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CHAPTER IFinite Groups0 Motivation - Chek Digit CodesNowadays produts in shops all arry bar odes and are identi�ed by them. More-over, at the ash desk the bar ode is sanned or typed in and that way you getharged the prie. Sometimes the bar odes are not reognised orretly or thewrong number has been typed in. However, the error is reognised by the mahineand the bar ode is not aepted.A) Have you ever wondered how it omes, that you are alwaysharged the right prie?Well, the mahine looks the bar ode up in some data base, and if the inorret barode was ontained in that data base as well, then the mahine ould not possiblydetet any error. So, when assigning bar odes, you have to make sure that no barodes whih - in a ertain sense - are too similar are in the data base.Is this diÆult? Well, to deide on that question we should know, what bar odesin priniple look like!Bar odes are also alled EAN-13 odes, where EAN is short for European ArtileNumber, and they onsist of a thirteen digit number. The �rst 2 to 3 digits standfor the organisation whih assigned the numbers to the produer, some of the nextdigits identify this produer and so on. So, the digits are not really arbitrary digits.In partiular, for a �xed produer a large part of the bar ode will always be thesame. I. e. the numbers will have to be similar!How an we get along with that problem?Idea: Store some redundant information whih is not needed to identify the artile,but only to detet possible errors.In the ase of the EAN-13 only 12 digits haraterise the artile. Digit no. 13 is aso alled hek digit.B) How is the hek digit related to the (real) artile number?Basi Idea: It should be possible to alulate the hek digit from the remainingdigits in an easy way, but suh that (ommon) errors are possibly deteted.First Idea: Repeat the whole number! This is a bit too muh redundany andinreases the risk of falsely sanned numbers.Seond Idea: Take the ross sum of the digits of the real produt number as hek\digit". 1



2 I. FINITE GROUPSE. g. if the produt number is 013412547180, then the hek digit would be0+ 1+ 3+ 4+ 1+ 2+ 5+ 4+ 7+ 1+ 8+ 0 = 36:This will usually be several digits long, and is still too muh redundany.Third Idea: Let's just take the last digit of the ross sum!E. g. in the above example the hek digit would then be 6.This an be formulated in a more mathematial way by saying thatwe take the remainder of the ross sum by division with remainder modulo 10.And that's where groups ome into play as a nie way to formulate the proedure. Wemay identify the digits 0; : : : ; 9 with the elements of the additive group (Z=10Z;+),just via the mapf0; : : : ; 9g! Z=10Z : a 7! a = a+ 10Z = fa+ 10z j z 2 Zg;i. e. identifying the digit with the residue lass represented by the number. Viewingthe digits in the artile number as elements of Z=10Z that way, the hek digitbeomes just the sum of the \digits".E. g. 0+ 1+ 3+ 4+ 1+ 2+ 5+ 4+ 7+ 1+ 8+ 0 = 36 = 6.C) Does this allow to detet errors? Otherwise it is of no use.Certainly we will not be able to detet all errors, thus we have to distinguish ertaintypes of errors! Some statistis tell us that the following two types are the mostommon ones.Type I: \Single Digit Errors" { i. e. just one digit is wrong. These are roughly80% of the ouring errors.Type II: \Neighbour Transpositions" { i. e. two neighbouring digits have beeninterhanged. These are about 10% of the errors.It is fairly obvious that the ross-sum-mod-10-approah annot detet errors of TypeII, sine the addition in Z=10Z is ommutative. However, does it detet errors ofType I?Suppose the orret number was a1a2 � � �a13 and instead of some ai we read a 0i 2f0; : : : ; 9g with ai 6= a 0i. Thena13 -  Xj 6=i;13aj + a 0i! = 12Xj=1 aj -  Xj 6=i;13aj + a 0i! = ai - a 0i 6= 0; (1)sine ai - a 0i is number between -9 and 9 whih is non-zero and thus 10 does notdivide ai - a 0i. That means \Single Digit Errors" are deteted.D) Bak to EAN-13.The enoding of EAN-13 is, however, slightly di�erent. The hek digit in a1a2 � � �a13satis�esa13 = (-1) � a1 + (-3) � a2 + (-1) � a3 + (-3) � a4 + : : :+ (-1) � a13or equivalently a1 + 3 � a2 + a3 + : : :+ a13 = 0:



0. MOTIVATION - CHECK DIGIT CODES 3We all these equations hek digit equations.Does this still detet errors of Type I?Let's go bak to Equation (1) for this. The question �nally omes down to hekingwhether ai 6= a 0i implies that ai - a 0i and 3 � (ai - a 0i) are not equal to 0, whih isthe ase sine ai-a 0i is not divisible by 10 and thus also three times this number isnot. Thus we are luky.How about errors of Type II?If ai and ai+1 have been interhanged, then this omes down to the question whether3 � ai + ai+1 = 3 � ai+1 + ai, 2 � (ai - ai+1) = 0, 5 j ai - ai+1:Thus even errors of Type II will quite frequently be deteted, but not all of them.We ahieved this by multiplying the digits in the ross sum by ertain weights wi {here wi = 1 and wi = 3.E) Whih weights wi would have been suitable in the hek digitequation in order not to loose the property that errors of TypeI are deteted?The important point was thatai 6= a 0i ) !i � ai 6= !i � a 0i;i. e. that the map �!i : Z=10Z! Z=10Z : a 7! !i � ais injetive, and hene bijetive sine Z=10Z is a �nite set. In other words, �!i is apermutation of the set Z=10Z.This leads to the following generalisation and de�nition.0.1 De�nitionLet (G; �) be a group, g0 2 G a �xed element, and let �1; : : : ; �n 2 Sym(G) bepermutations.a. We allC = CG(�1; : : : ; �n; g0) = �(g1; : : : ; gn)t 2 Gn �� �1(g1) � � ��n(gn) = g0	a hek digit ode (CDC) of length n on the alphabet G.b. We say that C detets errors of Type I if and only if (g1; : : : ; gn)t 2 C andg 0i 2 G with g 0i 6= gi implies that (g1; : : : ; gi-1; g 0i; gi+1; : : : ; gn)t 62 C.. We say that C detets errors of Type II if and only if (g1; : : : ; gn)t 2 C withgi 6= gi+1 implies that (g1; : : : ; gi-1; gi+1; gi; gi+2; : : : ; gn)t 62 C.0.2 Example (EAN-13)Let (G; �) = (Z=10Z;+), g0 = 0, n = 13, �i = �1 if i is odd and �i = �3 if i is even.This then desribes the EAN-13 ode C = CZ=10Z(�1; �3; : : : ; �1; 0).



4 I. FINITE GROUPSAtually, C = ker(�), where � : (Z=10Z)13 ! Z=10Z is the group homomorphismde�ned by multipliation with the matrix �1; 3; 1; : : : ; 1�.Having introdued hek digit odes over arbitrary groups it would be nie to knowsomething about their error deteting properties.0.3 Proposition (Error Deteting Properties)Let C = CG(�1; : : : ; �n; g0) be a CDC over the alphabet (G; �).a. C detets errors of Type I.b. If n � 3, then C detets errors of Type II if and only if 8 i = 1; : : : ; n -1; 8 g; h 2 G s. t. g 6= h:g � ��i+1 Æ �-1i �(h) 6= h � ��i+1 Æ �-1i �(g):Proof: a. Let (g1; : : : ; gn)t 2 C, g 0i 2 G suh that g 0i 6= gi, and suppose (g1; : : : ; g 0i; : : : ; gn)t 2C. Then �1(g1) � � ��n(gn) = g0 = �1(g1) � � ��i�g 0i� � � ��n(gn):By the anellation law we thus dedue that�i(gi) = �i�g 0i�:But then also gi = g 0i, sine �i is injetive. This, however, is a ontraditionto our assumption.b. Let's �rst assume that the ondition of the proposition is satis�ed and let'sshow that then C detets errors of Type II. For this let (g1; : : : ; gn)t 2 C begiven with gi 6= gi+1 and set g = �i(gi) and h = �i(gi+1). Sine �i is injetivewe have g 6= h. Thus by the ondition of the proposition we also have�i(gi) � �i+1(gi+1) = g � ��i+1 Æ �-1i �(h) 6= h � ��i+1 Æ �-1i �(g) = �i(gi+1) � �i+1(gi):Multiplying both sides with the same element of G the inequality is preservedand we get�1(g1) � � ��i(gi) � �i+1(gi+1) � � ��n(gn) 6= �1(g1) � � ��i(gi+1) � �i+1(gi) � � ��n(gn):This means that C detets errors of Type II.Let's now suppose that C detets errors of Type II and then prove the aboveondition. For this let g; h 2 G with g 6= h, and set gi = �-1i (g) and gi+1 =�-1i (h). Sine �i is bijetive gi 6= gi+1. Choose now gj 2 G, j 6= i; i + 1 suhthat (g1; : : : ; gn)t 2 C (here we need n � 3). Thus by assumption(g1; : : : ; gi+1; gi; : : : ; gn)t 62 C:But then�1(g1) � � ��n(gn) = g0 6= �1(g1) � � ��i(gi+1) � �i+1(gi) � � ��n(gn):Using the anellation law we deriveg � ��i+1 Æ �-1i �(h) = �i(gi) � �i+1(gi+1) 6= �i(gi+1) � �i+1(gi) = h � ��i+1 Æ �-1i �(g):This �nishes the proof.



0. MOTIVATION - CHECK DIGIT CODES 5Note: If (G; �) is abelian and inv : G ! G : g 7! g-1 denotes the inversion map,then the ondition in Proposition 0.3 omes down tog � � inv Æ�i+1 Æ �-1i �(g) 6= h � � inv Æ�i+1 Æ �-1i �(h): (2)Sine inv Æ�i+1Æ�-1i 2 Sym(G) is a permutation of G, it seems that maps of the formg 7! g�(g) for some permutation � 2 Sym(G) are onneted to the error detetingproperties of odes.0.4 De�nitionLet (G; �) be a group and � 2 Sym(G). We all � a omplete mapping if and onlyif the map �� : G! G : g 7! g � �(g)is again a permutation of G.So far we know how to hek whether a given CDC detets errors of Typer II or not,but we have no means to �nd suh a ode { or possibly to deide that their is non.0.5 CorollaryLet (G; �) be a �nite abelian group, n � 3. Then there is a CDC of length n whihdetets errors of Type II if and only if G admits a omplete mapping.Proof: Let's �rst suppose that G admits a omplete mapping � 2 Sym(G). Setg0 = eG and �i = (inv Æ�)i for i = 1; : : : ; n.Claim: C = CG(�1; : : : ; �n; g0) detets errors of Type II.For this we only have to hek that Equation (2) is satis�ed. Let g; h 2 G suh thatg 6= h. Theng � � inv Æ�i+1 Æ �-1i �(g) = g � � inv Æ(inv Æ�)i+1-i�(g) = g � �(g) = ��(g)6= ��(h) = h � �(h) = h � � inv Æ(inv Æ�)i+1-i�(h) = h � � inv Æ�i+1 Æ �-1i �(h):Thus Equation (2) is ful�lled.Let's now suppose that there is a CDC CG(�1; : : : ; �n; g0) whih detets errors ofType II. We de�ne � = inv Æ�2 Æ �-11 2 Sym(G) and we laim that this is then aomplete mapping. In order to hek this we let g; h 2 G suh that g 6= h. Thus byEquation (2) we have��(g) = g ��(g) = g �� inv Æ�2 Æ�-11 �(g) 6= h �� inv Æ�2 Æ�-11 �(h) = h ��(h) = ��(h):Hene �� is injetive and thus bijetive, sine G is �nite. But then � is a ompletemapping.0.6 Remarka. If jGj = 2 �m with m odd, then there exists no omplete mapping on G.1In partiular, there is no CDC on Z=10Z whih detets all errors of Type II.b. If jGj is odd, then the identity mapping idG is a omplete mapping.1The proof is elementary, but lengthy. We refer the reader to H. Siemon, Anwendungen derelementaren Gruppentheorie in der Zahlentheorie, 1981.



