
olumn.In parti
ular, bij is a polynomial in t of degree at most n - 1, sin
e Cji is an(n - 1) � (n - 1)-matrix where ea
h row 
ontains at most one entry whi
h is anon-
onstant polynomial in t, and this entry is then linear in t.Thus the entries of adj(Bt) are all polynomials of degree at most n - 1 and wemay therefore 
onsider adj(Bt) as a polynomial of degree at most n - 1 with ma-trix 
oeÆ
ients, as indi
ated in Footnote 8, i. e. there are matri
es B0; : : : ; Bn-1 2Mat(n� n;K) su
h thatBt = Bn-1 � tn-1 + : : :+ B1 � t+ B0:Let now �A = (-1)n � tn + �n-1 � tn-1 + : : :+ �1 � t+ �0, then Equation (7) implies(A-t �1) ��Bn-1 �tn-1+ : : :+B0� = (-1)n �1 �tn+�n-1 �1 �tn-1+ : : :+�11 �t+�0 �1:8Note that the we have the following equality of sets Mat �n � n;K[t℄� = Mat(n � n;K)[t℄,where the �rst one is the set of n � n-matri
es whose entries are polynomials, while the se
ondone is the set of polynomials whose 
oeÆ
ients are n� n-matri
es. Let's illustrate by an examplehow elements in the two sets are identi�ed:�t2 - 2 t2 - tt+ 3 0 � = �1 10 0� � t2 + �0 -11 0 � � t+�-2 03 0� :



1. JORDAN NORMAL FORM 45As usually with polynomial identities, we may 
ompare the 
oeÆ
ients and get:A � B0 = �0 � 1A � B1 - B0 = �1 � 1... ...A � Bn-1 - Bn-2 = �n-1 � 1- Bn-1 = (-1)n � 1 (8)Multiplying the i-th row in Equation (8) by Ai-1 we getA � B0 = �0 � 1A2 � B1 - A � B0 = �1 �A... ...An � Bn-1 - An-1 � Bn-2 = �n-1 �An-1- An � Bn-1 = (-1)n �An (9)Adding the terms on the left hand side in Equation (9) we get the zero-matrix,adding the terms on the right hand side, we get �A(A). This proves the statement.For an endomorphism f we note thatMBB��f(f)� = �f�MBB(f)� = �MBB(f)�MBB(f)� = 0;by the previously shown result for matri
es. However, if the endomorphism �f(f) hasmatrix representation 0 w. r. t. some basis B, then it must be the zero endomorphism.1.14 RemarkWould not the following be a mu
h shorter proof of the above theorem?�A(A) = det(A-A � 1) = det(0) = 0:What is wrong with this proof?Note, that �A(A) is by de�nition a n� n-matrix, while det(0), the determinant ofthe zero matrix, is just a number! They 
an hardy 
oin
ide!The problem is, that we substituted A for the variable t in the above equation inthe wrong way!1.15 Example (Example 1.7 
ontinued)The 
hara
teristi
 polynomial of A = ( 1 10 1 ) was 
al
ulated as �A = (1 - t)2. Let'snow plug in A:�A(A) = ��1 00 1�- �1 10 1��2 = �0 -10 0 �2 = �0 00 0� :1.16 LemmaLet g 2 EndK(V), then there is an m � 1 su
h thatKer(g) ( Ker �g2� ( : : : ( Ker �gm� = Ker �gk� for all k � m:Proof: This is Exer
ise 4 on Assignment Set 6.



46 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPS1.17 Theorem (Jordan Normal Form { 2� 2-Case)a. Let f 2 EndK(V) with dimK(V) = 2 su
h that �f = (�1 - t) � (�2 - t). Thenthere exists either a basis B of V su
h thatJ(f) := MBB(f) =  �1 00 �2!or a basis B of V su
h thatJ(f) := MBB(f) =  � 10 �! and � = �1 = �2:We 
all J(f) a Jordan normal form of f.b. Let A 2 Mat(2 � 2; K) su
h that �A = (�1 - t) � (�2 - t). Then there existseither a T 2 Gl2(K) su
h thatJ(A) := T-1 �A � T =  �1 00 �2!or a T 2 Gl2(K) su
h thatJ(A) := T-1 �A � T =  � 10 �! and � = �1 = �2:We 
all J(A) a Jordan normal form of A.Proof: We do the proof for endomorphisms by 
onsidering di�erent 
ases, and weleave it to the reader to translate this proof to the 
ase of matri
es.1st Case: �1 6= �2. Then by Corollary 1.8 f is diagonalisable, and we are done.2nd Case: �1 = �2 and dimK �Eig(f; �)� = 2. Then by Proposition 1.6 f isdiagonalisable, and we are done.3rd Case: �1 = �2 =: � and dimK �Eig(f; �)� = 1. By the Theorem of Cayley-Hamilton we have (f - � � idV)2 = �f(f) = 0 and thus the kernel of this map is thewhole ve
tor spa
e V. Taking the dimension of the eigenspa
e into a

ount, we getf0g ( Ker(f- � � idV) = Eig(f; �) ( Ker �(f- � � idV)2� = VChoose any w 2 V n Eig(f; �) = Ker �(f - � � idV)2� n Eig(f; �) and set v = (f- � �idV)(w). Then, by the 
hoi
e of w,0 6= v 2 Ker �f- � � idV) = Eig(f; �):In parti
ular, B = (v;w) is linearly independent and thus a basis of V. Moreover,we have f(v) = �v, sin
e v is an eigenve
tor, and f(w) = v + �w. This leads to thefollowing matrix representation MBB(f) =  � 10 �! :



1. JORDAN NORMAL FORM 47The proof of the Theorem was 
onstru
tive and allows to 
al
ulate the Jordan normalform and the basis resp. transformation matrix leading to the Jordan normal form.In the �rst two 
ases we just have to 
al
ulate a basis of the eigenspa
es and theygive either the desired basis B or the transformation matrix T, if we take them as
olumns of T.1.18 Examplea. Let A = � -1 33 -1 � 2 Mat(2� 2; K). Then the 
hara
teristi
 polynomial is�A = det(A- t � 1) = (-1- t)2 - 9 = t2 + 2t- 8 = (t+ 4) � (t- 2):Thus we are in Case 1 and the Jordan normal form will beJ(A) =  -4 00 2! :Let's now 
al
ulate the transformation matrix T 2 Gl2(K).For this we �rst have to 
al
ulate the eigenspa
e of A w. r. t. -4. Solving thesystem of linear equations�3 33 3� � �xy� = (A+ 41) � �xy� = �00�leads to Eig(A;-4) = 
(1;-1)t�:Similarly we solve the system of linear equations�-3 33 -3� � �xy� = (A- 21) � �xy� = �00�in order to �nd that the eigenspa
e of A w. r. t. 2 isEig(A; 2) = 
(1; 1)t�:The transformation matrix is thus the matrix having these two ve
tors as
olumns: T =  1 1-1 1! :b. Let A = � 3 1-1 1 � 2 Mat(2� 2; K). Then the 
hara
teristi
 polynomial is�A = det(A- t � 1) = (3- t) � (1- t) + 1 = t2 - 4t+ 4 = (t- 2)2:Thus we may be in Case 2 or in Case 3. Let's therefore 
al
ulate the eigenspa
eof A w. r. t. 2.Solving the system of linear equations� 1 1-1 -1� � �xy� = (A- 21) � �xy� = �00�leads to Eig(A; 2) = 
(1;-1)t�:



48 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPSIt thus has dimension 1 and we are a
tually in Case 3. The Jordan normalform will therefore be J(A) = �2 10 2� :Let's now 
al
ulate the transformation matrix T 2 Gl2(K). For this we may
hoose any ve
tor w 2 K2 n Eig(A; 2), e. g.w = (1; 0)t and v = (A- 21) �w = (1;-1)t:Then the transformation matrix will have the ve
tors v and w as 
olumns:T = � 1 1-1 0� :1.19 Theorem (Jordan Normal Form { 3� 3-Case)a. Let f 2 EndK(V) with dimK(V) = 3 su
h that �f = (�1 - t) � (�2 - t) � (�3 - t).Then there exists either a basis B of V su
h thatJ(f) := MBB(f) = 0B��1 0 00 �2 00 0 �31CAor a basis B of V su
h thatJ(f) := MBB(f) = 0B� � 1 00 � 00 0 � 0 1CAor a basis B of V su
h thatJ(f) := MBB(f) = 0B� � 1 00 � 10 0 � 1CA :We 
all J(f) a Jordan normal form of f.b. Let A 2 Mat(3� 3; K) su
h that �A = (�1 - t) � (�2 - t) � (�3 - t). Then thereexists either a T 2 Gl3(K) su
h thatJ(A) := T-1 �A � T = 0B��1 0 00 �2 00 0 �31CAor a T 2 Gl3(K) su
h thatJ(A) := T-1 �A � T = 0B� � 1 00 � 00 0 � 0 1CAor a T 2 Gl3(K) su
h thatJ(A) := T-1 �A � T = 0B� � 1 00 � 10 0 � 1CA :We 
all J(A) a Jordan normal form of A.



1. JORDAN NORMAL FORM 49Proof: Again we do the proof for endomorphisms by 
onsidering di�erent 
ases,and we leave it to the reader to translate this proof to the 
ase of matri
es.1st Case: �1; �2; �3 are pairwise distin
t, or �1 = �2 = �3 and dimK �Eig(f; �1)� =3. Then by Proposition 1.6 and Corollary 1.8 f is diagonalisable, and we are done.2nd Case: Just two of the eigenvalues 
oin
ide and the 
orresponding eigenspa
ehas dimension 2.W. l. o. g. we may assume �1 = �2 6= �3. Let (v1; v2) be a basis of Eig(f; �1) andlet v3 be an eigenve
tor of f w. r. t. �3. Sin
e v3 62 Eig(f; �3) = hv1; v2i, the ve
torspa
e hv1; v2; v3i has dimension 3. This implies that B = (v1; v2; v3) is a basis of Vof eigenve
tors, thus MBB(f) = 0B��1 0 00 �2 00 0 �31CA :3rd Case: Just two of the eigenvalues 
oin
ide and the 
orresponding eigenspa
ehas dimension 1. Again w. l. o. g. we may assume �1 = �2 6= �3.Claim: Eig(f; �1) = Ker(f- �1 idV) ( Ker �(f- �1 idV)2�.With the aid of the dimension formula for linear maps and taking Proposition 1.12into a

ount we may 
al
ulate the dimension of Im(f- �3 idV) asdimK � Im(f-�3 idV)� = dimK(V)-dimK �Ker(f-�3 idV)� = 3-dimK �Eig(f; �3)� = 2:Sin
e by the Theorem of Cayley-Hamilton we have(f- �1 idV)2 Æ (f- �3) = �f(f) = 0;we have Im(f- �3 idV) � Ker �(f- �1 idV)2�;so that the latter ve
tor spa
e has dimension at least 2. Thus, sin
e the eigenspa
eof f w. r. t. �1 has by assumption only dimension 1, the 
laim follows in view ofLemma 1.16.Choose now any v2 2 Ker �(f- �1 � idV)2� n Eig(f; �1) and set v1 = (f- � � idV)(v2).Moreover, let v3 be any eigenve
tor of f w. r. t. �3. Then, by the 
hoi
e of v2,0 6= v1 2 Ker �f- �1 � idV) = Eig(f; �1);and (v1; v2) are linearly independent. Sin
e Ker �(f - �1 idV)2� \ Eig(f; �3) = f0gby Exer
ise 6 on Assignment Set 6, also B = (v1; v2; v3) is linearly independent andthus a basis of V. Moreover, we have f(v1) = �1v1, sin
e v1 is an eigenve
tor w. r.t. �1; f(v2) = v1 + �1v2; and �nally f(v3) = �3v3. This leads to the following matrixrepresentation MBB(f) = 0B� �1 1 00 �1 00 0 �3 1CA :4th Case: �1 = �2 = �3 and dimK �Eig(f; �1)� = 2.Claim: Ker �(f- �1 idV)2� = V.



50 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPSLet g = f- �1 idV. The Theorem of Cayley-Hamilton gives 0 = �f(f) = g3. Hen
eKer �g3� = V:By Lemma 1.16 we know that the as
ending 
hainKer(g) � Ker �g2� � Ker �g3� � : : :will be stri
tly as
ending until the moment where it be
omes stationary for good.Sin
e Ker(g) = Eig(f; �1) has dimension 2 this impliesKer(g) ( Ker �g2� = Ker �g3�;and thus the 
laim follows.Choose now any v2 2 Ker �(f-�1 � idV)2�nEig(f; �1) and set v1 = (f-� � idV)(v2) 2Eig(f; �1). Moreover, sin
e Eig(f; �1) has dimension 2, we may 
hoose v3 2 Eig(f; �1)linearly independent of v1. Then B = (v1; v2; v3) is linearly independent and thusa basis of V. Moreover, we have f(v1) = �1v1, sin
e v1 is an eigenve
tor w. r. t.�1; f(v2) = v1 + �1v2; and �nally f(v3) = �1v1. This leads to the following matrixrepresentation MBB(f) = 0B� �1 1 00 �1 00 0 �1 1CA :5th Case: �1 = �2 = �3 and dimK �Eig(f; �1)� = 1.Claim: f0g ( Ker(f- �1 idV) ( Ker �(f- �1 idV)2� ( Ker �(f- �1 idV)3� = V.As in Case 4 we see that g = f- �1 idV satis�esKer �g3� = V;and sin
e Ker(g) = Eig(f; �1) has only dimension 1, Ker �(f - �1 idV)2� must haveat least dimension 2 in view of Lemma 1.16. Suppose its dimension was 3. Theng�g(v)� = g2(v) = 0 for all v 2 V:Hen
e Im(g) � Ker(g) = Eig(f; �1):However, by the dimension formula we havedimK � Im(g)� = dimK(V)- dimK �Ker(g)� = 3- 1 = 2;in 
ontradi
tion to the fa
t that the eigenspa
e has only dimension 1. Thus Ker �g2�lies stri
tly between Ker(g) and Ker �g3�.Choose now v3 2 V n Ker �(f - �1 idV)2� arbitrary, and set v2 = (f - �1 idV)(v3) 2Ker �(f- �1 idV)2� and v1 = (f- �1 idV)(v2) 2 Ker(f- �1 idV) = Eig(f; �1). In viewof the above 
laim these ve
tors form a basis B = (v1; v2; v3) and sin
e f(v1) = �1v1,f(v2) = v1 + �1v2 and f(v3) = v2 + �1v3, we get the following matrix representationMBB(f) = 0B� �1 1 00 �1 10 0 �1 1CA :



1. JORDAN NORMAL FORM 51In the same way as for the 2 � 2-
ase the above proof provides an algorithm to
al
ulate the Jordan normal form of an endomorphism resp. a square matrix andthe 
orresponding basis respe
tively the transformation matrix.1.20 ExampleLet us 
onsider the matrixA = 0B� 3 2 10 3 1-1 -4 -11CA 2 Mat(3� 3; K):The 
hara
teristi
 polynomial is�A = det(A- t � 1) = -t3 + 5t2 - 8t+ 4 = (2- t)2 � (1- t):The eigenvalues are thus �1 = �2 = 2 and �3 = 1, and we are either in Case 2 orin Case 3. To de
ide whi
h of the 
ases it is, we have to 
al
ulate the eigenspa
eEig(A; 2), i. e. we have to solve the following system of linear equations: 1 2 10 1 1-1 -4 -3! � xyz! = (A- 21) � xyz! =  000! :Using the Algorithms of Gau� and the fa
t that the third line of the above matrixis equal to the negative of the sum of the �rst two lines, we �nd that the eigenspa
ehas dimension 1 and is Eig(A; 2) = 
(1;-1; 1)t�:We are therefore in Case 3 and the Jordan normal form of A isJ(A) = 0B� 2 1 00 2 00 0 1 1CA :In order to �nd the transformation matrix T we also have to 
al
ulate Ker �(A-21)2�and Eig(A; 1).The system of linear equations 0 0 0-1 -3 -22 6 4 ! � xyz! = (A- 21)2 � xyz! =  000!leads with the aid of the Gau� algorithm toKer �(A- 21)2� = 
(1;-1; 1)t; (2; 0;-1)t�and we may therefore 
hoose v2 = (2; 0;-1)t 2 Ker �(A- 21)2� n Eig(A; 2) and setv1 = (A- 21) � v2 = (1;-1; 1)t.The 
orresponding system of linear equations for Eig(A; 1) 2 2 10 2 1-1 -4 -2! � xyz! = (A- 1) � xyz! =  000!gives the one-dimensional solution spa
eEig(A; 1) = 
(0; 1;-2)t�and we may set v3 = (0; 1;-2)t.
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e the transformation matrix T has these ve
tors as 
olumn ve
torsT = 0B� 1 2 0-1 0 11 -1 -21CA :1.21 Remark (Jordan Normal Form)Let f 2 EndK(V) su
h that �f = (�1 - t)n1 � � � (�r - t)nr with pairwise distin
t �i.Then there is a basis B of V su
h that9J(f) := MBB(f) = rLi=1 miLj=1 tijLk=1 Jj(�i)= 0BBBB� J�(��) 0 � � � 00 J�(��) ...... . . . ...0 � � � � � � J�(��)
1CCCCA ;where� mi = min�m � 1 �� Ker �(f- �i idV)m� = Ker �(f- �i idV)m+1�	,� tij = rank �(f- �i idV)j-1�- 2 � rank �(f- �i idV)j�+ rank �(f- �i idV)j+1�,� ni =Pmij=1 tij, and

� Jj(�i) = 0BBBBBBBBBB�
�i 1 0 : : : : : : 00 . . . . . . . . . ...... . . . . . . . . . . . . ...... . . . . . . . . . 0... . . . . . . 10 : : : : : : : : : 0 �i

1CCCCCCCCCCA 2 Mat(j� j; K).
We 
all J(f) a Jordan normal form of f.Of 
ourse, an analogous statement for square matri
es holds as well.The proof of these will be a major issue in the 
ourse Algebra II in Term 2.Note, that the above des
ription allows to 
al
ulate the Jordan normal form on
ewe know a fa
torisation of the 
hara
teristi
 polynomial, just by 
al
ulating 
ertainranks of endomorphisms resp. matri
es, whi
h 
an easily be done with the aid of theGau� algorithm.Note also, that over so 
alled algebrai
ally 
losed �elds, su
h as the 
omplex numbers,every polynomial fa
torises, so that every square matrix has a Jordan normal formas representative of its similarity 
lass!9Re
all that if we have two matri
es A 2 Mat(m�n;K) and B 2 Mat(p�q; K), then A�B 2Mat �(m + p)� (n + q); K� denotes the blo
k diagonal matrixA� B =  A 0m�q0p�n B ! :
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 Bilinear Forms & Matri
esand Quadrati
 Forms2.0 General Assumptions Throughout this se
tion K will be a �eld of 
har(K) 6=2, and V will be a �nite-dimensional K-ve
tor spa
e.2.1 De�nitiona. A map b : V� V! Kis 
alled a bilinear form if and only if10 for all v;w; u 2 V and �; � 2 Kb(�v+ �w;u) = � � b(v; u) + � � b(w;u)and b(u; �v+ �w) = � � b(u; v) + � � b(u;w):We denote by BilK(V) the set of all bilinear forms on V.b. A bilinear form b 2 BilK(V) is 
alled symmetri
 if and only if for all v;w 2 Vb(v;w) = b(w; v):2.2 Examplea. (Determinant) Let V = K2. The determinant mapdet : K2 � K2 ! K :   a1a2! ; b1b2!! 7! det a1 b1a2 b2! :is a bilinear form on K2 whi
h is not symmetri
.b. (S
alar Produ
t) Let V = Rn. The standard s
alar produ
t on Rnh�; �i : Rn �Rn ! R : (x; y) 7! xt � y = nXi=1 xiyiis a symmetri
 bilinear form.
. (Standard Example) Let V = Kn and let A 2 Mat(n� n;K) be �xed. Themap bA : Kn � Kn ! K : (x; y) 7! xt �A � y = nXi=1 nXj=1 xiaijyjis a bilinear form.Moreover, bA is symmetri
 if and only if At = A, i. e. if A is symmetri
.Proof: If bA is symmetri
, then aij = bA(ei; ej) = bA(ej; ei) = aji and A issymmetri
.On the other hand, if A = At, thenbA(x; y) = xt �A � y = xt �At � y = �xt �At � y�t = yt �A � x = bA(y; x)and thus bA is symmetri
.10I. e., if b is linear in the �rst 
omponent and linear in the se
ond 
omponent.



54 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPS2.3 De�nitionLet B = (v1; : : : ; vn) be a basis of V. We 
all the matrixMB(b) = �b(vi; vj)�i;j=1;:::;n 2 Mat(n� n;K)the matrix asso
iated to b or the matrix representation of b with respe
t to B.2.4 ExampleLet V = R2 and b = h�; �i be the standard s
alar produ
t. Let E be the standardbasis of R2 and B = �(1; 1)t; (1; 0)t� another basis. ThenME(b) =  1 00 1! and MB(b) =  2 11 1! :2.5 PropositionLet B = (v1; : : : ; vn) be a basis of V. The mapMB : BilK(V)! Mat(n� n;K) : b 7!MB(b)is a bije
tion.Moreover, b is symmetri
 if and only if MB(b) is symmetri
.Note also, for v;w 2 V we haveb(v;w) = MB(v)t �MB(b) �MB(w) = bMB(b)�MB(v);MB(w)�:Proof:Claim: MB is inje
tive.Let b; b 0 2 BilK(V) su
h that MB(b) = MB(b 0). Then for all i; j = 1; : : : ; n we haveb(vi; vj) = b 0(vi; vj):Let v =Pni=1 �ivi 2 V and w =Pnj=1 �jvj 2 V be given, thenb(v;w) = nXi=1 nXj=1 �i�jb(vi; vj) = nXi=1 nXj=1 �i�jb 0(vi; vj) = b 0(v;w):Thus b = b 0, and MB is inje
tive.Claim: MB is surje
tive.Let A 2 Mat(n� n;K) be given. De�neb : V� V! K : (v;w) 7! bA�MB(v);MB(w)� = MB(v)t �A �MB(w): (10)Sin
eMB(�v+� 0v 0) = �MB(v)+� 0MB(v 0), the map b is a
tually bilinear, and sin
eb(vi; vj) = bA(ei; ej) = aij;its matrix representation is MB(b) = A. Thus MB is surje
tive.Claim: b is symmetri
 if and only if MB(b) is symmetri
.By Equation (10) we knowb(v;w) = bMB(b)�MB(v);MB(w)�:However, applying Example 2.2 
., we have b is symmetri
 if and only if bMB(b) issymmetri
 if and only if MB(b) is symmetri
.



2. SYMMETRIC BILINEAR FORMS & MATRICES AND QUADRATIC FORMS 552.6 RemarkWe have just shown that on
e we have �xed a basis of V then symmetri
 bilinearforms and symmetri
 n� n-matri
es are virtually the same thing!Aim: Given b 2 BilK(V) symmetri
, �nd a basis B of V su
h that MB(b) has asimple form!2.7 Proposition (Base Change)Let B and B 0 be two bases of V and let b 2 BilK(V). ThenMB 0(b) = �TBB 0�t �MB(b) � TBB 0:This allows us to de�ne the rank of the bilinear form to be rank(b) = rank �MB(b)�,and this number is independent of the 
hosen basis BProof: Let's denote the matrix on the right hand side by (aij)i;j=1;:::;n.Let B = (v1; : : : ; vn), B 0 = (v 01; : : : ; v 0n) and suppose v 0j = Pni=1 tijvi, i. e. TBB 0 =(tij)i;j=1;:::;n. Thenb(v 0i; v 0j) = b nXk=1 tkivk; nXl=1 tljvl! = nXk=1 nXl=1 tkitljb(vk; vl)= (t1i : : : tni) � �b(vk; vl)�k;l=1;:::;n � (t1j : : : tnj)t = aij;sin
e (t1i : : : tni) is the i-th row of �TBB 0�t and (t1j : : : tnj)t is the j-th 
olumn of TBB 0.Note, that the rank of a matrix is not 
hanged when the matrix is multiplied byinvertible matri
es. Thus the rank of b as de�ned does not depend on the 
hosenbasis B.2.8 Example (Example 2.4 
ontinued)We have(1; 0)t = 0 � (1; 1)t + 1 � (1; 0)t and (0; 1)t = 1 � (1; 1)t + (-1) � (1; 0)t;hen
e the base 
hange matrix TBE isTBE =  0 11 -1! :Using the results in Example 2.4 we may verify the result of Proposition 2.7 in thisexample:ME(b) = �1 00 1� = �0 11 -1� � �2 11 1� ��0 11 -1� = �TBE �t �MB(b) � TBE :2.9 Remarka. If we de�ne for A;B 2Mat(n� n;K) symmetri
A � B :() 9 T 2 Gln(K) : Tt �A � T;then we have de�ned an equivalen
e relation on the set of all symmetri
 n�n-matri
es.Aim: Find in ea
h equivalen
e 
lass a representative of a simple form!



56 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPSDue to the above remarks this is the same thing as �nding for a given symmetri
matrix A a basis B of Kn su
h that MB(bA) has a simple form.b. If T 2 Gln(K) and ti denotes the i-th 
olumn of T and if the matrix Tt �A �T =(
ij)i;j=1:::;n, then bA�ti; tj� = tti �A � tj = 
ij;that is, the ij-th entry of Tt �A �T is just the bilinear form bA evaluated at thei-th and j-th 
olumn of T!In parti
ular bA(ei; ej) = aij, when A = (aij)i;j=1;:::;n.2.10 Theorem (Normal Form of Symmetri
 Bilinear Forms & Matri
es)a. Let b 2 BilK(V) be symmetri
, then there is basis B = (v1; : : : ; vn) of V su
hthat MB(b) is a diagonal matrix, i. e. b(vi; vj) = 0 if i 6= j.b. Let A 2 Mat(n � n;K) be symmetri
, then there is a T 2 Gln(K) su
h thatTt �A � T is a diagonal matrix.We 
all su
h a diagonal matrix then a normal form for b resp. A.Proof: a. We do the proof by indu
tion on n = dimK(V), where in the 
ase n = 1there is nothing to show, sin
e 1� 1-matri
es are by default diagonal.Let's now assume that n > 1 and that we have already proved the result forn- 1-dimensional ve
tor spa
es.If b(v; v) = 0 for all v 2 V, then for arbitrary v;w 2 V we have0 = b(v+w; v+w) - b(v; v) - b(w;w) = b(v;w) + b(w; v) = 2 � b(v;w); (11)and hen
e b(v;w) = 0 for all v;w 2 V, sin
e 
har(K) 6= 2. Then, however,MB(b) is the zero matrix for any basis, and in parti
ular it is diagonal.We may therefore assume that there is some v 2 V su
h that b(v; v) 6= 0. SetU = hvi and U? = fu 2 V j b(v; u) = 0g. By Exer
ise 3 on Assignment Set 7we know that U? is a subspa
e su
h that V = U+U?.Claim: U \U? = f0g.Let u 2 U \U?. Then there is a � 2 K su
h that u = �v and0 = b(v; u) = � � b(v; v):However, sin
e b(v; v) 6= 0, � must be zero, and hen
e u = 0.This shows in parti
ular that dimK �U?� = n- 1, and therefore we may applyindu
tion to the bilinear formbj : U? �U? ! K : (u;w) 7! b(u;w):Hen
e, there is a basis B 0 = (v1; : : : ; vn-1) of U? su
h that b(vi; vj) = 0 for alli 6= j. But then B = (v1; : : : ; vn) with vn = v is a basis of V and we have forall i; j = 1; : : : ; n with i 6= j b(vi; vj) = 0:



2. SYMMETRIC BILINEAR FORMS & MATRICES AND QUADRATIC FORMS 57b. By Part a. there is a basis B of Kn su
h that MB(bA) is a diagonal matrix. SetT = TEB 2 Gln(K) where E is the standard basis of Kn, in other words let theve
tors in B be the 
olumns of T, thenMB(bA) = �TEB�t �ME(b) � TEB = Tt �A � T:Note that this proof gives a re
ursive algorithm for �nding a basis of V resp. atransformation matrix T whi
h diagonalises b resp. A!2.11 Corollary (Theorem of Sylvester)Let b 2 BilK(V) and A 2 Mat(n� n;K) both be symmetri
 and of rank r.a. K = C: There exists a basis B of V su
h thatMB(b) = 1r � 0n-r =  1r 0r�n-r0n-r�r 0n-r !and there is some T 2 Gln(C) su
h thatTt �A � T = 1r � 0n-r =  1r 0r�n-r0n-r�r 0n-r ! :b. K = R: There exists a basis B of V su
h thatMB(b) = 1s �-1t � 0n-r = 0B� 1s 0s�t 0s�n-r0t�s -1t 0s�n-r0n-r�s 0n-r�t 0n-r 1CAand there is some T 2 Gln(R) su
h thatTt �A � T = 1s �-1t � 0n-r = 0B� 1s 0s�t 0s�n-r0t�s -1t 0s�n-r0n-r�s 0n-r�t 0n-r 1CA ;where r = s+ t = rank �MB(b)� resp. r = s + t = rank(A).s is 
alled the index of b resp. of A, s - t its signature. Both s and t areuniquely determined by b resp. by A.Proof: It suÆ
es to 
onsider bilinear forms, sin
e the result for matri
es follows asin Theorem 2.10.a. By Theorem 2.10 there is a basis B 0 = (v 01; : : : ; v 0n) of V su
h that b(v 0i; v 0j) = 0for all i 6= j. W. l. o. g. we may assumeb(v 0i; v 0i) Æ 6= 0; i = 1; : : : ; r;= 0; i = r + 1; : : : ; n:Choose for i = 1; : : : ; r some square rootpb(v 0i; v 0i) 2 C of b(v 0i; v 0i) and de�nevi = Æ 1pb(v 0i;v 0i) � v 0i; i = 1; : : : ; r;v 0i; i = r+ 1; : : : ; n:Then B = (v1; : : : ; vn) is a basis of V su
h that MB(b) has the desired form.