6 I. FINITE GROUPSProof: Let jGj = 2m + 1, then by the Theorem of Lagrange we have eG =gjGj = g2m+1. Multiplying by g we get �gm+1�2 = g, and thus the mappingid�G : g 7! g � idG(g) = g2 is surjetive. But sine G is �nite, it is thenbijetive.. Problem: There is no CDC on (Z=10Z;+) whih detets errors of Type II!How an we deal with that?Solution 1: Use an odd number of digits, i. e. alulate over Z=mZ with anodd m.E. g. the ISBN ode works over (Z=11Z;+), where the element 10 = 10 +11Z is denoted by X and is only used as hek digit. The ISBN ode is aCZ=11Z(�1; : : : ; �10; 0) ode, where �i : Z=11Z! Z=11Z : a 7! i � a. We leaveit as an exerise to hek that the ode atually detets errors of Type II. Youonly have to hek that Equation (2) is satis�ed.Solution 2: Use a non-abelian group with ten elements! There the non-existene of a omplete mapping is not related to the error deteting property.0.7 Example (German Curreny)The hek digits of the serial numbers of the German urreny where atually en-oded by a CD10��1; : : : ; �10; idD10; (1)� ode.Consider the dihedral groupD10 = 
(1 2 3 4 5); (1 5)(2 4)� � S5 = Sym �f1; : : : ; 5g�:In the exerises you show that, setting � = (1 2 3 4 5) and � = (1 5)(2 4), we maydesribe D10 as the setD10 = ��0 = (1); �1; : : : ; �4; � Æ �0 = �; � Æ �1; : : : ; � Æ �4	:And sine � Æ � = �-1 Æ � 6= � Æ �, the group is indeed not abelian.Verhoe� showed that the permutation � : D10 ! D10 of D10 de�ned byx �0 �1 �2 �3 �4 � Æ �0 � Æ �1 � Æ �2 � Æ �3 � Æ �4�(x) �1 � Æ �0 � Æ �2 � Æ � �2 � Æ �3 �3 �0 � Æ �4 �4satis�es that g; h 2 D10 with g 6= h implies g Æ �(h) 6= h Æ �(g). Hene, setting�i = �i 2 Sym(D10), the ode CD10��1; : : : ; �10; (1)� detets errors of Type II byProposition 0.3.Of ourse for the serial numbers on the German urreny they did not use suh fanysymbols like �. They used the usual 10 digits and in addition 10 letters. However,they were identi�ed with the elements in D10 in the following way�0 �1 �2 �3 �4 � Æ �0 � Æ �1 � Æ �2 � Æ �3 � Æ �40 1 2 3 4 5 6 7 8 9A D G K L N S U Y Z:Thus, if you wanted to hek whether a serial number on a German bank note wasvalid, you replaed the digits and letters by the appropriate elements of D10 andlooked whether this element belonged to CD10��1; : : : ; �10; idD10; (1)�.



1. BASICS 70.8 ExeriseChek if AA6186305Z2 is a valid serial number for a German bank note.Question: Could we have used some other group with 10 elements as alphabet?Answer: No! Not really. The group only matters up to isomorphism, and we willshow at the end of the part on �nite groups that up to isomorphism there are onlytwo groups with 10 elements { (Z=10Z;+) and (D10; Æ).1 BasisLet's reall some of the basi de�nitions and results from �rst year ourses.A) Groups1.1 De�nitionA group is a tuple (G; �) onsisting of a non-empty set G and a binary operation� : G�G! G : (g; h) 7! g � hsuh that the following axioms are ful�lled:(i) g � (h � k) = (g � h) � k for all g; h; k 2 G, (Assoiativity)(ii) 9 e 2 G : 8 g 2 G : e � g = g, (Existene of a Neutral)(iii) 8g 2 G 9h 2 G : h � g = e. (Existene of an Inverse)If moreover(iv) g � h = h � g for all g; h 2 Gis satis�ed, then we all (G; �) abelian.If jGj <1, we all the group �nite and jGj = o(G) = #G is alled its order.Notation: Instead of g �h we will usually just write gh. If a group is abelian, thenwe will usually denote the operation by \+" instead of \�".If no ambiguity onerning the group operation an arise, we will just write G insteadof (G; �) in order denote a group.1.2 PropositionLet (G; �) be a group.a. The neutral element eG is uniquely determined and satis�es g � eG = g for allg 2 G as well. Instead of eG we also write 1G.b. For any element g 2 G the inverse element is uniquely determined and isdenoted by g-1 or invG(g). It satis�es g � g-1 = eG as well.. Canellation Rule: If g; h; k 2 G with gh = gk or with hg = kg, then h = k.d. For g; h 2 G we have (g � h)-1 = h-1 � g-1 and �g-1�-1 = g.e. If we set g0 = eG and, reursively, gi+1 = g � gi and g-i = �gi�-1 for i � 0,then the exponential laws are ful�lled, i. e. for g 2 G and i; j 2 Z we havegi � gj = gi+j and �gi�j = gi�j:



8 I. FINITE GROUPSProof:a./b. Let's prove Parts a. and b. together in several steps, where eG denotes a �xed(left-)neutral in G for whih every element has a (left-)inverse as indiated bythe group axioms.Step 1 : If h � g = eG for g; h 2 G, then also g � h = eG.Sine G is a group, there is some k 2 G suh that k � h = eG. Heneg � h = eG � (g � h) = (k � h) � (g � h) = k � (h � g) � h = k � eG � h = k � h = eG:Step 2 : We also have g � eG = g for all g 2 G.Let g 2 G and let h 2 G suh that h � g = eG. Then, using Step 1,g � eG = g � (h � g) = (g � h) � g = eG � g = g:Step 3 : Let e 0 2 G suh that for all g 2 G we have, e 0 � g = g, then e 0 = eG.Using Step 2, we have e 0 = eG � e 0 = e 0 � eG = eG.Step 4 : Let k; h 2 G suh that k � g = eG = h � g, then k = h.By Step 1 we know that g � h = eG, thus we get with the aid of Step 2k = k � eG = k � (g � h) = (k � g) � h = eG � h = h:. Let g; h; k 2 G suh that h � g = k � g. Thenh = h � eG = h � �g � g-1� = (h � g) � g-1 = (k � g) � g-1 = k � �g � g-1� = k � eG = k:The other way round works analogously.d. Let g; h 2 G. In order to see that (g �h)-1 = h-1 � g-1, it suÆes to show thatthe right hand side has the property of the inverse element of g � h. Knowingthat that one is uniquely determined we are then done.�h-1 � g-1� � (g � h) = h-1 � �g-1 � g� � h = h-1 � eG � h = h-1 � h = eG:Thus h-1 � g-1 is the unique inverse of g � h, i. e. h-1 � g-1 = (g � h)-1.Analogously, for g 2 G we have by Part b.g � g-1 = eG;and hene g satis�es the property of the inverse element of g-1. Hene byuniity we get �g-1�-1 = g.e. Note that the de�nition implies right awaygk = �g-1�-k 8 g 2 G; 8 k 2 Z:Let's now prove the �rst exponential law, and for this let i; j 2 Z.1st Case: Let g 2 G be arbitrary, i � 0. We do the proof by indution on i.i = 0 : Then gi � gj = g0 � gj = eG � gj = gj = gi+j:i 7! i+ 1 : By de�nition and indution hypothesis:gi+1 � gj = �g � gi� � gj = g � �gi � gj� = g � gi+j = gi+1+j:



1. BASICS 92nd Case: Let g 2 G arbitrary, i < 0. Apply Case 1 to the element g-1, thenby de�nition we get (sine -i > 0!)gi � gj = �g-1�-i � �g-1�-j = �g-1�-i-j = gi+j:Let's now turn to the seond exponential law, and let again i; j 2 Z, g 2 G.1st Case: j � 0. We do the proof by indution on j.j = 0 : Then �gi�j = �gi�0 = eG = g0 = gi�j:j 7! j+ 1 : By de�nition, indution hypothesis and the �rst exponential law weget: �gi�j+1 = �gi� � �gi�j = gi � gi�j = gi+i�j = gi�(j+1):2nd Case: j < 0. By the �rst exponential law we have g-i � gi = g-i+i = g0 =eG, and thus �gi�-1 = g-i. By Case 1 and de�nition we get (sine -j > 0!):�gi�j = ��gi�-1�-j = �g-i�-j = g(-i)�(-j) = gi�j:Notation: If the group is abelian and the group operation is denoted by +, then wedenote the neutral element rather by 0G and the inverse of g 2 G by -g. Moreover,instead of gi we then write i � g.1.3 Example a. (Z;+) is an abelian group with neutral element 0.b. Let (R;+; �) be a ring (e. g. the integers) and n � 1 an integer. Mat(n�n; R),the set of all n � n-matries with entries in R forms a group with respet tomatrix addition as binary operation. The neutral element is the zero matrix,and the inverse of (aij) is just (-aij).. Let (K;+; �) be any �eld (e. g. the real numbers) and let n � 1 be an integer.Gln(K) = f(aij) 2 Mat(n � n;K) j (aij) is invertibleg, the set of all invertiblen�n-matries with entries in the �eld K, forms a group with respet to matrixmultipliation as binary operation. The neutral element is the identity matrixand the inverse of an element is just its inverse matrix.d. Let M be any set. Sym(M) = f' : M ! M j ' is bijetiveg, the set of allpermutations of M, is a group with respet to the omposition of maps. Theneutral element is the identity map idM, and the inverse of an element ' is itsinverse mapping.1.4 Example (The Symmetri Group Sn)When studying �nite groups one group attrats a partiular interest as an in�nitesoure for interesting examples { this is the symmetri group of n lettersSn = Sym �f1; : : : ; ng�:An element � 2 Sn an be represented in the form 1 2 3 � � � n�(1) �(2) �(3) � � � �(n) !



10 I. FINITE GROUPSor, if f1; : : : ; ng = fa1; : : : ; ang by a1 a2 a3 � � � an�(a1) �(a2) �(a3) � � � �(an) ! :The elements of Sn are alled permutations, and there is a partiular type of per-mutations alled yles { a permutation of the form a1 a2 � � � ak-1 ak ak+1 � � � ana2 a3 � � � ak a1 ak+1 � � � an !is alled a k-yle and we write instead just (a1 a2 � � � ak). Very simple yles are2-yles (a b), and they are alled transpositions.Note: The representation of a k-yle is not unique {(a1 a2 � � � ak) = (a2 a3 � � � ak a1) = : : : :And the neutral element, i. e. the identity map on f1; : : : ; ng, is represented by any1-yle, i. e. (1) = (2) = : : : = (n). We usually denote it by (1).Fats: a. Cyle-Deomposition: Every permutation � 2 Sn has a unique repre-sentation as a produt of disjoint yles (unique up to ordering).E. g. � =  1 2 3 4 5 6 73 2 1 5 6 7 4 ! 2 S7, then � = (1 3)(2)(4 5 6 7) =(1 3)(4 5 6 7).b. Every permutation � 2 Sn an be written as a produt of transpositions, andthe parity of the number of neessary transpositions is uniquely determined.If the parity is even, then we say � has sign sgn(�) = 1 and we all thepermutation even, otherwise sgn(�) = -1 and � is said to be odd.E. g. for the above permutation we have � =  1 2 3 4 5 6 73 2 1 5 6 7 4 ! =(1 3)(4 7)(4 6)(4 5) = (1 3)(4 7)(4 6)(4 5)(2 3)(2 3) { the parity is even.B) Subgroups1.5 De�nition and PropositionLet (G; �) be a group.a. A non-empty subset ; 6= U � G is alled a subgroup of G if and only if (one ofthe) following equivalent onditions is ful�lled:(i) U is itself a group with respet to the restrition of the binary operation� to U�U.(ii) For all u; v 2 U we have u � v 2 U and u-1 2 U.(iii) For all u; v 2 U we have u � v-1 2 U.If jUj <1, then these are also equivalent to:(iv) For all u; v 2 U we have u � v 2 U.We denote this by (U; �) � (G; �) or simply by U � G.Note, if U � G, then eG = eU 2 U!b. If U;V � G are two subsets, then we de�ne U � V = fu � v j u 2 U; v 2 Vg.



1. BASICS 11. If M � G is any subset, then we allhMi = \M�U�GUthe subgroup generated by M, and this is by Proposition 1.7 indeed a group.Proof: We have to prove the equivalenes in the de�nition of a subgroup. Forthis we denote throughout the proof for g 2 G by invG(g) the inverse of g inG and for u 2 U by invU(u) the inverse of u 2 U. We will show, that indeedinvU(u) = invG(u) for all u 2 U!(i) =) (ii): Let's �rst show that, if (U; �) is itself a group, then eU = eG andinvU(u) = invG(u) for all u 2 U. For this note thateG = invG(eU) � eU = invG(eU) � (eU � eU) = (invG(eU) � eU) � eU = eG � eU = eU;and thus invU(u) � u = eU = eG = invG(u) � u, whih then by the anellation lawimplies invU(u) = invG(u).Thus for any u 2 U we have invG(u) = invU(u) 2 U as desired, and for u; v 2 U itfollows u � v 2 U, sine by assumption the restrition of \�" to U � U takes valuesin U.(ii) =) (i): By assumption u � v 2 U for all u; v 2 U, and hene� : U�U! Uis atually a binary operation taking values in U. It, therefore, suÆes to hekthat the group axioms are ful�lled. Assoiativity omes for free, sine it is alreadysatis�ed for elements from the larger set G. Moreover, if we ould show that eG 2 Uand for any u 2 U also invG(u) 2 U, then we are done, sine these elementssatisfy the properties of the neutral respetively the orresponding inverse element.However, for u 2 U we have invG(u) 2 U by assumption, and sine U 6= ;, wemay hoose some v 2 U, so that again invG(v) 2 U and thus by the losednessassumption eG = v � invG(v) 2 U:(ii) =) (iii): Let u; v 2 U, then by assumption invG(v) 2 U and thus also u �invG(v) 2 U.(iii) =) (ii): Let again u; v 2 U. By assumption eG = u � invG(u) 2 U, and thusinvG(u) = eG � invG(u) 2 U and u � v = u � invG � invG(v)� 2 U.(ii) =) (iv): This is obvious no matter whether U is �nite or not.(iv) =) (ii): It remains to show that for every element u 2 U also invG(u) 2 U. Welaim, that invG(u) = uk for some k � 0, whih then by the losedness assumptionimplies that it belongs to U.Sine jUj <1, also the set �uk j k > 0	 is �nite. This implies that there are naturalnumbers i > j > 0, suh that ui = uj. But then by the exponential laws we haveui-j-1 = u-1 and i- j- 1 � 0.1.6 Example a. 1 = feGg and G are the trivial subgroups of G.



12 I. FINITE GROUPSb. Claim: (U;+) � (Z;+) if and only if there is an integer n � 0 suh thatU = n � Z = fn � z j z 2 Zg.Proof: Let U = n � Z for some n � 0, then 0 2 U and thus U is non-empty.Let u = nz; v = nz 0 2 U, then u+v = n � (z+z 0) 2 U and -u = n � (-z) 2 U.Thus U � Z.Let now U � Z be an arbitrary subgroup of Z and suppose U 6= f0g. We haveto �nd n > 0, suh that U = n � Z. Let's setn = minfu 2 U j u > 0g:For this note that U ontains some non-zero element u and hene its inverse-u, and one of these will thus be stritly greater than zero.We laim that U = n � Z. Note �rst of all that with n 2 U and U being asubgroup, we haven � z = n+ z-times: : : +n; n � (-z) = (-n)+ z-times: : : +(-n); n � 0 = 0 2 Ufor all z > 0. Hene, n � Z � U.On the other hand, if we hoose an arbitrary 0 6= u 2 U, then division withremainder modulo n gives uniquely determined integers z; r 2 Z suh thatu = n � z+ r and 0 � r < n:Rearranging the equation and using the fat the U is a subgroup ontainingn � Z we �nd r = u- n � z 2 U:But then the minimality assumption on n implies that r = 0 and hene u =n � z 2 n � Z.. An = f� 2 Sn j sgn(�) = 1g � Sn.E. g.A3 = �(1); (1 2 3); (1 3 2)	 � S3 = �(1); (1 2); (1 3); (2 3); (1 2 3); (1 3 2)	.d. �f1;-1g; �� � �R n f0g; ��.1.7 PropositionLet (G; �) be a group, U;V;Ui � G, i 2 I, M � G.a. Ti2IUi � G.b. U [ V � G if and only if U � V or V � U.. hMi = �g�11 � � �g�nn j n � 0; g1; : : : ; gn 2M;�1; : : : ; �n 2 Z	.d. U � V � G if and only if U � V = V �U if and only if U � V = hU [ Vi.Proof: a. This is Exerise 2 on the Assignment Set 3.b. If U � V or V � U, then the union is obviously a subgroup. Let's thereforesuppose that U 6� V and V 6� U. Then there are elements u 2 U n V andv 2 V n U. It suÆes to show that u � v 62 U [ V. Suppose the ontrary. Ifu � v 2 U, then v = u-1 � (u � v) 2 U as well in ontradition to the hoie of v.And if u � v 2 V, then u = (u � v) � v-1 2 V, whih gives again a ontradition.



1. BASICS 13. We set N = fg�11 � � �g�nn j n � 0; g1; : : : ; gn 2M;�1; : : : ; �n 2 Z	.Let's �rst show that N � hMi. If U � G suh that M � U, then g�11 � � �g�nn 2U for all gi 2M and �1; : : : ; �n 2 Z. Thus N � U, and thus N � hMi.It remains to show hMi � N. For this it suÆes to show that N � G withM � N. Sine the empty produt by onvention is eG, N is non-empty.If h = g�11 � � �g�nn ; h 0 = g�i+1i+1 � � �g�mm 2 N are two arbitrary elements, thenh � h 0 = g�11 � � �g�mm 2 N and h-1 = g-�nn � � �g-�11 2 N. Thus N � G, andM � N is ful�lled anyway.d. Let's �rst show that U � V � G if and only if U � V = V �U.If U �V � G and u 2 U and v 2 V are given, then v �u = �u-1 � v-1�-1 2 U �V.Hene V �U � U �V, and by symmetry V �U = U � V.Suppose now V �U = U � V. Sine eG 2 U, V, we have eG = eG � eG 2 U � V,and the latter is non-empty. Let u; u 0 2 U and v; v 0 2 V be given. Then byassumption v �u 0 2 V �U = U �V, and thus there are elements u 2 U and v 2 Vsuh that v � u 0 = u � v. Hene,(u � v) � �u 0 � v 0� = u � u � v � v 0 2 U � V;and (u � v)-1 = v-1 � u-1 2 V �U = U � V. But thus U � V � G.Let's now show that U �V � G if and only if U �V = hU [ Vi.If U �V = hU [ Vi, then in partiular U � V � G.It remains to show that U �V � G implies U �V = hU[Vi. For this note thatU � V ontains U [ V, sine both U and V ontain eG. But being a subgroupof G, then hU [ Vi= \U[V�H�GH � U � V:On the other handU �V � fg�11 � � �g�nn j n � 0; g1; : : : ; gn 2 U [ V;�1; : : : ; �n 2 Z	 = hU [ Vi:1.8 Example a. Let n;m � 0, then due to the unique fatorisation of naturalnumbers we have n � Z \m � Z = lm(n;m) � Z.b. Let n;m � 0, then due to the so alled B�ezout identity we have n �Z+m �Z =hf(n;m) � Z.. h(1 2); (1 2 3)i = S3, sine (1 2 3) = (1 2)Æ(1 2 3)Æ(1 2), (1 3) = (1 2 3)Æ(1 2)and (2 3) = (1 2) Æ (1 2 3).1.9 De�nition and PropositionLet (G; �) be a group, U � G.a. For g; h 2 G we de�neg �U;l h () g-1 � h 2 U:This de�nes an equivalene relation on G, and the equivalene lass of g is justg �U = fg � u j u 2 Ug. We all the equivalene lasses (left) osets.