58 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPSb. By Theorem 2.10 there is a basis B 0 = (v 01; : : : ; v 0n) of V su
h that b(v 0i; v 0j) = 0for all i 6= j. W. l. o. g. we may assumeb(v 0i; v 0i) 8><>: > 0; i = 1; : : : ; s;< 0; i = s+ 1; : : : ; s+ t;= 0; i = s+ t+ 1; : : : ; n:Let's de�ne vi = 8>><>>: 1pb(v 0i;v 0i) � v 0i; i = 1; : : : ; s;1p-b(v 0i;v 0i) � v 0i; i = s+ 1; : : : ; s+ t;v 0i; i = s+ t+ 1; : : : ; n:Then B = (v1; : : : ; vn) is a basis of V su
h that MB(b) has the desired form.It remains to show that s and t are uniquely determined. Note �rst, thatobviously r = s + t = rank�MB(b)� and this rank is independent of the
hosen basis by Proposition 2.7.Claim: s = max� dimK(U) �� U � V; b(v; v) > 0 8 0 6= v 2 U	, and thus inparti
ular s depends only on b, and not on the 
hosen basis B.By 
hoi
e, the subspa
e U = hv1; : : : ; vsi � V satis�es for 0 6=Psi=1 �ivi 2 Ub sXi=1 �ivi; sXj=1 �jvj! = nXi=1 nXj=1 �i�jb(vi; vj) = nXi=1 �2ib(vi; vi) > 0:Thus s is at most the maximum on the right hand side.Set W = hvs+1; : : : ; vni. In the same way as above we see that for w 2Wb(w;w) � 0:Let U 0 � V su
h that b(v; v) > 0 for all 0 6= v 2 U 0. Then U 0 \W = f0g, andhen
e dimK(U 0) = dimK(U 0 +W)- dimK(W)+ dimK(U 0 \W)� n- �t+ (n- t- s)� = s:Thus s is also at least the maximum on the right hand side, whi
h proves the
laim.If however s and r only depend on b, then t = r- s does so as well.2.12 Example (Symmetri
 Gau� Algorithm)Re
all �rst that any invertible matrix T is the produ
t of elementary matri
esT = P1 � � �Pk;where an elementary matrix Pi 
orresponds to performing one of the elementaryoperations in the Gau� algorithm, i. e. permuting rows or 
olumns resp. addingmultiples of rows or 
olumns to ea
h other. Re
all moreover, that multiplying withan elementary P from the right is a 
olumn operation, while multiplying with thematrix Pt from left is the 
orresponding row operation!



2. SYMMETRIC BILINEAR FORMS & MATRICES AND QUADRATIC FORMS 59Thus the relation B = Tt �A � T= Ptk � � �Pt1 �A � P1 � � �Pksays thatA 
an be transformed into B by su

essively performing row/
olumn opera-tions, where ea
h row operation is immediately also performed as 
olumn operation!This gives an algorithm to �nd a normal form for a symmetri
 A.Let for example A = ( 2 11 1 ) 2 Mat(2;R). ThenA = ( 2 11 1 ) R:II7!II-12 I //

� 2 10 12 � C:II7!II-12 I
//

� 2 00 12 � R=C:I 7! 1p2 I
//

� 1 00 12 � R=C:II7!p2II
// ( 1 00 1 ):Thus the signature of A, its index and its rank are all 2.2.13 De�nitiona. A homogeneous polynomial of degree 2q = nXi=1 qiix2i + 2 �Xi<j qijxixj 2 K[x1; : : : ; xn℄is 
alled a quadrati
 form. By K[x1; : : : ; xn℄2 we denote the set of all su
hpolynomials.Note, sin
e 
har(K) 6= 2, every homogeneous polynomial of degree 2 has thisform!b. Let b 2 BilK(V) be symmetri
. We 
all the mapqb : V! K : v 7! b(v; v)the quadrati
 form asso
iated to b.Note, if MB(b) = (aij)i;j=1;:::;n and MB(v) = (y1; : : : ; yn)t for some basis B ofV, thenqb(v) = (y1; : : : ; yn) � (aij)i;j=1;:::;n � � y1...yn� = nXi=1 aiiy2i + 2 �Xi<j aijyiyj:Thus, on
e we have �xed a basis B of V, qb is a homogeneous polynomialfun
tion of degree 2 in the 
oordinates w. r. t. B.We de�ne for B = (v1; : : : ; vn)MB(qb) = nXi=1 nXj=1 b(vi; vj) � xixj = nXi=1 aiix2i + 2 �Xi<j aijxixj 2 K[x1; : : : ; xn℄and 
all this the basis representation of qb with respe
t to B.2.14 Example (Example 2.8 
ontinued)We have 
al
ulated MB(b) = ( 2 11 1 ), and hen
eMB(qb) = 2x21 + x22 + 2x1x2:



60 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPS2.15 Propositiona. Let b 2 BilK(V) be symmetri
. Then for v;w 2 Vb(v;w) = 12 � �qb(v+w) - qb(v) - qb(w)�:In parti
ular, the bilinear form b is uniquely determined by its asso
iated qua-drati
 form.b. Let q 2 K[x1; : : : ; xn℄ be a quadrati
 form, and let B be a basis of V. Thenthere is a symmetri
 b 2 BilK(V) su
h thatq = MB(qb):
. The mapfb 2 BilK(V) j b symmetri
g �! K[x1; : : : ; xn℄2 : b 7!MB(qb)is bije
tive.Proof: a. This is just Equation (11) in the Proof of Theorem 2.10.b. Let q = Pni=1 qiix2i + 2 �Pi<j qijxixj be given, and set A = (qij)i;j=1;:::;n withqji := qij for i < j. Then A 2 Mat(n� n;K) is symmetri
 and by Proposition2.5 there is a (unique) symmetri
 bilinear form b 2 BilK(V) su
h thatMB(b) =A, whi
h implies MB(qb) = q:
. Part a. gives the inje
tivity, and Part b. the surje
tivity.2.16 Corollary (Normal Forms of Quadrati
 Forms)Let b 2 BilK(V) be symmetri
.a. There is a basis B of V su
h that MB(qb) =Pni=1 aix2i with ai = qb(vi).b. If K = C, then there is a basis B of V su
h that MB(qb) = Pri=1 x2i , wherer = rank(b).
. If K = R, then there is a basis B of V su
h that MB(qb) =Psi=1 x2i -Pri=s+1 x2i ,where s = index(b) and r = rank(b).Proof: This follows right away from Theorem 2.10 and Corollary 2.11.3 Normal Forms of Orthogonal, Unitary and Self-AdjointEndomorphisms and Matri
es3.0 General Assumptions Throughout this se
tion K = R, the �eld of realnumbers, or K = C, the �eld of 
omplex numbers. By� : K! K : � 7! �we denote the 
omplex 
onjugation, and if � 2 R, then of 
ourse � = �. V will be a�nite-dimensional K-ve
tor spa
e.



3. ORTHOGONAL, UNITARY AND SELF-ADJOINT ENDOMORPHISMS & MATRICES 613.1 De�nitionA s
alar produ
t on V is a map h�; �i : V� V! K su
h that(i) for v;w; u 2 V and �; � 2 K we haveh�v+ �w;ui = � � hv; ui+ � � hw;uiand hu; �v+ �wi = � � hu; vi+ � � hu;wi:(ii) hv;wi = hw; vi for v;w 2 V.(iii) hv; vi > 0 for 0 6= v 2 V.The �rst property is 
alled the sesqui-linearity of the s
alar produ
t, the se
ondproperty is 
alled its anti-symmetry and due to the third property it is said to bede�nite.3.2 RemarkIf K = R, then a s
alar produ
t is just a de�nite symmetri
 bilinear form.3.3 Examplea. (Standard S
alar Produ
t) Let V = Kn, then the maph�; �i : Kn �Kn ! K : (x; y) 7! xt � y = nXi=1 xi � yiis a s
alar produ
t, the so 
alled standard s
alar produ
t.b. Let V = R[x℄<n = fp 2 R[x℄ j deg(p) < ng. The maph�; �i : V� V! R : (p; q) 7! Z 10 p(x) � q(x)dxde�nes a s
alar produ
t on V, due to the rules for integrals.3.4 De�nitiona. A tuple �V; h�; �i� 
onsisting of a �nite-dimensional K-ve
tor spa
e V and as
alar produ
t h�; �i is 
alled a (�nite-dimensional) Hilbert spa
e. If K = R,one 
alls it also Eu
lidean spa
e.b. If �V; h�; �i� is a Hilbert spa
e and B = (v1; : : : ; vn) is a basis of V su
h thathvi; vji = Æij = Æ 1; i = j;0; i 6= j;then B is 
alled an orthonormal basis (ONB) of V.
. If �V; h�; �i� is a Hilbert spa
e and v 2 V, then we de�nejjvjj =phv; viand 
all this the length or the norm of v.d. If �V; h�; �i� is a Hilbert spa
e and U � V a subspa
e, then we 
allU? = fv 2 V j hv; ui = 0 8 u 2 Ugthe orthogonal 
omplement of U.



62 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPS3.5 Example (Explanation for the Notion ONB)Let V = R2 and h�; �i be the standard s
alar produ
t.If x 2 R2 is some ve
tor, then by the Theorem of Pythagoras the length of x isindeed just jjxjj =px21 + x22. R2 0 x1x2 �x1x2� = x
And if x 2 R2 and y 2 R2 are two ve
tors in the plane, then some geometri
alobservations lead to an algorithm for 
al
ulating the angle ℄(x; y) between thesetwo ve
tors.

xjjxjj yjjyjj
x

y

os(�)
os(�)

sin(�)sin(�)
1

1��'
For this we s
ale the ve
tors so that they have length one by dividing them by theirlength, i. e. we 
onsider the ve
tors xjjxjj and yjjyjj . Using the notation in the aboveplan we have ℄(x; y) = ℄� xjjxjj ; yjjyjj� = �- � = ':Using the theorems from trigonometry we have
os(') = 
os(�- �)= 
os(�) 
os(�) + sin(�) sin(�)= x1y1+x2y2jjxjj�jjyjj= hx;yijjxjj�jjyjjor alternatively ℄(x; y) = ' = ar

os� hx; yijjxjj � jjyjj� :In parti
ular, x and y are orthogonal to ea
h other if and only if 
os(') = 0 if andonly if hx; yi = 0.We have thus seen, that the standard s
alar produ
t determines angles, lengths andthus distan
es in R2, and we may therefore use s
alar produ
ts in general in orderto generalise these properties.



3. ORTHOGONAL, UNITARY AND SELF-ADJOINT ENDOMORPHISMS & MATRICES 63From now on we will assume that �V; h�; �i� is a Hilbert spa
e, i. e. that V is endowedwith a �xed s
alar produ
t.The following Lemma tells us how to �nd the base representation of a ve
tor withrespe
t to an ONB without having to solve a system of linear equations.3.6 Lemma (Parseval-Equation)Let B = (v1; : : : ; vn) be an ONB of the Hilbert spa
e �V; h�; �i� and let v 2 V, thenv = nXi=1 hv; vii � vi:Proof: Sin
e B is a basis, there are unique elements �1; : : : ; �n 2 K su
h thatv =Pni=1 �ivi. Using the s
alar produ
t and the fa
t that B is an ONB we �ndhv; vji = * nXi=1 �ivi; vj+ = nXi=1 �i � hvi; vji = �j:3.7 LemmaIf v1; : : : ; vr 2 V su
h that hvi; vji = Æij for i; j = 1; : : : ; r, then (v1; : : : ; vr) is linearlyindependent.Proof: Let �1; : : : ; �r 2 K su
h that Pri=1 �ivi = 0. Then for j = 1; : : : ; r0 = * rXi=1 �ivi; vj+ = rXi=1 �i � hvi; vji = �j:Hen
e, (v1; : : : ; vr) is linearly independent.3.8 Theorem (Gram-S
hmidt)Let U � V be a subspa
e of the Hilbert spa
e �V; h�; �i�, then any ONB of U 
an beextended to an ONB of V. In parti
ular, every Hilbert spa
e has an ONB.Moreover, V = U�U?.Proof: Let B = (v1; : : : ; vr) be an ONB of U, n = dimK(V) and m = n- r. We dothe proof by indu
tion on m. If m = 0, then n = r and hen
e U = V, so that B isalready an ONB of V.Suppose now that m > 0 and that the statement holds true for m - 1, i. e. forsubspa
es of dimension r + 1. By assumption r < n, and hen
e there is somev 2 V nU. We set v 0 = v - rXi=1 hv; vii � vi 6= 0and vr+1 = 1jjv 0jj � v 0:Then hvr+1; vr+1i = hv 0;v 0ijjvjj2 = 1 andhvr+1; vii = hv; vii-Prj=1hv; vji � hvi; vjijjv 0jj = hv; vii- hv; viijjv 0jj = 0:
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e, by Lemma 3.7 (v1; : : : ; vr+1) is an ONB of the subspa
e U 0 = hv1; : : : ; vr+1i,whi
h has dimension r + 1. So by indu
tion (v1; : : : ; vr+1) 
an be extended to anONB of V. Finally, it is Exer
ise 4 on Assignment Set 8 to show V = U�U?.3.9 ExampleLet V = K3 and h�; �i be the standard s
alar produ
t.a. The standard basis E = (e1; e2; e3) ful�ls hei; eji = Æij, and is thus an ONB of�K3; h�; �i�.b. Let U = 
(2; 1; 2)t; (3; 1; 1)t� � K3, u1 = (2; 1; 2)t and u2 = (3; 1; 1)t.Let's �rst of all �nd an ONB of U, using the algorithm of Gram-S
hmidt.Step 1 : v1 = 1jju1 jj � u1 = 13 � (2; 1; 2)t.Step 2 : Setv 0 = u2 - hu2; v1i � v1 = (3; 1; 1)t - 93 � 13 � (2; 1; 2)t = (1; 0;-1)t;and then v2 = 1jjv2jj � v2 = 1p2 � (1; 0;-1)t:Then B = (v1; v2) is an ONB of U.Let us now extend B to an ONB of V.Step 3 : For this we 
hoose some ve
tor u3 = (1; 0; 0)t 62 U. We then setv 0 = u3 - hu3; v1i � v1 - hu3; v2i � v2= (1; 0; 0)t - 29 � (2; 1; 2)t - 12 � (1; 0;-1)t= 118 � (1;-4; 1);and hen
e v3 = 1jjv 0 jj � v 0 = 13p2 � (1;-4; 1)t:Then (v1; v2; v3) is an ONB of K3 whi
h extends an ONB of U.3.10 IdeaWhen we 
onsider Hilbert spa
es, that is ve
tor spa
es together with the additionalstru
ture of a s
alar produ
t, then we should like to restri
t our attention to mapsfrom V to V whi
h respe
t the stru
ture, i. e. maps f : V ! V whi
h are K-linearand whi
h respe
t the s
alar produ
t.However, what does it mean that an endomorphism respe
ts the s
alar produ
t?We will give two di�erent interpretations of this in the following de�nition, both ofwhi
h make sense and lead to interesting 
lasses of endomorphisms.As always, we will treat the 
ase of square matri
es at the same time.3.11 De�nitionLet f 2 EndK(V) and A 2 Mat(n� n;K).a. If hf(v); f(w)i = hv;wi for all v;w 2 V, then f is said to be orthogonal (ifK = R) or unitary (if K = C).b. If hf(v); wi = hv; f(w)i for all v;w 2 V, then f is said to be self-adjoint. IfK = R we say also f is symmetri
, and if K = C we say likewise f is hermitian.
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. If A 2 Gln(K) and A-1 = At, then A is 
alled orthogonal (if K = R) orunitary (if K = C). We set O(n) = fB 2 Mat(n�n;R) j A is orthogonalg andU(n) = fB 2 Mat(n � n;C) j A is unitaryg. These are subgroups of Gln(R)resp. of Gln(C), as one easily veri�es.d. If A = At, then A is 
alled self-adjoint, in the real 
ase also symmetri
 and inthe 
omplex 
ase also hermitian.3.12 ExampleLet V = Kn and let h�; �i be the standard s
alar produ
t.a. Let A 2 Mat(n � n;K) and let a1; : : : ; an denote the 
olumns of A. ThenA-1 = At if and only if At � A = 1 if and only if At � A = 1 if and only ifati � aj = Æij for all i; j if and only if (a1; : : : ; an) is an ONB of Kn.This shows e. g. that the following matrix is orthogonal and self-adjointA =  1p2 1p21p2 - 1p2! :b. Let A 2 Gln(K) be su
h that A-1 = At. ThenfA : Kn ! Kn : x 7! A � xis an orthogonal resp. unitary endomorphism.Proof: Let x; y 2 Kn. ThenhfA(x); fA(y)i = �A � x)t �A � y= xt �At �A � y = xt �At �A � y = xt � y = hx; yi:
. Let A 2 Mat(n� n;K) be self-adjoint, then fA is self-adjoint.Proof: Let x; y 2 Kn. ThenhfA(x); yi = �A � x)t � y = xt �At � y = xt � �At�t � y = xt �A � y = hx; fA(y)i:d. Let �V; h�; �i�be any Hilbert spa
e and let B = (v1; : : : ; vn) and B 0 = (v 01; : : : ; v 0n)be two ONB. Then the base 
hange matrix TBB 0 is orthogonal resp. unitary.Proof: Let TBB 0 = (tij)i;j=1;:::;n and denote by ti the i-th 
olumn of this matrix.Then v 0j =Pni=1 tijvi and thereforehtk; tli =Xni=1 tik � til =Xni=1Xnj=1 tik � tjl � hvi; vji= DXni=1 tikvi;Xnj=1 tjlvjE = hv 0k; v 0li = Ækl:



66 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPS3.13 PropositionLet g 2 EndK(V) be orthogonal resp. unitary. Then:a. jjf(v)jj = jjvjj for all v 2 V.b. hf(v);f(w)ijjf(v)jj�jjf(w)jj = hv;wijjvjj�jjwjj for all v;w 2 V.Hen
e, f preserves lengths, distan
es and angles.Proof: a. For v 2 V we have jjf(v)jj =phf(v); f(v)i =phv; vi = jjvjj.b. This follows from Part a. and the de�nition of orthogonal resp. unitary.3.14 PropositionLet B be an ONB of V, f 2 EndK(V). Then:a. f is orthogonal resp. unitary if and only MBB(f) is so.b. f is self-adjoint if and only if MBB(f) is so.Proof: Let B = (v1; : : : ; vn), then the Parseval-Equation 3.6 givesf(vj) = nXi=1 hf(vj); vii � vi:Hen
e MBB(f) = (aij)i;j=1;:::;n with aij = hf(vj); vii. Let's denote the 
olumns ofMBB(f) by a1; : : : ; an.a. We then �ndhf(vj); f(vl)i = * nXi=1 aijvi; nXk=1 aklvk+= nXi=1 nXk=1 aij � akl � hvi; vki = nXi=1 aij � ail = haj; ali:Taking Example 3.12 a. into a

ount, we have MBB(f) is orthogonal/unitary ifand only if haj; ali = Æjl 8 j; l if and only if hf(vj); f(vl)i = Æjl = hvj; vli 8 j; l.If f is orthogonal/unitary, then the last 
ondition is obviously satis�ed andtherefore MBB(f) is orthogonal/unitary.If 
onverselyMBB(f) is orthogonal/unitary, and v =Pnj=1 �jvj; w =Pnl=1 �lvl 2V, then by the above equivalen
e we gethf(v); f(w)i = nXj=1 nXl=1 �j � �l � hf(vj); f(vl)i = nXj=1 nXl=1 �j � �l � hvj; vli = hv;wi:b. Let v =Pni=1 �ivi; w =Pnj=1 �jvj 2 V. Thenhf(v); wi = nXi=1 nXj=1 �i � �j � hf(vi); vji = nXi=1 nXj=1 �i � �j � ajiand hv; f(w)i = nXi=1 nXj=1 �i � �j � hvi; f(vj)i = nXi=1 nXj=1 �i � �j � aij:



3. ORTHOGONAL, UNITARY AND SELF-ADJOINT ENDOMORPHISMS & MATRICES 67If, now, MBB(f) is self-adjoint, then aij = aji, and thus f is self-adjoint.If f is self-adjoint, then we may apply the above inequalities to v = vi andw = vj for i; j arbitrary, in order to �nd aji = aij for all i; j. Thus MBB(f) isself-adjoint.3.15 Theorem (Normal Forms for Unitary Endomorphisms & Matri
es)a. If f 2 EndC(V) is unitary, then there is an ONB B = (v1; : : : ; vn) of V su
hthat f(vi) = �ivi and j�ij = 1, i. e.
MBB(f) = 0BBBBBBB�

�1 0 : : : : : : 00 . . . . . . ...... . . . . . . . . . ...... . . . . . . 00 : : : : : : 0 �n
1CCCCCCCA :

b. If A 2 U(n), then there is a T 2 U(n) su
h that for some �i 2 C with j�ij = 1
T-1 �A � T = 0BBBBBBB�

�1 0 : : : : : : 00 . . . . . . ...... . . . . . . . . . ...... . . . . . . 00 : : : : : : 0 �n
1CCCCCCCA :Proof: a.Claim: If � is an eigenvalue of f, then j�j = 1.By assumption there is some 0 6= v 2 V su
h that f(v) = �v. Thus� � � � hv; vi = h�v; �vi = hf(v); f(v)i = hv; vi:Sin
e the s
alar produ
t is de�nite hv; vi 6= 0, and hen
e j�j2 = � � � = 1.Claim: f has an ONB of eigenve
tors.We do the proof by indu
tion on n = dimK(V), where for the 
ase n = 1 thereis nothing to show.We may therefore assume that n > 1 and that unitary endomorphisms onHilbert spa
es of dimension n- 1 are diagonalisable w. r. t. an ONB.Sin
e K = C, the 
hara
teristi
 polynomial of f fa
torises and, hen
e, f has aneigenvalue �n with 
orresponding eigenve
tor 0 6= vn 2 V of length jjvnjj = 1and by the above 
laim �n � �n = 1. We set U = hvni, and we showf�U?� � U?:For this let u 2 U?. Thenhf(u); vni = �n � �n � hf(u); vni= �n � hf(u); �nvni = �n � hf(u); f(vn)i = �n � hu; vni = 0:Thus f(u)?vn, and hen
e f(u) 2 U?.



68 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPSWe may therefore 
onsider the endomorphism f restri
ted to U?fj : U? ! U? : u 7! f(u);whi
h by default is unitary again.Thus by indu
tion, sin
e dimK �U?� = n - 1, there is an ONB (v1; : : : ; vn-1)of U? su
h that f(vi) = �ivifor i = 1; : : : ; n- 1 and some �i 2 C with j�ij = 1.However, hvi; vji = Æij for all i; j = 1; : : : ; n, sin
e vi 2 hvni?. Thus byLemma 3.7 B = (v1; : : : ; vn) is an ONB of V and f(vi) = �ivi with j�ij = 1 forall i = 1; : : : ; n.b. We may apply Part a. to V = Cn with the standard s
alar produ
t and theendomorphism f = fA. Then T = TEB will do, where B is the ONB whi
h Parta. gives us, and E is the standard basis. Note that by Proposition 3.14 f isunitary and by Example 3.12 d. T 2 U(n).3.16 Remark (Normal Forms of Orthogonal Endomorphisms & Matri
es)The 
ase of orthogonal endomorphisms and matri
es is 
onsiderably harder, due tothe fa
t, that over R the 
hara
teristi
 polynomial need not fa
torise. However, one
an show the following generalisation.If f 2 EndR(V) is orthogonal resp. A 2 O(n), then there is an ONB B of V resp. aT 2 O(n) su
h thatMBB(f) = 0BBBB�A1 0 � � � 00 A2 ...... . . . ...0 � � � � � � Ar
1CCCCA resp. T-1 �A � T = 0BBBB�A1 0 � � � 00 A2 ...... . . . ...0 � � � � � � Ar

1CCCCAwhere either Ai = (1) 2 Mat(1� 1;R) or Ai = (-1) 2 Mat(1� 1;R) orAi =  
os(�i) sin(�i)- sin(�i) 
os(�i)!for some �i 2 [0; 2�).3.17 Theorem (Normal Forms of Self-Adjoint Endomorphisms & Matri
es)a. Let f 2 EndK(V) be self-adjoint, then there is an ONB B = (v1; : : : ; vn) of Vsu
h that f(vi) = �ivi with �i 2 R for i = 1; : : : ; n, i. e.
MBB(f) = 0BBBBBBB�

�1 0 : : : : : : 00 . . . . . . ...... . . . . . . . . . ...... . . . . . . 00 : : : : : : 0 �n
1CCCCCCCA :



3. ORTHOGONAL, UNITARY AND SELF-ADJOINT ENDOMORPHISMS & MATRICES 69b. If A 2 Mat(n� n;K) is self-adjoint, then there is a T 2 O(n) resp. T 2 U(n)su
h that T-1 �A � T = 0BBBBBBB�
�1 0 : : : : : : 00 . . . . . . ...... . . . . . . . . . ...... . . . . . . 00 : : : : : : 0 �n

1CCCCCCCAand �i 2 R for i = 1; : : : ; n.Proof:Claim: If � is an eigenvalue of f, then � 2 R.By assumption there is some 0 6= v 2 V su
h that f(v) = �v. Thus� � hv; vi = h�v; vi = hf(v); vi = hv; f(v)i = hv; �vi = � � hv; vi:Sin
e the s
alar produ
t is de�nite hv; vi 6= 0, and hen
e � = �, i. e. � 2 R.Claim: If � is an eigenvalue of A, then � 2 R.By assumption � is an eigenvalue of the self-adjoint endomorphism fA, and thus bythe above 
laim � 2 R.a. Claim: f has some eigenvalue!Let B be any ONB of V and M = MBB(f), then by Proposition 3.14 M =Mt 2 Mat(n�n;K) � Mat(n�n;C). We may thus 
onsider M as a 
omplexmatrix, no matter whether its entries are real or 
omplex. Therefore�f = �M 2 K[t℄ � C[t℄;and 
onsidered as a 
omplex polynomial it must have a zero � 2 C in the
omplex numbers. This, however, is an eigenvalue of the matrix M 
onsideredas 
omplex matrix, and by the above 
laim it is therefore a real number, withthe property �f(�) = �M(�) = 0. That is, it is an eigenvalue of f!Claim: f has an ONB of eigenve
tors.We do the proof by indu
tion on n = dimK(V), where for the 
ase n = 1 thereis nothing to show.We may therefore assume that n > 1 and that unitary endomorphisms onHilbert spa
es of dimension n- 1 are diagonalisable w. r. t. an ONB.We have just shown that f has an eigenvalue �n with 
orresponding eigenve
tor0 6= vn 2 V of length jjvnjj = 1 and �n 2 R. We set U = hvni, and we showf�U?� � U?:For this let u 2 U?. Thenhf(u); vni = hu; f(vn)i = hu; �nvni = �n � hu; vni = 0:Thus f(u)?vn, and hen
e f(u) 2 U?.



70 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPSWe may therefore 
onsider the endomorphism f restri
ted to U?fj : U? ! U? : u 7! f(u);whi
h by default is self-adjoint again.Thus by indu
tion, sin
e dimK �U?� = n - 1, there is an ONB (v1; : : : ; vn-1)of U? su
h that f(vi) = �ivifor i = 1; : : : ; n- 1 and some �i 2 R.However, hvi; vji = Æij for all i; j = 1; : : : ; n, sin
e vi 2 hvni?. Thus byLemma 3.7 B = (v1; : : : ; vn) is an ONB of V and f(vi) = �ivi with �i 2 R forall i = 1; : : : ; n.b. We may apply Part a. to V = Kn with the standard s
alar produ
t and theendomorphism f = fA. Then T = TEB will do, where B is the ONB whi
hPart a. gives us, and E is the standard basis. Note that by Proposition 3.14 fis self-adjoint and by Example 3.12 T 2 O(n) resp. T 2 U(n).3.18 ExampleConsider the matrix A = 0B� 0 -1 i-1 0 -i-i i 0 1CA 2 Mat(3� 3;C):Sin
e A = At, the matrix A is self-adjoint. It is our aim to diagonalise A w. r. t. anONB, so �rst of all we have to �nd the eigenvalues of A.�A = det(A- t � 1) = -t3 + 3t- 2 = (1+ t)2 � (2- t);whi
h implies that the eigenvalues are -1 and 2.We next have to �nd ONB's of the eigenspa
es of A, using the Gau� algorithm andthe algorithm of Gram-S
hmidt.In order to �nd Eig(A;-1) we solve the linear system of equations 1 -1 i-1 1 -i-i i 1! � xyz! = (A+ 1) � xyz! =  000! :The algorithm of Gau� gives Eig(A;-1) = 
(1; 1; 0)t; (0; 1;-i)t�. We use the algo-rithm of Gram-S
hmidt to transform these ve
tors into an ONB of the eigenspa
e,and we get v1 = 1p2 � (1; 1; 0)t; v2 = 1p6 � (-1; 1;-2i)t:We then 
al
ulate the eigenspa
e Eig(A; 2) with the aid of -2 -1 i-1 -2 -i-i i -2! � xyz! = (A+ 1) � xyz! =  000! :



3. ORTHOGONAL, UNITARY AND SELF-ADJOINT ENDOMORPHISMS & MATRICES 71and get Eig(A; 2) = 
(1;-1;-i)t�. Gram-S
hmidt tells us to 
ut this ve
tor downto length 1 in oder to have an ONB of Eig(A; 2)v3 = 1p3 � (1;-1;-i)t:Thus the matrix having these ve
tors v1; v2; v3 as 
olumns is the wanted transfor-mation matrix, T = 0B� 1p2 - 1p6 1p31p2 1p6 - 1p30 - 2ip6 - ip31CA 2 U(3);and T-1 �A � T = 0B�-1 0 00 -1 00 0 21CA :The above results on normal forms of self-adjoint matri
es allow a 
lassi�
ation ofreal symmetri
 bilinear forms with respe
t to base 
hanges whi
h respe
ts distan
esand angles, i. e. with respe
t to ONB's. This is desirable when we 
onsider geometri
interpretations of symmetri
 bilinear forms respe
tively quadrati
 forms.3.19 Corollary (Normal Forms of Quadrati
 Forms by ONB's)a. Let A 2 Mat(n� n;R) be a symmetri
 matrix, then there is a T 2 O(n) su
hthat Tt �A � T = 0BBBBBBB�
�1 0 : : : : : : 00 . . . . . . ...... . . . . . . . . . ...... . . . . . . 00 : : : : : : 0 �n

1CCCCCCCA :where �1; : : : ; �n 2 R are the eigenvalues of A.b. Let b 2 BilR(V) be symmetri
, then there is an ONB of V su
h that
MB(b) = 0BBBBBBB�

�1 0 : : : : : : 00 . . . . . . ...... . . . . . . . . . ...... . . . . . . 00 : : : : : : 0 �n
1CCCCCCCAand MB(qb) = nXi=1 �ix2i :Proof: Part a. follows from Theorem 3.17 and the fa
t that for orthogonal matri
eswe have T-1 = Tt!Part b. then is an immediate 
onsequen
e of Part a. and the 
orresponden
e betweensymmetri
 matri
es and symmetri
 bilinear forms studied in Se
tion 2.