14 I. FINITE GROUPSNote: For g; h 2 G we have either gU = hU or gU \ hU = ;. Moreover,sine any element of G belongs to some oset, G an be written as the disjointunion G =`i2I gi �U of ertain osets and we all fgi j i 2 Ig the a system ofrepresentatives.b. Similarly, for g; h 2 G we de�neg �U;r h () g � h-1 2 U:This de�nes again an equivalene relation on G, and the equivalene lass of gis just U � g = fu � g j u 2 Ug. We all the equivalene lasses right osets.Note: For g; h 2 G we have either Ug = Uh or Ug\Uh = ;. Moreover, sineany element of G belongs to some oset, G an be written as the disjoint unionof ertain right osets.Note: U = eG �U = U �eG itself is always a left and right oset! Moreover, g �U = Uif and only if g 2 U if and only if U � g = U.Proof: By symmetry it suÆes to prove Part a.Show : �U;l is an equivalene relation.Let g 2 G, then g-1 � g = eG 2 U, and thus g �U;l g, i. e. the relation is reexive.If g; h 2 G suh that g �U;l h, then g-1 � h 2 U. Thus h-1 � g = �g-1 � h�-1 2 U,whih means h �U;l g and gives the symmetry of the relation.If g; h; k 2 G suh that g �U;l h and h �U;l k, then g-1 � h; h-1 � k 2 U. But thenalso �g-1 � h� � �h-1 � k� = g-1 � k 2 U;that is, the relation is transitive. So, �nally, �U;l is an equivalene relation.Show : The equivalene lass of g 2 G with respet to �U;l is just g �U.By de�nition, the equivalene lass of g 2 G is justfh 2 G j g �U;l hg = �h 2 G �� g-1 � h 2 U	 = fh 2 G j h 2 g �Ug = g �U:Taking general properties of equivalene relations into aount we know that twoequivalene lasses, whih are not disjoint, oinide, and we know that the disjointunion of the di�erent equivalene lasses is the whole set G.1.10 Example a. Consider the group (Z;+) and the subgroup nZ � Z for n � 0�xed. The osets are then all of the formx+ nZ with x 2 Z:Sine Z is abelian, left and right osets oinide! A possible system of repre-sentatives is f0; 1; : : : ; n- 1g. Note also that e. g. 4+ 11Z = 15+ 11Z.b. G = S3, U = h(1 2)i and � = (1 2 3), then� ÆU = �(1 2 3); (1 3)	 6= �(1 2 3); (2 3)	 = U Æ �:Thus in general the left and right oset orresponding to an element will notoinide!



1. BASICS 151.11 Theorem (of Lagrange)Let (G; �) be a �nite group, V � U � G.a. #fgU j g 2 Gg = #fUg j 2 Gg, i. e. the number of di�erent left osetsoinides with the number of di�erent right osets. This number is alled theindex of U in G and is denoted by jG : Uj.b. jGj = jUj � jG : Uj.In partiular, the order of a subgroup always divides the order of the group!. jG : Vj = jG : Uj � jU : Vj.d. jU � Vj = jUj�jV jjU\V j.Proof: We note that for g 2 G �xed the map � : U! g �U : u 7! g � u is bijetivewith inverse � : g �U! U : v 7! g-1 � v. In partiular we have for any g 2 GjUj = jg �Uj:a./b. SineG is �nite, �U;l and �U;r lead to �nite systems of representatives fg1; : : : ; gngand fh1; : : : ; hmg for left respetively right osets of U in G. In partiular, n isthe number of di�erent left osets and m the number of di�erent right osets.It follows nai=1 gi �U = G = maj=1 U � hj;and hene n � jUj = nXi=1 jgi �Uj = jGj = mXj=1 jU � hjj = m � jUj:This, however, implies n = m = jG : Uj and jGj = jUj � jG : Uj.. The proof is Exerise 1 on the Assignment Set 3.d. By part b. it suÆes to show jUj = jVj � jU : U \ Vj. In order to see this,let fu1; : : : ; ung be a system of representatives of the osets of U \ V in U, inpartiular n = jU : U \ Vj.Claim: U �V =`ni=1 ui �V.Let's show �rst that the union on the right hand side is disjoint. For that let'ssuppose that we have v;w 2 V suh that ui � v = uj �w 2 ui � V \ uj � V withi 6= j. Then u-1j � ui = w � v-1 2 U \ V, thusui = uj � �w � v-1� 2 uj � (U \ V):This, however, is a ontradition to the fat that the osets ui � (U \ V) anduj � (U \ V) have no intersetion.We now show that indeed U � V = Sni=1 ui � V. Sine ui 2 U, we have ofourse Sni=1 ui � V � U � V. Let now u 2 U be arbitrary. Then there is somei 2 f1; : : : ; ng suh that u 2 ui � (U \ V). Hene there is some v 2 U \ Vsuh that u = ui � v, and thus u � V = ui � v � V = ui � V. But this impliesU � V � Sni=1 ui � V.



16 I. FINITE GROUPSHaving proved the laim, we dedue at onejUj = nXi=1 jui �Vj = n � jVj = jU : U \ Vj � jVj = jUj � jVjjU \ Vj:1.12 Remark a. If U � G, then jUj �� jGj!b. However, if d �� jGj, then there is not neessarily a subgroup of G of order d.E. g. d = 6 and G = A4.C) Normal Subgroups1.13 De�nition and PropositionLet (G; �) be a group. A subgroup N � G is alled a normal subgroup of G if andonly if one of the following equivalent properties is ful�lled:a. ng := g � n � g-1 2 N for all n 2 N, g 2 G.b. g �N � g-1 = N for all g 2 G.. g �N = N � g for all g 2 G.d. (g �N) � (h �N) = (g � h) �N for all g; h 2 G.We denote this by (N; �)� (G; �) or simply by N� G.Proof: a. =) b.: By the assumption we have g �N � g-1 � N for any g 2 G. Let'snow �x an arbitrary g 2 G and apply this inlusion to g-1. We then getg-1 �N � �g-1�-1 � N;and thus N = eG �N � eG = g � g-1 �N � �g-1�-1 � g-1 � g �N � g-1 � N:This, however, implies g �N � g-1 = N.b. =) .: Multiplying the equation g �N � g-1 = N by g on the desired equality.. =) d.: Note that N �N = fn1 � n2 j n1; n2 2 Ng = N, sine eG 2 N! We thus getfor g; h 2 G(gN) � (hN) = (Ng) � (hN) = N � (gh) �N = (gh) �N �N = ghN:d. =) a.: Let g 2 G and n 2 N be given, theng � n � g-1 = g � n � g-1 � eG 2 gN � g-1N = g � g-1 �N = eG �N = N:1.14 Example a. The trivial subgroups 1 and G of a group (G; �) are alwaysnormal subgroups.b. If (G; �) is abelian, then every subgroup is a normal subgroup.. h(1 2)i is not a normal subgroup of S3 by Example 1.10 b., while h(1 2 3)i�S3by Part d.However, (1 2) Æ (1 2 3) Æ (1 2)-1 = (1 3 2) 6= (1 2 3). Thus, gNg-1 = N doesnot imply gng-1 = n for all n 2 N!



1. BASICS 17d. An � Sn by Proposition 1.15. For this note that for n � 2 we an writeSn = An [ (1 2) ÆAn, where the �rst set ontains all even permutations andthe seond one ontains all odd ones.1.15 PropositionLet (G; �) be a group, N � G with jG : Nj = 2, then N�G.Proof: Let g 2 G.1st Case: gN = N. Then g = g � e 2 N, and hene Ng = N = gN.2nd Case: gN 6= N. Then g 62 N, and hene Ng 6= N. However, sine the indexis two, the omplement G n N of N in G must be a right and left oset. HenegN = G nN = Ng.1.16 PropositionLet (G; �) be a group, N;N1; N2 � G, U � G.a. N �U � G.b. N1 �N2 � G.. N \U�U.d. N1 \N2 � G.e. If N1 \N2 = 1, then n1 � n2 = n2 � n1 for all ni 2 Ni.Proof: a. Sine N�G, we have N � u = u �N for all u 2 U, and heneN �U = [u2UN � u = [u2Uu �N = U �N:Thus N �U � G by Proposition 1.7.b. By Part a. N1 � N2 � G, it thus remains to hek one of the onditions fornormality. Let g 2 G. Taking into aount, that N1 and N2 are normal, weget g �N1 �N2 = N1 � g �N2 = N1 �N2 � g:. This is Exerise 3 on Assignment Set 3.d. This is Exerise 3 on Assignment Set 3.e. Let ni 2 Ni for i = 1; 2 be given. Sine N1 and N2 are normal subgroups, wehave n1 � n2 � n-11 2 N2 and n2 � n-11 � n-12 2 N1. But thenn1 � n2 � n-11 � n-12 2 N1 \N2 = feGg:Hene, n1 � n2 � n-11 � n-12 = eG, whih implies n1 � n2 = n2 � n1.1.17 De�nition and PropositionLet (G; �) be a group, N � G. We denote by G=N = fgN j g 2 Gg the set of (left)osets of N in G. We then de�ne� : G=N� G=N! G=N : (gN; hN) 7! (gN) � (hN) = ghN;



18 I. FINITE GROUPSwhere the last equality is due to Proposition 1.13.Then (G=N; �) is a group, the so alled quotient group of G by N.The neutral element eG=N is just the oset N = eGN, and the inverse of gN is g-1N.If (G; �) is abelian, then (G=N; �) is abelian as well.Proof: Note that the multipliation is well-de�ned by Part d. in De�nition 1.13.Moreover, sine N = eGN 2 G=N is always a oset, G=N is a non-empty set. Itthus remains to verify the three group axioms.Let gN; hN; kN 2 G=N be given. Then the assoiativity follows from the assoia-tivity of the multipliation in G:�gN�hN)�kN = ghN�kN = �(gh)�k��N = �g�(hk)��N = gN�hkN = gN�(hN�kN):The oset N = eGN ats as neutral element:eGN � gN = (eG � g) �N = gN:And for gN 2 G=N the inverse element is just g-1N:g-1N � gN = �g-1 � g� �N = eGN:If G was abelian, then for gN; hN 2 G=N we havegN � hN = ghN = hgN = hN � gN:1.18 Example a. Z=nZ = f0 + nZ; 1 + nZ; : : : ; (n - 1) + nZg, and we usuallywrite a instead of a+ nZ if no ambiguity an our.E. g. (3+ 5Z) + (4+ 5Z) = 7+ 5Z = 2+ 5Z, sine 7 = 2+ 5 � 1 � 2(mod 5).b. S3=A3 = �A3; (1 2) ÆA3	.1.19 RemarkLet (G; �) be a group, N�G. Then there is one-to-one orrespondene between thesubgroups G=N and the subgroups of G ontaining N given byfU � G j N � Ug �! �U � G=N	 : U 7! U=N:Under this orrespondene the normal subgroups of G=N orrespond preisely tothe normal subgroups of G ontaining N.Proof: Proving this remark omes basially down to showing that, given U � G=N,the set �u 2 G �� uN 2 U	 is a subgroup of G, ontaining N, and that it is normal,when U is normal. This establishes the inverse of the above map. We leave thedetails to the reader.D) Homomorphisms1.20 De�nitionLet (G; �) and (H; Æ) be groups. A map' : G! H is alled a (group-)homomorphismif and only if for all g; g 0 2 G we have '�g � g 0� = '(g) Æ'�g 0�.If, moreover, ' is injetive / surjetive / bijetive, then we all ' a monomorphism/ epimorphism / isomorphism.



1. BASICS 19If (H; Æ) = (G; �), then the homomorphisms are also alled endomorphisms and theisomorphisms are also alled automorphisms.We denote by Hom(G;H) the set of all homomorphisms from G to H, and by Aut(G)the set of all automorphisms of G.We say that (G; �) and (H; Æ) are isomorphi if there is an isomorphism from G toH, and we denote this by (G; �) �= (H; Æ) or just G �= H.1.21 Example a. The map' : Z=2Z! f1;-1g with'(0+2Z) = 1 and'(1+2Z)is an isomorphism from (Z=2Z;+) to �f1;-1g; ��.b. sgn : (Sn; Æ)! �f1;-1g; �� : � 7! sgn(�) is an epimorphism if n � 2.Note: sgn(a1 : : : ak) = (-1)k-1.. det : �Gln(K); Æ� ! �K n f0g; �� : A 7! det(A) is an epimorphism by thedeterminant produt rule.d. exp : (R;+) ! �R n f0g; �� : x 7! ex is a monomorphism by the exponentiallaws.e. Let (G; �) be a group, and let g 2 G be some �xed element. We de�ne a map�g : G! G : h 7! hg = g � h � g-1:This map is an automorphism with inverse �g-1, sine �g�hh 0� = ghh 0g-1 =ghgg-1g 0g-1 = �g(h) � �g�h 0�.Automorphisms of this type are alled inner automorphisms. We denote byInn(G) the set of all inner automorphisms of G.f. Let (G; �) be a group, N� G. The map � : G ! G=N : g 7! gN is alled thequotient map onto G=N and is an epimorphism.1.22 PropositionLet � 2 Hom(G;H) and � 2 Hom(H;K), where (G; �), (H; �) and (K; �) are groups.a. �(eG) = eH and ��g-1� = ��(g)�-1.b. Im(�) := �(G) � G and is alled the image of �.. Ker(�) := �-1(eH) = �g 2 G j �(g) = eH	� G and is alled the kernel of �.d. � is a monomorphism if and only if Ker(�) = feGg.e. Ker(� : G! G=N) = N for N�G.f. � Æ � 2 Hom(G;K).g. If � is bijetive, then �-1 2 Hom(H;G).In partiular, �Aut(G); Æ� is a subgroup of �Sym(G); Æ�.Proof: a. NoteeH � �(eG) = �(eG) = �(eG � eG) = �(eG) � �(eG);and by the anellation law we have eH = �(eG). Moreover, for g 2 G we thenget ��g-1� � �(g) = ��g-1 � g� = �(eG) = eH = �(g)-1 � �(g)



20 I. FINITE GROUPSand applying the anellation law one more we end up with ��g-1� = �(g)-1.b. This is Exerise 1 on Assignment Set 4.. We note �rst that by �(eG) = eH we get eG 2 Ker(�), so that the kernel is non-empty. Moreover, for g; g 0 2 Ker(�) we have that ��g � g 0� = �(g) � ��g 0� =eH � eH = eH, so that g � g 0 2 Ker(�). And ��g-1� = �(g)-1 = e-1H = eH,whih implies that g-1 2 Ker(�). Hene Ker(�) is a subgroup of G. It remainsto show that it satis�es the normality ondition. Let n 2 Ker(�) and g 2 G.Then��g � n � g-1� = �(g) � �(n) � ��g-1� = �(g) � eH � �(g)-1 = eH;and therefore, g � n � g-1 2 Ker(�).d. Let's �rst suppose that � is injetive. This implies that the kernel of �, whihis the preimage of eH, ontains at most one element. However, by Part a.eG 2 Ker(�), hene Ker(�) = feGg.Suppose now, that Ker(�) = feGg, and let g; g 0 2 G suh that �(g) = ��g 0�.We have to show that g = g 0. By assumption we haveeH = �(g)-1 � ��g 0� = ��g-1� � ��g 0� = ��g-1 � g 0�;whih implies that g-1 � g 0 2 Ker(�) = feGg. Hene g-1 � g 0 = eG, and thusg = g 0.e. g 2 Ker(�) if and only if gN = N if and only if g 2 N.f. Let g; g 0 2 G be given.(� Æ �)�g � g 0) = ���(g � g 0)� = ���(g) � �(g 0)�= ���(g)� � �(�(g 0)� = (� Æ �)(g) � (� Æ �)�g 0�:g. This is Exerise 1 on Assignment Set 4.1.23 Theorem (Homomorphismtheorem)Let � 2 Hom(G;H), then the mapG=Ker(�)! Im(�) : gKer(�) 7! �(g)is wellde�ned and an isomorphism.In partiular, G=Ker(�) �= Im(�).Proof: Let's do the proof in several steps.Step 1 : � is well-de�ned.Let gKer(�) = g 0Ker(�). We have to show that �(g) = ��g 0�, that is, � doesnot depend on the partiular representative of the oset. By assumption we haveg-1 � g 0 2 Ker(�). HeneeH = ��g-1 � g 0� = �(g)-1 � ��g 0�;and thus �(g) = ��g 0�.



1. BASICS 21Step 2 : � is a homomorphism.Let gKer(�); g 0Ker(�) 2 G=Ker(�). Then��gKer(�) � g 0Ker(�)� = ��gg 0Ker(�)� = ��gg 0�= �(g) � ��g 0� = ��gKer(�)� � ��g 0Ker(�)�:Hene � is a homomorphism.Step 3 : � is surjetive.Let h 2 Im(�) be given. Then there is some g 2 G suh that �(g) = h. But then��gKer(�)� = �(g) = h, and thus � is surjetive.Step 4 : � is injetive.Let gKer(�) 2 Ker ���. TheneH = ��gKer(�)� = �(g):Hene, g 2 Ker(�), and thus gKer(�) = Ker(�) is the neutral element ofG=Ker(�).This implies Ker ��� onsists only of the neutral element, and therefore � must beinjetive by the previous proposition.1.24 Theorem (Isomorphismtheorems)Let (G; �) be a group, N;N 0;M� G suh that M � N.a. �N �N 0�ÆN 0 �= NÆ�N \N 0�.b. (G=M)=(N=M) �= G=N.Proof: a. This is Exerise 2 on Assignment Set 4.b. We note that N=M is atually a normal subgroup of G=M, so that the doublequotient group on the left hand side makes sense. And we do the proof in asimilar way, de�ning a map by� : G=M! G=N : gM 7! gN;showing that this is an epimorphism with kernel N=M and then applying theHomomorphism Theorem.Step 0 : � is well-de�ned.Sine we de�ne the map � via the hoie of a (non-unique) representativeof the oset, we have to show that � is well-de�ned, i. e. that the de�nitionis independent of the hosen representative. Let therefore gM = g 0M, theng-1 � g 0 2 M � N, and thus = gN = g 0N, i. e. gN does not depend on therepresentative of gM.Step 1 : � is a homomorphism.Let gM; g 0M 2 G=M be given. Then��gM � g 0M� = ��gg 0M� = gg 0N = gN � g 0N = �(gM) � ��g 0M�:Step 3 : � is surjetive.Let gN 2 G=N be given. Then gN = �(gM) 2 Im(�), so that � is surjetive.



22 I. FINITE GROUPSStep 4 : Ker(�) = N=M.gM 2 Ker(�) if and only if gN = N if and only if g 2 N if and only ifgM 2 N=M.1.25 Example a. Ker(sgn) = An � Sn and (Sn=An; Æ) �= (Z=2Z;+).b. Sln(K) := Ker(det)�Gln(K) and �Gln(K)= Sln(K); Æ� �= �K n f0g; ��.. Consider the group(Z;+) and normal subgroups N = nZ, N 0 = n 0Z. We thendedue from the Isomorphism Theorems:Z= n 0hf(n;n 0)Z �= hf(n; n 0)Z=n 0Z = (nZ+ n 0Z)=n 0Z�= nZ=(nZ \ n 0Z) = nZ= lm(n; n 0)Z �= Z= lm(n;n 0)n Z;whih orresponds to the fat that n � n 0 = hf �n; n 0� � lm �n; n 0�.1.26 Theorem (of Cayley)Let (G; �) be a �nite group of order n, then G is isomorphi to a subgroup of (Sn; Æ).Proof: We �rst note that by Exerise 3 on Assignment Set 4 the groups (Sn; Æ) and�Sym(G); Æ� are isomorphi, so that it suÆes to show that G is atually isomorphito a subgroup of the latter one. We de�ne a map� : G! Sym(G) : g 7! �g;where �g : G ! G : h 7! g � h. Note that �g is atually a permutation of G withinverse �g-1.Show : � is a monomorphism.For g; g 0 2 G we have�g�g 0(h) = �g � g 0� � h = g � �g 0 � h) = �g��g 0(h)� = (�g Æ � 0g)(h)for all h 2 G, whih implies �g�g 0 = �g Æ �g 0. But then��g � g 0� = �g�g 0 = �g Æ �g 0 = �(g) Æ ��g 0�and � is a homomorphism. It remains to show that � is injetive, i. e. that the kernelof � onsists only of the neutral element eG.g 2 Ker(�) if and only if �g = �(g) = idG. However, the multipliation by g on theleft is the identity if and only if g = eG. Thus Ker(�) = feGg.Knowing that � is a monomorphism the Homomorphism Theorem givesG �= G=feGg = G=Ker(�) �= Im(�) � Sym(G):This theorem says basially, that it would be suÆient to study subgroups of thesymmetri groups (Sn; Æ), n 2 N, in order to get to know all possible �nite groupsup to isomorphism. This sounds in a ertain sense very promising. However, thefat that the symmetri groups ontain so muh information is reeted by the fatthat they are very ompliated as well. The order of Sn is n!, so that already S10