72 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPS4 Normal Forms of Cone Se
tions4.0 General Assumptions We 
onsider R2 endowed with the standard s
alarprodu
t h�; �i. By I�R2� = �' : R2 ! R2 �� ' is an isometry	we denote the group of isometries of the real plane. From the 
ourse on \FromGroups to Geometry" it is known thatI�R2� = ��v Æ f �� v 2 R2; f 2 O(2)	;where �v : R2 ! R2 : x 7! v + x is the translation by v. I. e. every isometry 
an bede
omposed as an orthogonal endomorphism followed by a translation.4.1 De�nitionLet Q = fp 2 R[x1; x2℄ j deg(p) = 2g. For p; q 2 Q we de�nep � q :() 9 ' 2 I�R2�; 0 6= � 2 R : q = � � (p Æ'):One easily 
he
ks that this de�nes an equivalen
e relation on Q, sin
e �I�R2�; Æ�and (R n f0g; �) are groups. We 
all the elements of Q 
oni
s.As always, we are interested in �nding simple representatives for the equivalen
e
lasses of this relation, and we 
all them normal forms.4.2 RemarkA polynomial p 2 Q has the formp = �11x21 + 2�12x1x2 + �22x22 + �1x1 + �2x2 + �= (x1; x2) � ��11 �12�21 �22� � �x1x2� + (�1; �2) � �x1x2�+ �= hx; S � xi+ ha; xi+ �;where x = (x1; x2)t, �21 := �12, a = (�1; �2)t and S = ( �11 �12�21 �22 ) is symmetri
.We are a
tually interested in the zero set of p, i. e. inZ(p) := �(x; y)t 2 R2 �� p(x; y) = 0	:E. g. p = x2 - x21, then Z(p) is the standard parabola in R2.Note that multiplying p with a non-zero 
onstant � does not 
hange Z(p), and
hanging the 
oordinates by an isometry preserves distan
es and angles, that is,Z(p) will be 
hanged by a rotation or re
e
tion followed by a translation.E. g. let p = x2 - x21, q = -x22 + x1 + 2x2 + 1, f = fA with A = � 0 1-1 0 �, v = (1; 2)tand ' = �v Æ f. We 
laim that q = p Æ', in parti
ular p � q. For this just notep Æ' = p��v(f(x1; x2))� =p��v(-x2; x1)� = p(-x2 + 1; x1 + 2) = (x1 + 2) - (-x2 + 1)2 = q:Note that Z(q) 
an be derived from Z(p) by applying '-1 to it!In order to be able to �nd the normal forms of



4. NORMAL FORMS OF CONE SECTIONS 734.3 LemmaLet S 2 Mat(2� 2;R) be symmetri
.a. Ker �S2� = Ker(S) and Im �S2� = Im(S).b. For all a 2 R2 there is some 
 2 R2 su
h that S2 � 
+ S � a = 0.Proof: a. It is 
lear, that Ker(S) � Ker �S2�. Let now x 2 Ker �S2�. Then0 = 
x; S2x� = hSx; Sxi:This, however, implies Sx = 0, and thus x 2 Ker(S).Again it is 
lear that Im �S2� � Im(S). But then the dimension formula givesdimR Im �S2� = 2- dimRKer �S2� = 2- dimRKer(S) = dimR Im(S):Hen
e Im �S2� = Im(S).b. We have S � (-a) 2 Im(S) = Im �S2�. Thus there is a 
 2 R2 su
h thatS2 � 
 = S � (-a), whi
h proves the 
laim.4.4 Theorem (Classi�
ation of Cone Se
tions)Let p = hx; Sxi + ha; xi + � 2 Q be arbitrary with S = ( �11 �12�21 �22 ) 2 Mat(2 � 2;R)symmetri
 and a = (�1; �2)t 2 R2.Then p is equivalent to one of the following normal forms:I: det(S) > 0.I.1: � 6= 0 and �11 > 0. p � (�1x1)2 + (�2x2)2 - 1 and Z(p) is an ellipse.I.2: � 6= 0 and �11 < 0. p � (�1x1)2 + (�2x2)2 + 1 and Z(p) is the empty set.I.3: � = 0. p � (�1x1)2 + (�2x2)2 and Z(p) is a single point.II: det(S) < 0.II.1: � 6= 0. p � (�1x1)2 - (�2x2)2 - 1 and Z(p) is a hyperbola.II.2: � = 0. p � (�1x1)2 - (�2x2)2 and Z(p) 
onsists of two di�erent linesthrough the origin.III: det(S) = 0, a 6= (0; 0)t. p � x21 - �x2 and Z(p) is a parabola.IV: det(S) = 0, a = (0; 0)t.IV.1: � 6= 0 and S has a positive eigenvalue. p � x21 - �, � > 0, and Z(p) 
on-sists of two parallel lines.IV.2: � 6= 0 and S has a negative eigenvalue. p � x21 + �, � > 0, and Z(p) isthe empty set.IV.3: � = 0. p � x21 and Z(p) 
onsists of a line 
ounted twi
e.Proof: 1st Case: a = (0; 0)t: Let's �rst 
onsider the 
ase a = (0; 0)t.By Corollary 3.19 there is a T 2 O(2), su
h thatTt � S � T = T-1 � S � T =  �1 00 �2 ! :



74 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPSNote that not both eigenvalues �1 and �2 
an be zero, sin
e S 6= 0. Hen
e we mayassume �1 6= 0 and �1 � �2 if �2 6= 0.The endomorphism fT : R2 ! R2 : x 7! Tx is a rotation or a re
e
tion and we havep(Tx) = 
Tx; (S � T)x�+ �= 
x; �Tt � S � T�x�+ �= �1x21 + �2x22 + �:Multiplying with a suitable 
onstant, we may assume that either � = 0 or � = -1.De�ne �i =pj�ij, then we have to distinguish the following 
ases.Case 1.1: �1; �2 > 0: This is equivalent to the fa
t that S is positive de�nite andhen
e that det(S) > 0 and �11 > 0. If � = -1, we are in Case I.1, and if � = 0, weare in Case I.3.Case 1.2: �1; �2 < 0: This is equivalent to the fa
t that -S positive de�nite, hen
ethat det(S) = det(-S) > 0 and -�11 > 0. Is � = -1, we are in Case I.2, and for� = 0 its again Case I.3, sin
e we may multiply the polynomial on
e more by -1.Case 1.3: �1 > 0; �2 < 0: This is equivalent to �1 � �2 = det(S) < 0. � = -1 leadsto Case II.1 and � = 0 to Case II.2.Case 1.4: �1 > 0; �2 = 0 or �1 < 0; �2 = 0: This is Equivalent to det(S) = 0. If�1 > 0 and � = -1 we are in Case IV.1, for �1 < 0 and � = -1 we get Case IV.2,and for � = 0 it is Case IV.3.2nd Case: a 6= (0; 0)t: In Case a = (0; 0)t we got around without applying anytranslations. This will now be di�erent.For 
 2 R2 the translation t
 : R2 ! R2 : x 7! x+
 leads to the following 
oordinatetransformation for pp(x+ 
) = hx+ 
; Sx+ S
i+ 2ha; x+ 
i+ �= hx; Sxi+ 2ha+ S
; xi+ h
; S
i+ 2ha; 
i+ �= hx; Sxi+ 2hb; xi+ �; (12)where b = a+ S
 and � = h
; S
i+ 2ha; 
i+ �.Case 2.1: 9 
 2 R2 : b = a+ S
 = (0; 0)t: The transformation p 7! p�t
(x)� redu
esto the �rst Case \a = (0; 0)t". Hen
e p is equivalent one of the Cases I, II or IV.Case 2.2: 8 
 2 R2 : b = a+ S
 6= (0; 0)t: By Lemma 4.3 there is a 
 2 R2 su
h thatSb = S2
+ Sa = 0. If we de�ne Æ := - �2hb;bi , then the translation t
+Æb leads top(x+ 
 + Æb) = hx; Sxi+ 2
a+ S(
 + Æb); x�+ 

 + Æb; S(
+ Æb)� + 2ha; 
 + Æbi+ �= hx; Sxi+ 2hb + ÆSb; xi+ Æ2hb; Sbi + 2Æhb; bi + �= hx; Sxi+ 2hb; xi+ 2Æhb; bi + �= hx; Sxi+ 2hb; xi:



4. NORMAL FORMS OF CONE SECTIONS 75Taking into a

ount that 0 is 
ertainly an eigenvalue of S, sin
e Sb = 0, and sin
eS 6= 0, Corollary 3.19 implies the existen
e of a T 2 O(2), su
h thatD := Tt � S � T = T-1 � S � T =  �1 00 0 ! ;where �1 6= 0. In parti
ular we are in the 
ase det(S) = 0.Moreover, for Ttb =: (�; �)t we have, taking Tt = T-1 into a

ount,(�1�; 0) = �Tt � S � T) � (Ttb) = Tt � (Sb) = 0;and hen
e Ttb = (0; �)t, where � 6= 0, sin
e Tt is invertible and b 6= (0; 0)t. Butthen the map x 7! Tx transforms the polynomial hx; Sxi+ 2hb; xi into
Tx; (S � T)x�+ 2
b; Tx� = 
xt; Dx�+ 2
Ttb; x� = �1x21 + 2�x2:I. e. q := p�(t
+Æb Æ fT)(x)� = �1x21 + 2�x2;and we are in Case III.4.5 RemarkThe sets Z(p) with p 2 Q are 
alled 
one se
tions sin
e all of them, ex
ept forthe 
ases I.2, IV.1 and IV.2, 
an be realised as interse
tions of the double 
oneC = fx20 - x21 - x22 = 0g in R3 with a suitable plane.

I.1: Ellipse I.3: Point II.1: Hyperbola

II.2: Two Lines with Interse
tion III: Parabola IV.3: Double Line
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APPENDIX AAssignments and SolutionsAssignment Set 1Exer
ise 2 should be handed in for marking. Exer
ises with an asterisque (*) are
onsidered 
hallenging, and you should not spend too mu
h time on trying to solvethem.Exer
ise 1: Let n � 2 be an integer. Denote by � = (1 2 : : : n) 2 Sn the n-
y
lewith �(i) = i + 1 for i < n and �(n) = 1, and by � 2 Sn the permutation with�(i) = n+ 1- i for i = 1; : : : ; n.a. Show that �n = (1), �2 = (1), and �� = �-1.b. Show that h�; �i = ��i; � Æ �i �� i = 0; : : : ; n - 1g is a group of order 2n. Wedenote this group by D2n and 
all it the dihedrial group of order 2n.
. De�ne a permutation � : D2n ! D2n on D2n by ���i� = �n-1-i and ���Æ�i� =� Æ �i. Setting �i := �i 2 Sym(D2n) for i = 1; : : : ; r, r � 3 any integer, showthat the 
he
k digit 
ode CD2n��1; : : : ; �r; (1)� dete
ts errors of type II.Note: If you have problems dealing with the general 
ase, you may just repla
e n by anyof the numbers n = 3, 4 or 5.Exer
ise 2: Let (G; �) be a group su
h that g2 = eG for all g 2 G. Show that Gis abelian.Exer
ise 3: Let p be a prime number and set Z� 1p� = � zpn 2 Q �� n; z 2 Z; n � 0	.a. Show that Z� 1p� is a subgroup of �Q;+�, i. e. of the rational numbers withrespe
t to addition.b.� Find all the subgroups of �Z� 1p�;+� and of �Zp1 ;+�, where Zp1 = Z� 1p�ÆZis the fa
tor group of Z� 1p� by the normal subgroup Z.Note: It will turn out that every stri
t subgroup of Zp1 is �nite and 
y
li
, while theZp1 itself is not even �nitely generated!Exer
ise� 4: Let (C;+; �) denote the �eld of 
omplex numbers, and denote by ithe imaginary unit with i2 = -1. Consider the subgroupQ8 := 
� 0 -11 0 � ; ( 0 ii 0 )� < Gl2(C)of the group of invertible 2�2-matri
es over C with respe
t to matrix multipli
ation.Find all the subgroups of Q8. 77



78 A. ASSIGNMENTS AND SOLUTIONSAssignment Set 2Exer
ise 1: Let (G; �) is a group, g 2 G and n = min�m 2 Z j m > 0; gm =eG	 <1. Show that hgi = �eG = g0; g1; g2; : : : ; gn-1	.Exer
ise 2: Whi
h of the sets A = fz 2 Z j z > 0g, B = �1z j z 2 A	 and A [ B isa group with respe
t to the multpli
ation of integers?Exer
ise 3: Show that E = fz 2 C j jzj = 1g is a subgroup of (C n f0g; �), where Cdenotes the 
omplex numbers.Exer
ise 4: Let R>0 = fx 2 R j x > 0g. De�neÆ : R>0 �R>0 ! R>0 : (x; y) 7! x Æ y := xy:Is (R>0; Æ) a group? Assignment Set 3Exer
ises 1 and 3 should be handed in for marking.Exer
ise 1: Let (G; �) be a �nite group and let U;V � G. Use the Theorem ofLagrange to prove the following statements.a. If V � U, then jG : Vj = jG : Uj � jU : Vj.b. If g
d �jG : Uj; jG : Vj�= 1, then G = U � V.Exer
ise 2: Let (G; �) be a group, Ui � G for i 2 I. Show that Ti2IUi � G.Exer
ise 3: Let (G; �) be a group, N;N1; N2 �G, U � G.a. N \U�U.b. N1 \N2 � G.Exer
ise 4:a.� Let � = (a1 a2 : : : ak) 2 Sn be a k-
y
le and � = (b1 b2 : : : bl) 2 Sn be anl-
y
le. Show that that � and � are 
onjugate (i. e. 9 � 2 Sn s. t. �Æ�Æ�-1 = �)if and only if k = l.Hint, if k = l then it is easy just to give �, for the opposite dire
tion I re
ommend to have a look at�k and �k.b. We know that any permutation in Sn has a unique representation as a produ
tof disjoint 
y
les. Suppose that � = �1 Æ : : : Æ �r is su
h a representation for� 2 Sn and suppose that �i is a ki-
y
le with k1 � k2 � : : : � kr. We then
all (k1; : : : ; kr) the 
y
le type of �.Use part a. in order to show that two permutations are 
onjugate if and onlyif they have the same 
y
le type.



ASSIGNMENT SET 3 79
. Use these results to show thatK4 = �(1); (1 2)(3 4); (1 3)(2 4); (1 4)(2 3)	is a normal subgroup of S4, the so 
alled Kleinian group of order 4.Hint, in oder to see that it is a subgroup of S4 it is best to write down the group table, whi
h showsthe 
losedness with respe
t to the group operation and with respe
t to taking inverses.Exer
ise 5: Find all the subgroups of D8 = 
(1 2 3 4); (1 4)(2 3)�, whi
h wasintrodu
ed on the assingment set 2. Whi
h of the subgroups are normal subgroups?Solution to Exer
ise 1 a. By the Theorem of Lagrange we knowjG : Vj = jGjjVj; jG : Uj = jGjjUj ; and jU : Vj = jUjjVj:This proves the 
laim.b. We set H = U \ V. Then by Part a. we havejG : Vj �� jG : Hj and jG : Uj �� jG : Hj:Thus also the least 
ommon multiple divides jG : Hj, i. e.jG : Vj � jG : Uj = jG : Vj � jG : Ujg
d �jG : Vj; jG : Uj� = l
m �jG : Vj; jG : Uj� �� jG : Hj;and there is a number m > 0 su
h thatm � jGjjVj � jGjjUj = m � jG : Vj � jG : Uj = jG : Hj = jGjjHj :From this equation we dedu
e with the produ
t formulajU � Vj = jUj � jVjjHj = jGj �m � jGj:Being a subset of G, this implies U � V = G.Solution to Exer
ise 2Sin
e eG 2 Ui for all i 2 I, eG 2 Ti2IUi, so that this set is non-empty. Letu; v 2 Ti2IUi. We have to show that u � v; u-1 2 Ti2IUi. By assumption u; v 2 Uifor all i 2 I, and thus u � v; u-1 2 Ui for all i 2 I, sin
e the Ui are subgroups. Butthen u � v; u-1 2 Ti2IUi, and Ti2IUi � G.Solution to Exer
ise 3 a. Being the interse
tion of subgroups, N \ U is a sub-group of G, whi
h is 
ontained in U. Hen
e, it's a subgroup of U. It remainsto 
he
k the normality 
ondition. Let u 2 U and n 2 N \U. Thenu � n � u-1 2 N \U;sin
e N is a normal subgroup of G and U is 
losed under multipli
ation. Thus,N \U�U.