2. CYCLIC GROUPS 23has 3628800 elements. If we wanted to use this approah to study groups of order10, we would have to ope with a very ompliated objet, while general methodsof group theory allow us to show that there are, up to isomorphism, only two quitesimple groups of order 10. 2 Cyli GroupsIn this paragraph we would like to obtain a good understanding of the struture ofthe simplest type of groups, namely those who an be generated by a single element.2.1 De�nitionA group (G; �) is said to be yli if and only if there is a g 2 G suh that G = hgi.We all g a generator of G.If (G; �) is any group, we then all o(g) := jhgij = min�n > 0 �� gn = eG	 the orderof g, and o(g) divides every integer n with gn = eG. (Cf. Exerise 1 on AssignmentSet 2.)2.2 Theorem (Classi�ation of Cyli Groups)Let (G; �) be a yli group.a. If jGj =1, then (G; �) �= (Z;+).b. If jGj = n <1, then (G; �) �= (Z=nZ;+).Proof: Let G = hgi = �gz j z 2 Z	, where the last equality is due to Proposi-tion 1.7. The map � : Z! G : z 7! gzis, due to the exponential laws, an epimorphism of groups. By the HomomorphismTheorem we thus have Z=Ker(�) �= Im(�) = G:Due to Example 1.6 there is an integer n � 0 suh that Ker(�) = nZ, so thatG �= Z=nZ. This implies the above statement, one we note that 0 � Z = f0g andZ=f0g �= Z in an obvious way.2.3 Proposition (Subgroups of Cyli Groups)Let (G; �) be a yli group with generator g.a. If jGj =1, then U � G if and only if 9 n � 0 : U = 
gn�.b. If jGj = n <1, then U � G if and only if 9 m j n : U = Dg nmE.In partiular, G has for every divisor of jGj preisely one subgroup of this order.Proof: Part a. is an immediate onsequene of Theorem 2.2 and Example 1.6 b.,where we lassi�ed the subgroups of (Z;+).For Par b. we note that aording to Remark 1.19 there is a one-to-one orrespon-dene between the subgroups of Z=nZ and the subgroups of Z whih ontain nZ.However, U � Z with nZ � U if and only if 9 m : U = mZ and nZ � mZ if andonly if 9 m : U = mZ and m j n. This proves Part b.



24 I. FINITE GROUPS2.4 CorollaryEvery subgroup of a yli group is yli.2.5 PropositionIf (G; �) is a group of prime order, then G is yli.Proof: Let eG 6= g 2 G. Then 1 6= hgi � G. By the Theorem of Lagrange we have1 < jhgij �� jGj:Sine the latter is a prime number, this implies jhgij = jGj and thus hgi = G.2.6 PropositionLet (G; �) be a group, g 2 G with o(g) = n and k 2 Z. Then o�gk� = nhf(k;n) .Proof: Reall that lm(k; n) = k � nhf(n;k) . We thus get by Exerise 1 on the As-signment Set 2o�gk� = min�a � 0 �� gka = eG	 = min�a � 0 �� n j ka	= min�a � 0 �� n j ka and k j ka	 = min�a � 0 �� lm(k; n) j ka	 = nhf(n; k) :2.7 PropositionLet (G; �) be a group, and let g; h 2 G suh that gh = hg and hf �o(g); o(h)� = 1.Then o(gh) = o(g) � o(h).In partiular, hg; hi = hghi is a yli group of order o(g) � o(h).Proof: Let m = o(g), n = o(h) and k = o(gh).Note that (gh)mn = �gm�n � �hn�m = eG, sine gh = hg. Hene, k j mn.Moreover, eG = (gh)k = gk �hk implies that gk = �h-1�k. Taking into aount thato(h) = o�h-1�, Proposition 2.6 givesa := mhf(k;m) = o�gk� = o��h-1�k� = nhf(k; n) :In partiular, a divides m and n, hene a j hf(m;n) = 1, and thus a = 1, i. e. gkand �h-1�k have order one. Thus gk = eG = hk. This however, implies the order ofg and the order of h divide k, hene their least ommon multiple divides k, i. e.mn = mnhf(m;n) = lm(m;n) �� k:Thus we must have mn = k.For the in partiular part we note that by Proposition 1.7 and sine gh = hg, wehave hg; hi = hgi � hhi:Moreover, by the Produt Formula in Theorem 1.11 we getjhg; hij = jhgij � jhhijjhgi \ hhij � mn:On the other hand hghi � hg; hi is a subgroup of order mn, thus hghi = hg; hi andjhg; hij = mn.



2. CYCLIC GROUPS 252.8 PropositionLet G be a �nite subgroup of the multipliative group (K�; �) of a �eld K, then G isyli.In partiular, for a prime p the group �Z=pZ n f0g; �� is yli of order p- 1.Sketh of Proof: Let m = lm�o(a) �� a 2 G	, then in partiular am = 1 for alla 2 G.With the aid of Proposition 2.6 and of Proposition 2.7 we an �nd an element g 2 Gsuh that o(g) = m. Hene m = o(g) � jGj.Sine K is a �eld, the polynomial f = xm - 1 has at most m zeros in K. But sineam = 1 for all a 2 G, the elements of G are zeros of f, and thus jGj � m.We therefore have jGj = m, and G = hgi is yli.2.9 Theorem (Automorphisms of Cyli Groups)Let (G; �) be a yli group of order n with generator g.Then Aut(G) = f�k j hf(k; n) = 1; 1 � k < ng, where �k : G! G : gi 7! gik.Proof: Due to the exponential laws the maps �k are atually group homomorphismsfor all k 2 Z. Moreover, �k is bijetive if and only if it is surjetive, sine G is �nite.This is the ase if and only ifn = jGj = j Im(�k)j = ��h�k(g)i�� = o�gk� = nhf(k; n)by Proposition 2.6. Thus �k is an automorphism if and only if hf(k; n) = 1.It remains to show that any automorphism of G is of this form. However, if � : G!G is any homomorphism, then � is �xed one we know the image of the generatorg, sine any element of G is a power of g. I. e. �(g) = gk for some k implies� = �k.2.10 CorollaryIf jGj = p has prime order, then Aut(G) is yli of order p- 1.In partiular, invG 2 Aut(G) is the only automorphism of order 2.Proof: By Theorem 2.2 we may assume that (G; �) = (Z=pZ;+). Translatingthe result of Theorem 2.9 to the additive group gives Aut(Z=pZ) = f�k j k =1; : : : ; p- 1g with �k : Z=pZ! Z=pZ : a 7! k � a = k � a:Thus �k is just the multipliation with k, and we have a natural identi�ation�Aut(Z=pZ); Æ� �= �Z=pZ n f0g; ��:Hene, we are done by Proposition 2.8.



26 I. FINITE GROUPS3 Group Ations3.1 De�nition and PropositionLet (G; �) be group, let 
 be a non-empty set and let � : G! Sym(
) be a grouphomomorphism.a. � is alled an ation of G on 
.Note that �(g) : 
 ! 
 is a permutation of 
 for all g 2 G, in partiular itis a map whih may be evaluated at ! 2 
.We usually write g�! instead of �(g)(!) for g 2 G and! 2 
, if no ambiguityan arise.Thus the fat that � is a group homomorphism translates to the rule(g � h) �! = g � (h �!)for g; h 2 G and ! 2 
, and we haveeG �! = !:b. De�ning for !;! 0 2 
! � ! 0 () 9 g 2 G : g �! = ! 0gives an equivalene relation on 
. The equivalene lass of ! is denoted byorbG(!) = fg �! j g 2 Gg and is alled the orbit of ! under G.Note, that in partiular
 is the disjoint union of the di�erent orbits, i. e. thereexist !i 2 
, i 2 I, suh that
 =ai2I orbG(!i):. StabG(!) = fg 2 G j g �! = !g � G is alled the stabiliser of !.d. If Ker(�) = 1, the ation is said to be faithful.e. If 
 = orbG(!) for some ! 2 
, then the ation is alled transitive.Proof: For Part b. we have to prove that � is an equivalene relation. Sine ! =eG �!, we have ! � ! and the relation is reexive.Suppose that ! � ! 0, then there is a g 2 G suh that g � ! = ! 0. Hene ! =eG �! = g-1 � (g �!) = g-1 �! 0, and thus ! 0 � !. The relation is therefore alsosymmetri.Let ! � ! 0 and ! 0 � ! 00. Then there are g; h 2 G suh that g � ! = ! 0 andh �! 0 = ! 00. This implies (gh) �! = g � (h �!) = g �! 0 = ! 00 and ! � ! 00. So�nally the relation is transitive, and thus an equivalene relation.It remains to show in Part . that the stabiliser of ! is a subgroup of G. SineeG �! = !, the neutral element belongs ot StabG(!) and the latter is a non-emptyset. Let now g; h 2 StabG(!), then(g � h) �! = g � (h �!) = g �! = ! and g-1 �! = g-1 � (g �!) = eG �! = !and hene gh; g-1 2 StabG(!) as required.



3. GROUP ACTIONS 273.2 Examplea. Consider the additive group of real numbers (R;+), the set C of omplexnumbers and the map� : R! Sym(C) : t 7! ��(t) : C! C :  7!  � e2t�i�:Due to the exponential laws for omplex numbers this map is a group homo-morphism, whih means that R ats on C. More onretely, the real number tats on C by multipliation with e2t�i, whih is a rotation by the angle 2t�.The kernel of � is the set of numbers t for whih �(t) = idC, that is, for whihthe rotation by 2t� does not do anything. This is, of ourse, the ase if andonly if t is an integer, so that Ker(�) = Z. In partiular, � is not faithful.The orbit of  2 C is justorbR() = � � e2t�i �� t 2 R	the irle of radius jj with the origin as entre, and the stabiliser of  6= 0 isStabR() = �t 2 R j  � e2t�i = 	 = �t 2 R �� e2t�i = 1	 = Z;while for  = 0 we have StabR(0) = R:b. Let (G; �) be any group, k � 1 and
 = �U � G �� jUj = k	:We de�ne a homomorphism� : G! Sym(
) : g 7! �gwith �g : 
! 
 : U 7! gU. I. e. �(g) = �g is the left-multipliation by g, andwe say for short G ats on 
 by left-multipliation.If k < jGj, then the ation is faithful. For this just note that for a set U oforder k ontaining eG but not g we always have U 6= gU. This means that�g 6= id
 and hene the kernel of � ontains only the neutral element eG.If k = jGj > 1, then the ation annot be faithful, sine 
 ontains only oneelement, and thus Sym(
) has order one, while G has an order stritly greaterthan one.Consider the speial ase of U 2 
 where U is a subgroup of G. ThenorbG(U) = fgU j g 2 Gg = set of left osets of U in G:Moreover, StabG(U) = fg 2 G j gU = Ug = U:In partiular j orbG(U)j = jG : Uj = jG : StabG(U)j:We will see in Theorem 3.3 that the last equality does not only hold by hane.