80 A. ASSIGNMENTS AND SOLUTIONSb. Being the interse
tion of subgroups N1 \N2 is a subgroup of G. It remains to
he
k a normality 
ondition. Let g 2 G and n 2 N1 \N2. Sin
e both, N1 andN2, are normal subgroups of G, we getg � n � g-1 2 Nifor i = 1; 2, and thus g � n � g-1 2 N1 \N2.Solution to Exer
ise 4 a. Let f1; : : : ; ng = fa1; : : : ; ang = fb1; : : : ; bng.\(" Suppose k = l. We de�ne a permutation � 2 Sn by� =  a1 : : : anb1 : : : bn ! :The inverse of � is then just�-1 =  b1 : : : bna1 : : : an ! :We 
laim that � Æ � Æ �-1 = �. For this we apply both maps to bi,i = 1; : : : ; n:��Æ�Æ�-1�(bi) = ���(ai)� = 8><>: �(ai+1) = bi+1 = �(bi); if 1 � i < k = l;�(a1) = b1 = �(bl); if i = k = l;�(bi) = ai = �(bi); if k + 1 = l+ 1 � i � n:\)" We may assume that k � l. Let � 2 Sn be su
h that � Æ � Æ �-1 = �.Then�k = �� Æ � Æ �-1�k = � Æ �k Æ �-1 = � Æ (1) Æ �-1 = (1):Hen
e, l = o(�) � k, and thus k = l.b. Let � = �1 Æ : : : Æ �r and � = �1 Æ : : : Æ �s, where �i is a ki-
y
le with k1 � k2 �: : : � kr and �i is an li-
y
le with l1 � l2 � : : : � ls.\)" Suppose there is a � 2 Sn su
h that � Æ � Æ �-1 = �. By Part a. we thenhave that !i := � Æ �i Æ �-1also is a ki-
y
le. We dedu
e thus that!1 Æ!2 Æ : : : Æ!r = �� Æ �1 Æ �-1� Æ �� Æ �2 Æ �-1� Æ : : : Æ �� Æ �r Æ �-1�= � Æ ��1 Æ �2 Æ : : : Æ �r� Æ �-1 = � Æ � Æ �-1 = �:Thus the 
y
le type of �must be (k1; : : : ; kr). However, it is also (l1; : : : ; ls),whi
h implies that(k1; : : : ; kr) = (l1; : : : ; ls):\(" Let's now suppose that r = s and (k1; : : : ; kr) = (l1; : : : ; ls). Moreover,suppose that �i = (ai;1 : : : ai;ki) and �i = (bi;1 : : : bi;ki) for i = 1; : : : ; r.Thenf1; : : : ; ng = fai;j j i = 1; : : : ; r; j = 1; : : : ; kig = fbi;j j i = 1; : : : ; r; j = 1; : : : ; kig:



ASSIGNMENT SET 3 81As in the proof of Part a. we de�ne a permutation� =  a1;1 : : : ar;krb1;1 : : : br;kr ! ;and it follows for bi;j�� Æ � Æ �-1�(bi;j) = ���(ai;j)� = Æ �(ai;j+1) = bi;j+1 = �(bi;j); if 1 � j < ki;�(ai;1) = bi;1 = �(bi;j); if j = ki:This proves that � Æ � Æ �-1 = �.
. We set e = (1), a = (1 2)(3 4), b = (1 3)(2 4) and 
 = (1 4)(2 3). Then themultipli
ation table of K4 looks likee a b 
e e a b 
a a e 
 bb b 
 e a
 
 b a eThis shows that K4 is 
losed under the multipli
ation and that every elementhas an inverse. Thus K4 � S4 is a subgroup.Let now � 2 Sn be given and � 2 K4. We have to show that �Æ�Æ�-1 2 K4 inorder to see that K4 is a normal subgroup. If � = e, then the produ
t is againe and belongs to K4. If � 2 fa; b; 
g, then by Part b. the produ
t � Æ � Æ �-1has 
y
le type (2; 2). However, all elements of this 
y
le type in S4 belong toK4. Thus the produ
t does as well.Solution to Exer
ise 5Note, that with � = (1 2 3 4) and � = (1 4)(2 3) we have by Exer
ise 1 onAssignment Set 1 D8 = � id; �; �2; �3; �; � Æ �; � Æ �2; � Æ �3	= �(1); (1 2 3 4); (1 3)(2 4); (1 4 3 2);(1 4)(2 3); (1 3); (1 2)(3 4); (2 4)	:If U � D8, then by the Theorem of Lagrange jUj 2 f1; 2; 4; 8g.If jUj = 1, then of 
ourse U = 1.If jUj = 2, then U is 
y
li
 and generated by one element of order 2. Thus U is oneof the groups h�i, h� Æ �i, 
� Æ �2�, 
� Æ �3�, or 
�2�.If jUj = 4, then U may be 
y
li
 or it only 
ontains elements of order at most 2. Ifit is 
y
li
, then it must 
ontain two elements of order 4, whi
h are inverse to ea
hother, thus U = h�i. Otherwise U is one of the two groups 
�; �Æ�2� or 
�Æ�; �Æ�3�.If jUj = 8, then of 
ourse U = D8.



82 A. ASSIGNMENTS AND SOLUTIONSAssignment Set 4Exer
ises 1 and 2 should be handed in for marking.Exer
ise 1: Let � 2 Hom(G;H), where (G; �) and (H; �) are groups.a. Im(�) := �(G) � G and is 
alled the image of �.b. If � is bije
tive, then �-1 2 Hom(H;G).In parti
ular, �Aut(G); Æ� is a subgroup of �Sym(G); Æ�.Exer
ise 2: Let (G; �) be a group and let N;N 0 � G be two normal subgroups.Prove the Isomorphism Theorem (N �N 0)=N 0 �= N=(N \N 0).Exer
ise 3: Suppose that A and B are �nite sets with the same number of ele-ments. Show that the groups � Sym(A); Æ� and �Sym(B); Æ� are isomorphi
.Exer
ise 4: Let (G; �) be a group. We 
all Z(G) = fh 2 G j gh = hg 8 g 2 Gg the
entre of G, i. e. the set of elements in G whi
h 
ommute with all other elements.1a. Z(G)� G.b. If G=Z(G) is 
y
li
, then G is abelian.2Exer
ise� 5: [Generators and Relations℄Let x and y be two di�erent symbols. Consider the set of wordsW = �x�1y�1 � � �x�ry�r �� �i; �i 2 Z; r � 1g [ feg;where e is just a symbol de�ning the so 
alled empty word. We use the 
ommonexponential laws in order to simplify su
h words and we 
onsider words whi
h be
omethe same that way to be the same, e. g.x3y5y-3x0y-2x-3 = x3y5y-3y-2x-3 = x3y5-3-2x-3 = x3x-3 = x3-3 = e:There is then a natural way to multiply words just by putting them together, andhaving the empty word e operate as the identity. This way W be
omes a group,and obviously W = hx; yi is generated by the elements x; y.3Moreover, if M = fw1 = w 01; : : : ; wr = w 0rg is a set of equations of words in W -
alled relations-, then we 
onsider the smallest normal subgroups whi
h 
ontainsthe set M 0 = �w-11 �w 01; : : : ; w-1r �w 0r	N(M) = \M 0�N�W(X)N;and we denote by hx; y j w1 = w 01; : : : ; wr = w 0ri the quotient group of W by thenormal subgroup N(M). By abuse of notation we will denote the generators of thisquotient group still by x and y rather than by xN(M) and yN(M).1Note, that obviously G is abelian if and only if G = Z(G).2This then implies G = Z(G)!3You are not required to prove these fa
ts! Their proof is quite tedious and 
an be found - ina more general setting - in many textbooks, e. g. Mi
hael Weinstein, Examples of Groups, pp. 52�.



ASSIGNMENT SET 4 83a. Show that W has the following universal property: given any group (G; �) su
hthat G = hg; hi, then there is a unique epimorphism � : W ! G su
h that�(x) = g and �(y) = h.Moreover, if the relations wi = w 0i still hold when you repla
e x by g and y byh, then � indu
es an epimorphism� : hx; y j w1 = w 01; : : : ; wr = w 0ri �! G : w 7! �(w):with �(x) = g and �(y) = h.4b. Show that the group 
x; y �� xn = e; y2 = e; yxy-1 = x-1� is isomorphi
 toD2n.
. Show that the group 
x; y �� x4 = e; y4 = e; yxy-1 = x-1� is isomorphi
 to Q8.d. Show that a non-abelian group of order 8 is either isomorphi
 to D8 or to Q8.Solution to Exer
ise 1 a. Sin
e eH = �(eG) 2 Im(�), the set is non-empty.Moreover, for g; g 0 2 G we have �(g)���g 0� = ��g�g 0� 2 Im(�) and �(g)-1 =��g-1� 2 Im(�). Hen
e, Im(�) � H.b. Let h; h 0 2 H be given. Sin
e � is bije
tive, there are elements g; g 0 2 G su
hthat �(g) = h and ��g 0� = h 0. We thus have for the inverse mapping �-1�-1�h � h 0� = �-1��(g) � �(g 0)� = �-1��(g � g 0)� = g � g 0 = �-1(h) � �-1�h 0�:For the \in parti
ular part" just note that we have shown in the le
ture thatAut(G) is 
losed under 
omposition of maps and that we have just proved thatit is also 
losed under taking inverses. Moreover, sin
e idG 2 Aut(G), it is anon-empty subset of Sym(G), and hen
e a subgroup thereof.Solution to Exer
ise 2Note that N �N 0 is a
tually a group, and N 0 is a normal subgroup thereof. We havealso seen that N \ N 0 � N, so that the quotient groups in this statement a
tuallyexist! Let's now de�ne a map by� : N! N �N 0=N 0 : n 7! nN 0:We are going to show that this map is an epimorphism with kernel N\N 0, and thenwe apply the Homomorphism Theorem.Step 1 : � is a homomorphism.Let n;m 2 N, then �(n �m) = nmN 0 = nN 0 �mN 0 = �(n) � �(m).Step 2 : � is a surje
tive.Let nn 0N 0 2 NN 0=N 0 be arbitrary with n 2 N and n 0 2 N 0. Then �(n) = nN 0 =nn 0N 0, thus � is surje
tive.Step 3 : Ker(�) = N \N 0.4That the relations wi = w 0i are satis�ed when repla
ing x by g and y by h is the same assaying that N(M) is 
ontained in the kernel of �.



84 A. ASSIGNMENTS AND SOLUTIONSWe have n 2 Ker(�) if and only if nN 0 = N 0 if and only if n 2 N 0 \N.Applying now the Homomorphism Theorem we getN=N \N 0 = N=Ker(�) �= Im(�) = NN 0=N 0:Solution to Exer
ise 3Sin
e A and B have the same order, there exists a bije
tion� : A! B:We use this to de�ne a map� : Sym(A)! Sym(B) : � 7! � Æ � Æ �-1:This map is obviously bije
tive with inverse� : Sym(B)! Sym(A) : � 7! �-1 Æ � Æ �:Moreover, for �; � 2 Sym(A) we have�(� Æ �) = � Æ � Æ � Æ �-1 = � Æ � Æ �-1 Æ � Æ � Æ �-1 = �(�) Æ �(�):Thus � is also a homomorphism, hen
e it is an isomorphism.Solution to Exer
ise 4 a. Let's show �rst that Z(G) is a
tually a subgroup ofG. Sin
e eG 
ommutes with any element in G, it belongs to Z(G), so that theset is non-empty. Let h; h 0 2 Z(G) and g 2 G arbitrary. Thenhh 0g = hgh 0 = ghh 0 and h-1g = �g-1h�-1 = �hg-1�-1 = gh-1;hen
e hh 0; h-1 2 Z(G) and Z(G) � G.It remains to 
he
k the normality 
ondition. Let for this g 2 G and h 2 Z(G).Then ghg-1 = hgg-1 = heG = h 2 Z(G):b. By assumption there is some g 2 G su
h that G=Z(G) = 
gZ(G)� is generatedby the 
oset gZ(G). This, however, implies thatG = [k2ZgkZ(G):Let now h; h 0 2 G be arbitrary. We then �nd k; k 0 2 Z and u; u 0 2 Z(G) su
hthat h = gku and h 0 = gk 0u 0. Thus, using the exponential laws and the fa
tthat u and u 0 
ommute with any element in G, we gethh 0 = gkugk 0u 0 = gkgk 0uu 0 = gk 0gku 0u = gk 0u 0gku = h 0h:Thus G is 
ommutative.Solution to Exer
ise 5 a. We de�ne a map� : W! G : x�1 � � �y�r 7! g�1 � � �h�r:Note that the representation of an element in W as a word is not unique; weused the exponential laws to identify 
ertain words! We therefore have to 
he
kthat the de�nition of � does not depend on the given representation. However,



ASSIGNMENT SET 4 85sin
e the exponential laws also apply in G, two representations of the sameword will lead to the same image. Hen
e, � is wellde�ned.Moreover, it is indeed 
lear that � is a homomorphism mapping x to g and yto h, and sin
e G is generated by g and h the homomorphism is also surje
tive.Let's now show the uniqueness. Let � 2 Hom(W;G) be su
h that �(x) = gand �(y) = h, and let x�1 � � �y�r 2 W be any word. Using the rules forhomomorphisms��x�1 � � �y�r� = �(x)�1 � � ��(y)�r = g�1 � � �h�r = ��x�1 � � �y�r�:It remains to show that � indu
es an epimorphism from hx; y j w1 = w 01; : : : ; wr =w 0ri to G, if g and h satisfy the relations wi = w 0i for i = 1; : : : ; r. Note thatthe latter is the same as saying thatw-1i w 0i 2 Ker(�);and sin
e Ker(�) is a normal subgroup of W we thus have N(M) � Ker(�).We only have to show that the above map � is wellde�ned, then it's 
learthat it is an epimorphism. Let w and w 0 be two words whi
h 
oin
ide inhx; y j w1 = w 01; : : : ; wr = w 0ri, i. e. wN(M) = w 0N(M). Thusw-1w 0 2 N(M) � Ker(�);and hen
e eG = ��w-1w 0� = �(w)-1 � �(w 0), whi
h implies �(w) = �(w 0).The morphism � is therefore wellde�ned.b. Re
all from Exer
ise 1, Set 1, thatD2n = h�; �i = ��i; ��i �� i = 0; : : : ; n- 1gand that the generators � and � satisfy the relations�n = (1); �2 = (1) and ���-1 = �-1:Hen
e by Part a. there is an epimorphism� : 
x; y �� xn = e; y2 = e; yxy-1 = x-1� �! D2n:On
e we know that the group 
x; y �� xn = e; y2 = e; yxy-1 = x-1� has at most2n elements, we are therefore done, sin
e then the map must be bije
tive.The same proof as in Exer
ise 1, Set 2, applies in order to show
x; y �� xn = e; y2 = e; yxy-1 = x-1� = �xiyj �� i = 0; 1; j = 0; : : : ; n- 1	:
. Re
all from Exer
ise 5, Set 2, thatQ8 = hA;Bi = �AiBj j i = 0; : : : ; 3; j = 0; 1	where A = � 0 -11 0 � and B = ( 0 ii 0 ). Moreover, we have shown thereA4 = 1; B4 = 1 and BAB-1 = A-1:We may therefore on
e more apply Part a. in order to get an epimorphism� : 
x; y �� x4 = e; y4 = e; yxy-1 = x-1� �! Q8:



86 A. ASSIGNMENTS AND SOLUTIONSAnd the same proof as in Exer
ise 5, Set 2, shows that
x; y �� x4 = e; y4 = e; yxy-1 = x-1� = �xiyj �� i = 0; : : : ; 3; j = 0; 1	:Hen
e the group has at most 8 elements, and sin
e � is a surje
tion on a setwith 8 elements, this must be a bije
tion.d. Sin
e G is not abelian, it is not 
y
li
, and hen
e it does not 
ontain any elementof order 8. By the Theorem of Lagrange the elements of G must therefore beof order 1, 2 or 4.Suppose that G does not 
ontain any element of order 4. Then g2 = eG for allg 2 G, and hen
e g = g-1 for all g 2 G. Let g; h 2 G be given. Thengh = (gh)-1 = h-1g-1 = hg:This means that G is abelian in 
ontradi
tion to our assumption.Hen
e there is some g 2 G of order 4. Then N = hgi is a subgroup of index 2,and is therefore a normal subgroup. Let u 2 GnN and U = hui. Sin
e N�G,the set UN is a subgroup of G with more than 4 elements. By the Theorem ofLagrange it must therefore be equal to G. That isG = UN = hu; gi:Moreover, sin
e N is a normal subgroup, we have ugu-1 2 N and this elementhas the same order as the element g, whi
h is 4. There are only two 
hoi
esfor this in N, namely g and g-1. If ugu-1 = g, then ug = gu. However, if thetwo generators of G 
ommute, then G is abelian, whi
h it is not by assumption.Therefore ugu-1 = g-1:We now have to distinguish two 
ases. u 
ould be of order 2 or it 
ould be oforder 4.If o(u) = 2, then g and u satisfy the relationsg4 = e; u2 = e and ugu-1 = g-1:Hen
e by Part a. we get { in the same way as in Part b. { an isomorphism
x; y �� x4 = e; y2 = e; yxy-1 = x-1� �= G:But by Part b. this group is also isomorphi
 to D8.If o(u) = 4, then g and u satisfy the relationsg4 = e; u4 = e and ugu-1 = g-1:Hen
e by Part a. we get { in the same way as in Part 
. { an isomorphism
x; y �� x4 = e; y4 = e; yxy-1 = x-1� �= G:But by Part 
. this group is also isomorphi
 to Q8.