28 I. FINITE GROUPS. Using the notation of b. let U � G with jUj = k and let H = StabG(U). Thenthe group H ats on the set U by left-multipliation, i. e. the map� : H! Sym(U) : h 7! �h;with �h : U ! U : u 7! hu, is a group homomorphism. The important pointfor this is that hu 2 U, sine h 2 StabG(U).For u 2 U we �nd orbH(u) = H � u:Sine the ation of H divides the set U into a disjoint union of orbits, there areu1; : : : ; ur 2 U suh that U = rai=1 H � ui:Knowing that jH � uij = jHj we getjUj = r � jHj;whih in partiular means that jHj divides jUj = k! I. e. the stabiliser of U 2 
in Part b. will be a subgroup of G of an order whih divides k.d. Let (G; �) be a group and A � G be a �xed subset. We then onsider the set
 = �Ag �� g 2 G	;where Ag = gAg-1. The group homomorphism� : G! Sym(
) : h 7! �h;with �h : 
 ! 
 : Ag 7! �Ag�h = Ahg, de�nes an ation of G on 
, whihwe all onjugation. 
 is alled the onjugay lass of A.The ation is transitive, sine 
 = orbG(A), and we allNG(A) := StabG(A) = �g 2 G �� Ag = A	the normaliser of A in G.3.3 Orbit Stabiliser TheoremLet (G; �) be a group ating on the �nite set 
, and let ! 2 
. Thenj orbG(!)j = jG : StabG(!)j:In partiular, the order of an orbit always divides of the order of the group.Proof: Let U = StabG(!), and M = fgU j g 2 Gg be the set of left-osets of U inG. We then have to show that j orbG(!)j = jMj, i. e. we have to �nd a bijetionbetween the orresponding sets. De�ne :M! orbG(!) : gU 7! g �!:Sine the de�nition of  a priori depends on the hosen representative g of the osetgU, we �rst have to show that  is well-de�ned, i. e. that it is independent of g.Suppose that gU = hU, then there is a u 2 U = StabG(!) suh that g = hu. Thusg �! = (h � u) �! = h � (u �!) = h �!:



3. GROUP ACTIONS 29Hene,  is well-de�ned, and we may go on showing, that  is bijetive.Suppose that gU; hU 2 M suh that (gU) = (hU), i. e. g �! = h �!. Then! = eG �! = �g-1 � g) �! = g-1 � (g �!) = g-1 � (h �!) = �g-1 � h� �!:Hene, g-1 � h 2 StabG(!) = U, and thus gU = hU. This proves,  is injetive.Obviously,  is also surjetive, sine for g �! 2 orbG(!) arbitrary, we have g �! =(gU).This adds up to the fatj orbG(!)j = jMj = jG : StabG(!)j:3.4 CorollaryLet (G; �) be a �nite group, and A � G any subset. ThenjG : NG(A)j = ���Ag �� g 2 G	��;where the latter is the order of the onjugay lass of A in G.Proof: By Exerise 3.2 d., the group G ats transitively on the set 
 = �Ag �� g 2G	 via onjugation, and 
 = orbG(A). Moreover, by de�nition the normaliser ofA in G is just StabG(A) = NG(A). Hene the statement follows from the OrbitStabiliser Theorem 3.3.3.5 CorollaryLet (P; �) be a group of order pn for some prime p, and suppose that P ats on a�nite set 
 with hf �j
j; p� = 1. Then there is an ! 2 
 suh thatorbP(!) = f!g;i. e. ! is a �x point of the ation.Proof: By the Orbit Stabiliser Theorem and the Theorem of Lagrange we havej orbP(!)j = jP : StabP(!)j �� jPj = pnfor all ! 2 
, and thus there is some integer 0 � m = m(!) � n, depending on!, suh that j orbP(!)j = pm(!):Suppose that m(!) > 0 for all ! 2 
. We know that there are !1; : : : ; !r suhthat 
 = rai=1 orbP(!i):By assumption p divides j orbP(!i)j for all i = 1; : : : ; r, thus it divides the sum ofthese numbers, i. e. p �� rXi=1 j orbP(!i)j = j
j:This, however, is a ontradition to the fat that hf �j
j; p� = 1.Hene, there is at least one ! 2 
, suh that m(!) = 0, whih is the same assaying the j orbP(!)j = 1, or that orbP(!) = f!g.



30 I. FINITE GROUPS4 The Theorem of SylowThe Theorem of Lagrange was one of the highlights of this leture so far, even thoughit was not hard to prove. When interested whether a ertain subset U of a group Gould be a subgroup, we may hek �rst, if the number of elements in U is a divisorof G. If jUj does not divide jGj, then it annot possibly be a subgroup, that's whatwe inherit from the Theorem of Lagrange.Knowing that the order of a subgroup must divide the order of the group, it is quitenatural to ask, whether for every divisor of jGj there is a subgroup of that orderin G? We know that this is true for yli groups and we will show later that italso holds for abelian groups. However, it does not hold in general, as the followingexample shows.4.1 ExampleThe group A4 has no subgroup of order 6, even though its order is 12.We postpone the proof for a moment, so that we an use the result of the nexttheorem, whih is - so to say - a onverse of the Theorem of Lagrange for powers ofprimes. We introdue the notationNG(k) = ���U � G �� jUj = k	��to denote the number of subgroups of G of order k, when G is a �nite group.4.2 TheoremLet (G; �) be a group of order jGj = pa �m with p a prime, a � 0 and m > 0. ThenNG�pa� � 1 (mod p):Proof (due to Wieland): Having introdued some notation we will do the proofin several steps. De�ne 
 = �U � G �� jUj = pa	:Then G ats on 
 by left-multipliation, as we have seen in Example 3.2 b., i.e.� : G! Sym(
) : g 7! (�g : 
! 
 : U 7! gU)is a group homomorphism.Step 1 : 8 U 2 
 9 0 � b = b(U) � a : j StabG(U)j = pb.We note that by Example 3.2 ., the group H = StabG(U) � G ats on the set U byleft-multipliation. Moreover, we have shown there that there is a number r suhthat r � jHj = jUj = pa:Hene, jHj = pb for some 0 � b � a, of ourse depending on U.Step 2 : For all U 2 
 we have either j orbG(U)j = m or j orbG(U)j � 0 (mod pm).By the Orbit Stabiliser Theorem and Step 1 be havej orbG(U)j = jG : StabG(U)j = pa �mpb(U) = pa-b(U) �m:So, if b(U) = a, then j orbG(U)j = m, otherwise j orbG(U)j � 0 (mod pm).



4. THE THEOREM OF SYLOW 31Step 3 : j
j � l �m (mod pm), where l = ��� orbG(U) �� j orbG(U)j = m	��.Sine G ats on 
, there are U1; : : : ; Un 2 
 suh that
 = nai=1 orbG(Ui):But then by Step 2 j
j = nXi=1 j orbG(Ui)j � l �m (mod pm):Step 4 : l = NG�pa�.We set M = fU 2 
 j U � Gg and N = � orbG(U) �� j orbG(U)j = m	. Thenl = jN j and NG�pa� = jMj. It thus suÆes to �nd a bijetion between M and N .We de�ne � :M! N : U 7! orbG(U) = fg �U j g 2 Ggand we laim that � is a bijetion.Note �rst of all, that for U 2 M we have already shown in Example 3.2 b. thatj orbG(U)j = jG : Uj = jGjjUj = pa �mpa = m;so that � atually takes its values in N !Let's now show the injetivity of �. For this suppose that we have U;U 0 2 M suhthat orbG(U) = �(U) = ��U 0� = orbG �U 0�. Then there is a g 2 G suh thatU = gU 0. However, sine eG 2 U = gU 0, we see that g-1 2 U 0, and hene g 2 U 0as well. But then U 0 = gU 0 = U.It remains to show the surjetivity of �. For this let orbG(U) 2 N be given.As we have seen in Example 3.2 ., the group H = StabG(U) ats on U by left-multipliation and we have u1; : : : ; uk 2 U suh thatU = kai=1 orbG(ui) = kai=1 H � ui:Note, that due to the Orbit Stabiliser Theorem and the Theorem of Lagrange wehave jHj = jGjjG : Hj = jGjj orbG(U)j = pa �mm = pa:This implies pa = jUj = k � jHj = k � pa;whih is only possible if k = 1 and U = Hu1. We set now U 0 = u-11 Hu1 whih is asubgroup of G of order pa, hene is an element of M. And that way we getorbG(U) = fgHu1 j g 2 Gg = fgu-11 Hu1 j g 2 Gg= �gU 0 �� g 2 G	 = orbG �U 0� = ��U 0� 2 Im(�):Hene, � is surjetive.Step 5 : j
j � NG�pa� �m (mod pm).Just ombine Step 3 and Step 4.



32 I. FINITE GROUPSStep 6 : The trik of Shaw!Note, that the number j
j does not depend on the group struture of G! It is thenumber of subsets with pa elements of a set with pa �m elements. This number isfor any group of order pa �m the same. In partiular, we may apply Step 5 to thegiven group G as well as to the yli group �Z=pamZ;+� and we �ndNG�pa� �m � j
j � NZ=pamZ�pa� �m = m (mod pm);sine this yli group has preisely one subgroup of order pa by Proposition 2.3.This implies pm ��� �NG�pa�- 1� �m;and hene p �� NG�pa�- 1, whih is the same as sayingNG�pa� � 1 (mod p):Proof of Example 4.1: Suppose U � A4 and jUj = 6.We �rst note that A4 ontains the Kleinian subgroup K4 and, apart from that, theeight 3-yles in S4.Moreover, we note that any subgroup P � U of order 3 must be of the formP = �(1); (a b ); (a  b)	for some fa; b; g � f1; 2; 3; 4g, sine it is yli as a group of prime order.By Theorem 4.2 NU(3) � 1 (mod 3), and sine U annot possibly ontain 8 di�erent3-yles, NU(3) annot be 4 or even larger. Hene, NU(3) = 1 and U has a uniquesubgroup P � U of order 3.In partiular, apart from the elements in P the subgroup U an only ontain elementsof order 2, sine A4 only ontains elements of order 1, 2 and 3. Thus we haveU = �(1); (1 2)(3 4); (1 3)(2 4); (1 4)(2 3); (a b ); (a  b)	:That implies that K4 � U, whih is a ontradition to the Theorem of Lagrange,sine 4 6 j 6.An immediate onsequene of Theorem 4.2 is the Theorem of Cauhy.4.3 Corollary (Theorem of Cauhy)Let (G; �) be a �nite group suh that pa �� jGj, then G has a subgroup of order pa.In partiular, if p �� jGj, then G ontains an element of order p.4.4 CorollaryLet (G; �) be a �nite abelian group and d �� jGj, then G has a subgroup of order d.Proof: We do the proof by indution on d, where the ase d = 1 is obviouslysatis�ed by the trivial subgroup 1.Let's therefore assume that d > 1. If d is a power of a prime number, we are doneby the Theorem of Cauhy. Otherwise, there is a prime number p, a > 0 andm > 0suh that d = pa �m, where p 6 j m. Sine m < d and pa < d, by indution thereare subgroups N1; N2 � G suh that jN1j = m and jN2j = pa.