ASSIGNMENT SET 5 87Assignment Set 5One of the Exer
ises 1 or 3 should be handed in for marking.Exer
ise 1: Let (G; �) be a group and N � G.Show that N is a normal subgroup of G if and only if G = NG(N).Exer
ise 2: [Class Equation℄ Let (G; �) be a �nite group. We 
all for g 2 G theset CG(g) = fh 2 G j hg = ghg the 
entraliser of g in G.a. Show that the group G a
ts on the set G by 
onjugation, i. e. show that� : G! Sym(G) : g 7! �gis a homomorphism, where �g : G! G : h 7! hg = ghg-1.b. Show that there are g1; : : : ; gn 2 G su
h thatjGj = nXi=1 jG : CG(gi)j:
. Show that there g1; : : : ; gr 2 G su
h that jG : CG(gi)j > 1 andjGj = jZ(G)j + rXi=1 jG : CG(gi)j:Hint, show that CG(g) is just the stabiliser StabG(g) of g under the group operation in a. and use theOrbit Stabilser Theorem. By Z(G) we mean the 
entre of G introdu
ed in Exer
ise 4, Set 4.Exer
ise 3: Let (G; �) be a group of order pn for some prime p. Show thatjZ(G)j > 1.Hint, use the 
lass equation.Exer
ise 4: Show that any group of order p2, p some prime, is abelian.Hint, use Exer
ise 3 above and Exer
ise 4, Set 4.Exer
ise� 5: Cal
ulate Z(D8) and Z(Q8).Hint, you may use Exer
ise 3 above and Exer
ise 4, Set 4, in order save many 
al
ulations.Exer
ise 6: Use Corollary 4.7 to show that D8 is not a normal subgroup of S4.Solution to Exer
ise 1By de�nition NG(N) = �g 2 G �� N = Ng = gNg-1	. However again by de�nition,N is normal if and only if Ng = N for all g 2 G, and this is then the 
ase if andonly if g 2 NG(N) for all g 2 G, i. e. G = NG(N).Solution to Exer
ise 2 a. Note, we have already shown in the le
ture that themaps �g are automorphisms of G, hen
e they are in parti
ular bije
tive andbelong to Sym(G).We have to show that �(g � g 0) = �(g) Æ �(g 0), or with the above notation�gg 0 = �g Æ �g 0. Let h 2 G. Then�gg 0(h) = (gg 0)�h�(gg 0)-1 = gg 0hg 0-1g-1 = �g�g 0hg 0-1� = �g��g 0(h)� = (�gÆ�g 0)(h):



88 A. ASSIGNMENTS AND SOLUTIONSb. We note that StabG(g) = fh 2 G j gh = gg = CG(g), and by the OrbitStabiliser Theorem we therefore have j orbG(g)j = jG : CG(g)j.Sin
e G operates on G, there are g1; : : : ; gn 2 G su
h that G =`ni=1 orbG(gi)is the disjoint union of the orbits of the gi. ThusjGj = nXi=1 j orbG(gi)j = nXi=1 jG : CG(gi)j:
. Note that g 2 Z(G) if and only if gh = hg for all h 2 G if and only ifg = hgh-1 = gh for all h 2 G if and only if orbG(g) = �gh �� h 2 G	 = fgg
onsists only of one element.Let g1; : : : ; gn 2 G be as in Part b. and suppose that they have been ordered insu
h a way that the orbits of g1; : : : ; gr 
onsist of more than one element andthe orbits of gr+1; : : : ; gn all 
ontain only one element. We have just provedthat then Z(G) = n[i=r+1 orbG(gi):The result therefore follows from Part b.Solution to Exer
ise 3By the Class Equation we know there are g1; : : : ; gr 2 G su
h thatpn = jGj = jZ(G)j + rXi=1 jG : CG(gi)j; (13)and jG : CG(gi)j > 1 for all i = 1; : : : ; r. Sin
e this index jG : CG(gi)j is a divisor ofjGj = pn, it must be divisible by p. Considering the Equation (13) modulo p we getjZ(G)j � 0(mod p):Thus the number must be divisible by p as well, in parti
ular it is greater than 1.Solution to Exer
ise 4Let G be a group of order p2. By Exer
ise 3 the 
entre Z(G) has order greater than1, and by the Theorem of Lagrange its order must then be p or p2. If the order isp2, then G = Z(G) and G is abelian.Suppose therefore the order of Z(G) was p, then however G=Z(G) has also order pand is therefore 
y
li
. Hen
e by Exer
ise 4, Set 4, G is again abelian. (However,this implies Z(G) = G and its order is p2 in 
ontradi
tion to our assumption! Thatis, this 
ase will not o

ur.)Solution to Exer
ise 5For both groups D8 and Q8 the 
entre must have order 1, 2, 4 or 8 by the TheoremLagrange. By Exer
ise 3 above it 
annot be 1.If the order was 8, that is, if the 
entre was the whole group, the group would beabelian, whi
h both are not.If it had order 4, then the quotient group by the 
entre would be of order 2 andhen
e 
y
li
. But then again, by Exer
ise 4, Set 4, the group itself would be abelian,whi
h it is not.



ASSIGNMENT SET 5 89Thus it must have order 2 in both 
ases. It therefore suÆ
es in both 
ases to �ndone element of order two whi
h 
ommutes with all the other elements, and this onewill then generate the 
entre.Using the notation from Exer
ise 1, Set 1, and Exer
ise 5, Set 2, we see that �2 2 D8and A2 = B2 2 Q8 will do, i. e.Z(D8) = 
�2� and Z(Q8) = 
A2�:Solution to Exer
ise 6Besides D8 = 
(1 2 3 4); (1 4)(2 3)� the group S4 
ontains two other subgroupsof order 8 { both of whi
h are isomorphi
 to D8 { namely 
(1 2 4 3); (1 3)(2 4)�and 
(1 3 2 4); (1 4)(2 3)�. Sin
e 8 = 23 is the maximal power of 2 whi
h dividesthe order of S4, whi
h is 4! = 24, these three groups are 2-Sylow subgroups of S4.Having more than one 2-Sylow subgroup, none of them 
an be normal by Corollary4.7.



90 A. ASSIGNMENTS AND SOLUTIONSAssignment Set 6One of the Exer
ises 1 or 3 should be handed in for marking.Exer
ise 1: Cal
ulate the eigenvalues and the eigenspa
es of the following matrixand de
ide whether it is diagonalisable, triangulable or neither of the two:A = 0BBB� 1 1 0 10 3 0 0-1 1 2 1-1 1 0 3
1CCCA 2 Mat(4� 4;R):Exer
ise 2: Let V = �P2i=0 aixi �� a0; a1; a2 2 R	 be the 3-dimensional ve
torspa
e of polynomials of degree less than or equal to 2, and let � 2 R be �xed.Consider the mapf : V! V : 2Xi=0 aixi 7! 2Xi=0 ai(x+ �)i - � � 2Xi=1 ai � i � xi-1:Show the following:a. f is R-linear.b. Cal
ulate MBB(f), where B = �1; x; x2� is the 
anoni
al basis of V.
. Cal
ulate the 
hara
teristi
 polynomial �f.Exer
ise 3: Let V be an n-dimensional K-ve
tor spa
e, and let f 2 EndK(V) su
hthat fn-1 6= 0, but fn = 0, where 0 means the zero-map. Show:a. There is a v 2 V su
h that B = �fn-1(v); fn-2(v); : : : ; f(v); v� is a basis of V.b. Find the matrix representation MBB(f) w. r. t. the basis B in Part a.Exer
ise 4: Let V be a �nite-dimensional K-ve
tor spa
e and let g 2 EndK(V).Show there is an m � 1 su
h thatKer(g) ( Ker �g2� ( : : : ( Ker �gm� = Ker �gk� for all k � m:Exer
ise 5: Use the Theorem of Cayley-Hamilton to show that for A 2 Gln(K)there is a polynomial g =Pn-1i=0 biti 2 K[t℄ su
h that A-1 = g(A) =Pn-1i=0 biAi.Exer
ise 6: Let f 2 EndK(V) and let �; � 2 K be two di�erent eigenvalues of f.Show that for any m � 0Eig(f; �) \Ker �(f- � idV)m� = f0g:Solution to Exer
ise 1�A = det(A - t1) = (3 - t) � (2 - t)3, and hen
e A is triangulable, sin
e the 
har-a
teristi
 polynomial fa
torises. Eig(A; 2) = 
(1; 0; 0; 1)t; (0; 0; 1; 0)t�, Eig(A; 3) =
(1; 1; 1; 1)t�.A is not diagonalisable, sin
e K4 does not posses a basis of eigenve
tors of A.



ASSIGNMENT SET 6 91Solution to Exer
ise 2 a. Let p = a2x2 + a1x + a0; q = b2x2 + b1x + b0 2 Vand �; � 2 R be given. Thenf(�p+�q) = f 2Xi=0 (ai + bi) � xi! = 2Xi=0 (�ai+�bi)�(x+�)i-�� 2Xi=1 (�ai+�bi)�i�xi-1= � 2Xi=0 ai(x + �)i - � � 2Xi=1 ai � i � xi-1!+� 2Xi=0 bi(x+ �)i - � � 2Xi=1 bi � i � xi-1! = �f(p)+�f(q):b. Note that f(1) = 1, f(x) = (x+�)-� = x and f�x2� = (x+�)2-2�x = x2+�2,hen
e MBB(f) =  1 0 �20 1 00 0 1! :
. �f = �MBB(f) = (1- t)3.Solution to Exer
ise 3 a. By assumption fn-1 6= 0, so there is a v 2 V su
hthat fn-1(v) 6= 0. De�ne B as in the 
laim using this ve
tor v.Sin
e V has dimension n it suÆ
es to show that B is linearly independent. Forthis let �1; : : : ; �n 2 K su
h that Pni=1 �i � fn-i(v) = 0. We have to show that�1 = : : : = �n = 0.Suppose this is not the 
ase and let m 2 f1; : : : ; ng be minimal su
h that�m 6= 0. Then0 = fm-1(0) = fm-1 nXi=1 �ifn-i(v)!= m-1Xi=1 �ifn-i+m-1(v) + �mfn-m+m-1(v) + nXi=m+1�ifn-i+m-1(v) = �mfn-1(v);where the �rst sum is zero sin
e �1 = : : : = �m-1 = 0, and the last sumvanishes, sin
e fn is the zero-map. However, by assumption neither �m norfn-1(v) vanish, whi
h leads to a 
ontradi
tion.b. Sin
e f�fk(v)� = fk+1(v) and this is 0, if k = n- 1, we getMBB(f) = 0BBBBB�0 1 0 : : : 0... . . . . . . . . . ...... . . . . . . 0... . . . 10 : : : : : : : : : 0
1CCCCCA :Solution to Exer
ise 4If v 2 Ker �gk�, then gk+1(v) = g�gk(v)� = g(0) = 0. Thus for all k � 1 we haveKer �gk� � Ker �gk+1�: (14)Moreover, sin
e the ve
tor spa
e V is �nite dimensional, the 
hain of kernels 
annotas
end forever. Let thereforem = min�k � 1 �� Ker �gk� = Ker �gk+1�	:



92 A. ASSIGNMENTS AND SOLUTIONSWe have to show that then Ker �gm� = Ker �gk� for all k � m, and we do this byindu
tion on k. We get the indu
tion base k = m for free. Let's now suppose thatk > m and that we have already shown Ker �gm� = Ker �gk-1�. By Equation (14)we thus get Ker �gm� = Ker �gk-1� � Ker �gk�.It remains to prove the opposite in
lusion. Let therefore v 2 Ker �gk� be given.Then 0 = gk(v) = gk-1�g(v)�. Hen
e g(v) 2 Ker �gk-1� = Ker �gm�, and thusgm+1(v) = gm�g(v)� = 0:However, by de�nition of m we have Ker �gm� = Ker �gm+1� and thus we haveshown v 2 Ker �gm+1� = Ker �gm�:Solution to Exer
ise 5Let �A = (-1)ntn + an-1tn-1 + : : :+ a0 2 K[t℄ be the 
hara
teristi
 polynomial ofA.Sin
e A is invertible, the kernel of A 
onsists only of the zero-ve
tor. Hen
eEig(A; 0) = Ker(A) = f0g, whi
h implies that 0 is not an eigenvalue of A. Hen
ea0 = �A(0) 6= 0. De�neg = (-1)n-a0 � tn-1 + an-1-a0 � tn-2 + : : :+ a1-a0 2 K[t℄:Then g(A) �A = 1-a0 � �A(A) + 1 = 1;where the latter equality is due to the Thm. of Cayley-Hamilton. Thus g(A) = A-1.Solution to Exer
ise 6We do the proof by indu
tion on m � 0. For m = 0 the kernel of (f-� idV)0 = idV
onsists only of the zero-ve
tor, so there is nothing to show.Let now m > 0 and suppose the 
laim has been proved for m - 1. Let thenv 2 Eig(f; �) \ Ker �(f- � idV)m�, we have to show the v = 0. By assumption0 = (f- � idV)m(v) = (f- � idV)m-1�(f- � idV)(v)� = (f- � idV)m-1�f(v) - �v�= (f- � idV)m-1�(�- �) � v� = (�- �) � (f- � idV)m-1(v):Sin
e � 6= � this implies (f- � idV)m-1(v) = 0, and thereforev 2 Eig(f; �) \ Ker �(f- � idV)m-1� = f0g:



ASSIGNMENT SET 7 93Assignment Set 7Exer
ise 3 should be handed in for marking.Exer
ise 1: Find a Jordan normal form and the 
orresponding transformationmatrix T for the following matri
es:A =  0 1-2 3! ; B =  4 1-1 6! ; C = 0B� 0 1 12 1 -1-6 -5 -31CA and D = 0B�-3 -1 1-1 -3 1-2 -2 01CA :Exer
ise 2: Find a Jordan normal form for the Endomorphism in Exer
ise 2 onAssignment Set 6.Exer
ise 3: Let V be a K-ve
tor spa
e, U � V a subspa
e, and b 2 BilK(V).Showa. U? = fv 2 V j b(v; u) = 0 8 u 2 Ug is a subspa
e of V.b.� If U = hvi and b(v; v) 6= 0, then V = U+U?.Exer
ise 4: Consider b : K2 ! K2 : �(x1; x2)t; (y1; y2)t) 7! 2 � x1 � y1 + x1 � y2 +y1 � x2 - x2 � y2. Let E = (e1; e2) be the standard basis of K2 and B = (v1; v2) withv1 = (1; 1)t and v2 = (1;-1)t some other basis.a. Show that b is a bilinear map.b. Cal
ulate the matrix representations ME(b) and MB(b).
. Cal
ulate the transformation matrix TEB and verifyMB(b) = �TEB�t �ME(b) � TEB:Exer
ise 5: Let b 2 BilK(V) be a bilinear form and q = qb : V! K : v 7! b(v; v)its asso
iated quadrati
 form. Show that for all u; v;w 2 Vq(u+ v +w) - q(u+ v) - q(v+w) - q(u+w) + q(u) + q(v) + q(w) = 0:Solution to Exer
ise 1�A = (1- t) � (2- t); �B = (5- t)2; �C = (2+ t)2 � (2- t); �D = (2+ t)3:A =  0 1-2 3! ; J(A) =  1 00 2! ; T =  1 11 2! T-1 =  2 -1-1 1 ! :B =  4 1-1 6! ; J(B) =  5 10 5! ; T =  -1 1-1 0! T-1 =  0 -11 -1! :C =  0 1 12 1 -1-6 -5 -3! ; J(C) =  -2 1 00 -2 00 0 2! ; T =  -1 -1 01 1 -11 0 1 ! T-1 =  1 1 1-2 -1 -1-1 -1 0 ! :D =  -3 -1 1-1 -3 1-2 -2 0! ; J(D) =  -2 1 00 -2 00 0 -2! ; T =  -1 1 -1-1 0 1-2 0 0 ! T-1 =  0 0 -121 1 -10 1 -12! :



94 A. ASSIGNMENTS AND SOLUTIONSSolution to Exer
ise 2We showed in Exer
ise 2 on Assignment Set 6 that for B = �1; x; x2�MBB(f) = 0�1 0 �20 1 00 0 11A :Thus dimR �Eig(f; 1)� = dimR �Ker(f - idV)� = 3 - rank �MBB(f) - 1� = 2, whi
himplies that the following matrix is a Jordan normal form for f:J(f) = 0�1 1 00 1 00 0 11A :Solution to Exer
ise 3 a. Sin
e b(0; u) = b(0+0; u) = b(0; u)+b(0; u) for anyu 2 U, we see that b(0; u) = 0 for any u 2 U. Therefore 0 2 U? and the latteris non-empty. Let now v;w 2 U?, �; � 2 K and u 2 U. Thenb(�v+ �w;u) = �b(v; u) + �b(w;u) = 0;and hen
e �v + �w 2 U?. This shows that U? is a subspa
e of V.b. Let w 2 V be arbitrary. We have to show that w is a sum of a ve
tor in U andone in U?. Set � = b(v;w)b(v;v) 2 K and u = w - � � v. Thenb(v; u) = b(v;w- �v) = b(v;w) - �b(v; v) = 0:Hen
e, u 2 U?, and w = �v+ u 2 U +U?. This proves the 
laim.Solution to Exer
ise 4 a. Note that b�(x1; x2)t; (y1; y2)t) = (x1; x2)�A�(y1; y2)t,where A = � 2 11 -1 �. Sin
e matrix multipli
ation is distributive, b is a bilinearform, and sin
e A = At, i. e. sin
e A is symmetri
,b(x; y) = xt �A � y = xt �At � y = (A � x)t � y = �(A � x)t � y�t = yt � (A � x) = b(y; x):Hen
e, b is symmetri
.b. Just 
al
ulating b(ei; ej) and b(vi; vj) for all i; j we getME(b) =  2 11 -1! = A and MB(b) =  3 33 -1! :
. The base 
hange TEB has the ve
tors of B as 
olumn ve
tors, sin
e E is thestandard basis, thusTEB =  1 11 -1! and MB(b) = �TEB�t �ME(b) � TEB:Solution to Exer
ise 5Let u; v;w 2 V be given. Note thatq(u+ v +w) = b(u+ v+w;u+ v +w)= b(u; u)+2b(u; v+w)+b(v+w; v+w) = q(u)+2b(u; v)+2b(u;w)+q(v+w)



ASSIGNMENT SET 7 95andq(u+ v) = b(u+ v; u+ v) = b(u; u) + 2b(u; v) + b(v; v) = q(u) + 2b(u; v) + q(v)andq(u+w) = b(u+w;u+w) = b(u; u)+2b(u;w)+b(w;w) = q(u)+2b(u;w)+q(w)Using these results we �nally getq(u+ v +w) - q(u+ v) - q(v +w) - q(u+w) + q(u) + q(v) + q(w)= �q(u) + 2b(u; v) + 2b(u;w) + q(v +w)�- �q(u) + 2b(u; v) + q(v)�- q(v +w) - �q(u) + 2b(u;w) + q(w)�+ q(u) + q(v) + q(w) = 0:



96 A. ASSIGNMENTS AND SOLUTIONSAssignment Set 8Exer
ise 1 should be handed in for marking.Exer
ise� 1: We 
all a bilinear form b 2 BilR(V) positive de�nite if and only ifb(v; v) > 0 for all 0 6= v 2 V. Let A = ( a11 a12a21 a22 ) 2 Mat(2 � 2;R) be a symmetri
matrix. Show, the bilinear form bA is positive de�nite if and only if a11 > 0 anddet(A) > 0.Hint, use Corollary 2.11 to �nd a T 2 Gl2(R) su
h that Tt � A � T = ( a 00 b ) with a; b 2 f-1; 0; 1g, and notethat Tt � A � T = �bA(ti; tj)�i;j=1;2 if tk denotes the k-th 
olumn of T .Exer
ise 2: Cal
ulate the rank, the index and the signature of the bilinear form
orresponding to the following symmetri
 matri
es:A =  -1 44 -16! 2 Mat(2� 2;R) and B = 0BBB�0 0 1 00 0 1 11 1 0 10 1 1 0
1CCCA 2 Mat(4� 4;R):

Exer
ise 3: Use the Algorithm of Gram-S
hmidt to 
al
ulate an ONB of thesubspa
e 
(1;-1; 1;-1)t; (1; 0; 1; 0)t; (2; 2; 1; 0)t� of K4 w. r. t. the standard s
alarprodu
t.Exer
ise 4: Let �V; h�; �i� be a Hilbert spa
e and U � V a subspa
e of V. Showthata. U? � V is a subspa
e of V.b. V = U�U?, i. e. V = U+U? and U \U? = f0g.Hint, in b. show �rst that U\U? = f0g and 
al
ulate then the dimension of U+U?, taking Gram-S
hmidtinto 
onsideration.Exer
ise 5: Find for the following matrix an orthogonal matrix T whi
h diago-nalises it: A = 0B� 1 0 -20 -1 0-2 0 -11CA :Exer
ise 6: Let f 2 EndK(V), �V; h�; �i� a �nite-dimensional Hilbert spa
e. Showthere is a unique endomorphism6 f� 2 EndK(V) su
h that for all v;w 2Whf(v); wi = 
v; f�(w)�:6Note, f� is 
alled the adjoint of f, and f is self-adjoint if and only if f = f�!



ASSIGNMENT SET 8 97Solution to Exer
ise 1We start by 
olle
ting some useful remarks. By Corollary 2.11 there is an invertiblematrix T = � t11 t12t21 t22 � 2 Gl2(R) su
h thatTt �A � T =  a 00 b! ; (15)with a; b 2 f-1; 0; 1g. This givesdet(A) � det(T)2 = det �Tt �A � T�= a � b (16)The 
olumns t1 = (t11; t21)t and t2 = (t12; t22)t of T form a basis of K2, sin
e T isinvertible, and we havebA(t1; t1) = a; bA(t1; t2) = bA(t2; t1) = 0 and bA(t2; t2) = b: (17)Let v = �1t1 + �2t2. Then bA(v; v) = �21a+ �22b: (18)If bA is positive de�nite, then a11 = bA(e1; e1) > 0and in view of Equation (16) and (17) we havedet(A) � det(T)2 = bA(t1; t1) � bA(t2; t2) > 0;and hen
e also det(A) > 0.Suppose now, vi
e versa, that a11 > 0 and det(A) > 0. We have to show thatbA(v; v) > 0 for all v 2 K2.Note �rst of all, that det(A) > 0 implies either a = b = 1 or a = b = -1 in view ofEquation (15) and (16). Let �1; �2 2 R be su
h that e1 = �1t1 + �2t2, then0 < a11 = bA(e1; e2) = �21a+ �22b:Thus we must have a = b = 1.Let now v = �1t1 + �2t2 2 K2 be arbitrary, then by Equation (18) bA(v; v) =�21 + �22 > 0, sin
e a = b = 1. Hen
e b is positive de�nite.Solution to Exer
ise 2The normal forms ofA and Bmay be 
al
ulated using the symmetri
 Gau�-Algorithm7and turn out to be�-1 00 0� respe
tively 0B�1 0 0 00 1 0 00 0 -1 00 0 0 -11CA :Thus rank(A) = 1, index(A) = 0 and signature(A) = -1, while rank(B) = 4,index(B) = 2 and signature(B) = 0.7For B do the following row-
olumn-operations (R/C): 1) II 7! II - I; 2) III 7! III - II; 3)I 7! I+ 12 II; 4) III 7! III- I; 5) II 7! II+ 12 IV; 6) IV 7! IV- II.



98 A. ASSIGNMENTS AND SOLUTIONSSolution to Exer
ise 3Let u1 = (1;-1; 1;-1)t, u2 = (1; 0; 1; 0)t and u3 = (2; 2; 1; 0)t. Using the Algorithmof Gram-S
hmidt, we get:v1 = 1jju1jj � u1 = 12 � (1;-1; 1;-1)t:We setv 02 = u2 - hu2; v1i � v1 = (1; 0; 1; 0)t - 12 � (1;-1; 1;-1)t = 12 � (1; 1; 1; 1)tand then again v2 = 1jjv 02jj � v 02 = 12 � (1; 1; 1; 1)t:And �nallyv 03 = u3-hu3; v1i�v1-hu3; v2i�v2 = (2; 2; 1; 0)t-14 �(1;-1; 1;-1)t-54 �(1; 1; 1; 1)t = 12 �(1; 2;-1;-2)t:Hen
e v3 = 1jjv 03jj � v 03 = 1p10 � (1; 2;-1;-2)t:And (v1; v2; v3) is an ONB of U = hu1; u2; u3i.Solution to Exer
ise 4 a. Sin
e 0 is orthogonal to every ve
tor, 0 2 U? and thelatter is non-empty. Let now v;w 2 U?, �; � 2 K and u 2 U. Thenh�v+ �w;ui = �hv; ui+ �hw;ui = 0;and hen
e �v + �w 2 U?. This shows that U? is a subspa
e of V.b. We show �rst that U \ U? = f0g. If v 2 U \ U?, then hv; vi = 0. Sin
e thes
alar produ
t is de�nite, this implies v = 0.It remains to show that V = U+U?. Extend an ONB (v1; : : : ; vr) of U to anONB (v1; : : : ; vn) of V. Then vr+1; : : : ; vn 2 U? and hen
edimK �U?� � n - r = dimK(V)- dimK(U):By the dimension formula for U+U? we therefore getdimK(V)� dimK �U+U?� = dimK(U)+ dimK �U?�- dimK �U\U?� � dimK(V):This, however, implies dimK(V) = dimK �U+U?� and V = U+U?.Solution to Exer
ise 5Note �rst, sin
e A is symmetri
, hen
e self-adjoint over R, there exists an orthogonalmatrix T su
h that T-1 � A � T is a diagonal matrix, and the 
olumns of T are anONB of eigenve
tors of R3.We have �A = (3- t) � (1- t)2, so thatT-1 �A � T = 0�-1 0 00 -1 00 0 31A :In order to 
al
ulate T, we have to 
al
ulate the eigenspa
es w. r. t. -1 and 3, andthen to use Gram-S
hmidt to orthonormalize them. This givesEig(A;-1) = 
(0; 1; 0)t; 1p2 � (1; 0; 1)t� and Eig(A; 3) = 
 1p2 � (1; 0;-1)t�:



ASSIGNMENT SET 8 99Thus the following matrix will do:T = 0B�0 1p2 1p21 0 00 1p2 - 1p21CA :Solution to Exer
ise 6Let's �rst show the existen
e of f�. For this we 
hoose an ONB B = (v1; : : : ; vn) ofV. We de�ne f� on the basis ve
torsf�(vj) = nXi=1 hvj; f(vi)i � vi (19)for i = 1; : : : ; n. By linear 
ontinuation this de�nes an endomorphism f� 2 EndK(V),i. e. if v =Pni=1 �ivi 2 V, thenf�(v) = nXj=1 nXi=1 �j � hvj; f(vi)i � vi:We have to show that hf(v); wi = hv; f�(w)i for all v;w 2 V.By the Parseval-Equation we havef�(vj) = nXi=1 hf�(vj); vii � vi: (20)The uniqueness of the basis representation of a ve
tor gives in view of Equation (19)and (20) therefore hvj; f(vi)i = hf�(vj); viior equivalently hf(vi); vji = hvi; f�(vj)ifor all i; j = 1; : : : ; n. Let now v =Pni=1 �ivi and w =Pnj=1 �jvj be given, thenhf(v); wi = nXi=1 nXj=1 �i�jhf(vi); vji = nXi=1 nXj=1 �i�jhvi; f�(vj)i = hv; f�(w)i:It remains to show the uniqueness. Let therefore f 0 2 EndK(V) be any endomor-phism su
h that hf(v); wi = hv; f 0(w)i (21)for all v;w 2 V. We have to show f 0(w) = f�(w) for all w 2 V. From Equation(21) if follows that0 = hv; f 0(w)i- hv; f�(w)i = hv; f 0(w) - f�(w)ifor all v;w 2 V. Fix w and 
hoose now v = f 0(w) - f�(w), thenhf 0(w) - f�(w); f 0(w) - f�(w)i = 0;whi
h implies f 0(w) - f�(w) = 0, sin
e the s
alar produ
t is de�nite.



100 A. ASSIGNMENTS AND SOLUTIONS



Bibliography[Bu℄ Burnside, W.: Theory of Groups of Finite Order. Dover 21911.[Doe3℄ Doerk, Klaus und Trevor Hawkes: Finite Soluble Groups. (De Gruyter Expositions inMathemati
s, 4) New York 1992.[Go1℄ Gorenstein, Daniel: Finite Groups. New York 21980.[Go2℄ Gorenstein, Daniel: Finite Simple Groups. New York 1982.[Go3℄ Gorenstein, Daniel: The Classi�
ation of Finite Simple Groups. Vol. 1. New York 1983.[Go4℄ Gorenstein, Daniel: The Classi�
ation of Finite Simple Groups. Vol. 2. New York 1996.[Hum℄ Humphreys, John F.: A Course in Group Theory. Oxford 1996.[Su℄ Suzuki, Mi
hio: Group Theory I. (Die Grundlehren der mathematis
hen Wissens
haften,Bd. 247) Berlin 1982.[We℄ Weinstein, Mi
hael: Examples of Groups. Passai
 1977.[HK℄ Ho�man, Kenneth and Ray Kunze: Linear Algebra. Englewood Cli�s2 1971.

101