4. THE THEOREM OF SYLOW 33However, sine G is abelian, N1 and N2 are normal subgroups and thus N1 �N2 � Gis a subgroup of G. We laim that its order is just d. For this note thatN1\N2 � Ni,i = 1; 2, and hene its order divides the orders of both, N1 and N2, i. e.jN1 \N2j �� hf �jN1j; jN2j) = hf �m;pa� = 1:Thus jN1 \N2j = 1. Applying now the Produt Formula 1.11 we may alulate theorder of N1 �N2 as jN1 �N2j = jN1j � jN2jjN1 \N2j = m � pa = d:4.5 De�nitionLet (G; �) be a group of order pa �m with hf(p;m) = 1. We all the elements ofSylp(G) := �U � G �� jUj = pa	p-Sylow subgroups of G.4.6 Theorem of SylowLet (G; �) be a �nite group and let p be a prime.a. �� Sylp(G)�� � 1 (mod p), in partiular, G has p-Sylow subgroups.b. G ats transitively on the set Sylp(G) by onjugation, i. e. if P;Q 2 Sylp(G),then there is some g 2 G suh that Q = Pg = gPg-1.In partiular, j Sylp(G)j = jG : NG(P)j is a divisor of jGj.Proof: Part a. is just a speial ase of Theorem 4.2. It thus only remains to provePart b. Let P;Q 2 Sylp(G) be given, and onsider the set
 = �Pg �� g 2 G	:Step 1 : hf �j
j; p� = 1.By Corollary 3.4 and Theorem 1.11 we havej
j = jG : NG(P)j = jG : PjjNG(P) : Pj = mjNG(P) : Pj:In partiular, j
j is a divisor of m, and thus the prime p does not divide j
j.Step 2 : 9 g 2 G : Q = Pg.The p-groupQ ats on
 by onjugation as well asG does, and by Step 1 hf �j
j; p� =1. Thus Corollary 3.5 applies and we �nd a �x point of the ation of Q on 
, i. e.there is some Pg 2 
 suh that orbQ �Pg� = �Pg	:This means hPgh-1 = Pg for all h 2 Q, or equivalently hPg = Pgh for all h 2 Q.Thus we have in partiular QPg = PgQ:



34 I. FINITE GROUPSApplying Proposition 1.7 this implies that QPg is a subgroup of G. Sine Q\ Pg isa subgroup of Q, its order is pb for some 0 � b � a. By the Produt Formula 1.11we then �nd jQPgj = jQj � jPgjjQ \ Pgj = pa � papb = p2a-b:Sine pa is the maximal power of p whih divides the order of jGj, 2a-b � a, whihis only possible if a = b. This however impliesQ = Q \ Pg = Pg:Sine a subgroup P is normal if and only if oinides with all its onjugates Pg, thefollowing is an immediate orollary.4.7 CorollaryLet (G; �) be a �nite group, p a prime and P 2 Sylp(G).Then P� G if and only if Sylp(G) = fPg.4.8 TheoremLet (G; �) be a group of order 2p, where p > 2 is some prime.Then either (G; �) �= (Z=2pZ;+) is yli or (G; �) �= (D2n; Æ) is not abelian.Proof: By Theorem 4.6 there are subgroups P 2 Sylp(G) of order p and U 2Syl2(G) of order 2. Sine their orders are prime numbers, they must be yli byProposition 2.5, i. e. P = hgi and U = hui for some g; u 2 G. Note, that U\P = 1,sine the order of the intersetion must be a divisor of 2 and of p.By the Theorem of Lagrange jG : Pj = 2, and thus by Proposition 1.15 P � G.Moreover, by the Produt Formula 1.11 we see that jUPj = 2p, and hene G =UP = hu; gi.Case 1 : U� G.Then, sine U \ P = 1, Proposition 1.16 e. applies and we haveu � g = g � u:However, then by Proposition 2.7 the element ug has order o(ug) = 2p. ThusG = hugi is yli of order 2p, and by Theorem 2.2 its isomorphi to (Z=2pZ;+).Case 2 : U is not normal in G.Sine P is a normal subgroup of G, the map�u : P! P : h 7! hu = uhu-1takes values in P and is thus an automorphism of P. However, sine �2u = �u2 =�eG = idG, the automorphism �u has order 2. By Corollary 2.10 the inversioninvP : P! P : h 7! h-1is the only automorphism of P of order 2, i. e. �u = invP. But thenu � g � u-1 = g-1:



4. THE THEOREM OF SYLOW 35In partiular, the generators u and g of G satisfy the relations of the generators �and � of the group D2p in Exerise 1 on Assignment Set 1. This an be used tode�ne an isomorphism G! D2p : u 7! �; g 7! �:We leave the details of this to the reader.4.9 RemarkWe have just proved in partiular that up to isomorphism there are only two groupswith 10 elements, whih may serve as alphabets for a CDC, namely the yli groupZ=10Z of order 10 and the dihedral groupD10 of order 10. This answers the questionat the end of Paragraph 0.



36 I. FINITE GROUPS



CHAPTER IINormal Forms of Linear and Bilinear Maps1 Jordan Normal Form1.0 General Assumptions and ReminderThroughout this setion K will be a �eld and V a �nite-dimensional K-vetor spae.A basis B = (v1; : : : ; vn) of V is a family of vetors in V suh that(i) B is linearly independent, i. e.Pni=1 �ivi = 0, �i 2 K, implies �1 = : : : = �n = 0.(ii) B generates V, i. e. 8 v 2 V 9 �1; : : : ; �n 2 K : v =Pni=1 �ivi.Moreover, if B is a basis, then by (i) the oeÆients �i in (ii) for the representationof v are uniquely determined, and we allMB(v) = (�1; : : : ; �n)t 2 Knthe basis representation of v w. r. t. B. Thus a basis B determines an isomorphismMB : V! Kn : v 7!MB(v):Reall also, that all bases of V have the same number of elements, and this numbern = dimK(V) is alled the dimension of V.A typial example is the vetor spae Kn with the standard basisE = (e1; : : : ; en);where ei is the olumn vetor whih has entry 1 in the i-th row and entry 0 else.When onsidering vetors of the form (x1; : : : ; xn)t 2 Kn, we will frequently denotethem just by x.1.1 De�nition and Proposition (Matrix Representation)Let1 f 2 EndK(V) = ff : V! V j f is K-linearg and B = (v1; : : : ; vn) be a basis of V.a. As we have notied above, there exist uniquely determined oeÆients aij 2 K,i; j = 1; : : : ; n, suh that f(vj) = nXi=1 aijvi:We all the n� n-matrixMBB(f) = (aij)i;j=1;:::;n = 0B� a11 : : : a1n... ...an1 : : : ann 1CA1K-linear maps from V to V are alled endomorphisms.37



38 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPSthe matrix representation of f w. r. t. the basis B.2 In the leture \LinearAlgebra" it was shown that this establishes a one-to-one orrespondene be-tween linear maps from V to V and n � n-matries, i. e. the following map isa bijetion3 MBB : EndK(V)! Mat(n� n;K) : f 7!MBB(f):Note that in the ase V = Kn and B = E the inverse map of MEE is justMat(n� n;K)! EndK(B) : A 7! fA;where the map fA is de�ned byfA : Kn ! Kn : x 7! A � x:Moreover, it has been shown in \Linear Algebra" how the matrix representa-tions of vetors and of linear maps �t together. Let v 2 V and f 2 EndK(V),then MB�f(v)� = MBB(f) �MB(v); (3)i. e. if v =Pni=1 �ivi, f(v) =Pni=1 �ivi and MBB(f) = (aij)i;j=1;:::;n then0B� �1...�n 1CA = 0B� a11 : : : a1n... ...an1 : : : ann 1CA �0B� �1...�n 1CA :b. If B 0 = (v 01; : : : ; v 0n) is another basis of V, then the matrixTBB 0 = (tij)i;j=1;:::;n 2 Gln(K)with the property that v 0j = nXi=1 tijvifor j = 1; : : : ; n is alled the base hange from B to B 0.In \Linear Algebra" it was shown that the matrix representation of f w. r. t.the bases B respetively B 0 satisfy the following relationMB 0B 0(f) = �TBB 0�-1 �MBB(f) � TBB 0: (4)Note also that �TBB 0�-1 = TB 0B :As an easy example let us onsider V = K2, f : K2 ! K2 : (x; y)t 7! (2x -y;-x)t, B = E = (e1; e2) and B 0 = (v 01; v 02) with v 01 = (1; 1)t and v 02 = (1;-1)t.Sinef(v 01) = (1;-1)t = 0 � v 01 + 1 � v 02 and f(v 02) = (3;-1)t = 1 � v 01 + 2 � v 022The j-th olumn of MBB(f) is thus just thebasis representation of the vetor f(vj) w. r. t. the basis B.3Atually, EndK(V) and Mat(n�n;K) both arry the struture of a K-algebra, making MBB aK-algebra isomorphism.



1. JORDAN NORMAL FORM 39we have MB 0B 0 =  0 11 2 ! :Dealing with the standard basis is even easier and leads toMBB =  2 -1-1 0 ! :We may alulate TBB 0 by just taking the vetors of B 0 as olumns, sine B isthe standard basis; alulating the inverse as well we getTBB 0 =  1 11 -1 ! and �TBB 0) = 12 � 1 11 -1 ! :It is now an easy exerise to verify Equation (4).Let us also hek Equation (3) for one vetor, say v = (2; 0)t. Sine v =1 � v 01 + 1 � v 02 and f(v) = (4;-2)t = 1 � v 01 + 3 � v 02 we getMB 0B 0(f) �MB 0(v) =  0 11 2 ! � 11 ! =  13 ! = MB 0�f(v)�:1.2 De�nition and Proposition (Base Change)We all two matries A;B 2 Mat(n � n;K) similar and write A � B if and only ifthere is a T 2 Gln(K) suh that B = T-1 �A � T:Similarity of matries is an equivalene relation, as one easily sees, and the equiva-lene lass of A is alled the similarity lass of A.1.3 AimGiven f 2 EndK(V) we want to �nd a basis B of V suh thatMBB(f)is as simple as possible.Taking the interplay between matries and linear maps into onsideration, this isequivalent to the following problem:Given A 2 Gln(K) �nd a T 2 Gln(K) suh that T-1 � A � T is assimple as possible.That is, we are looking for a simple representative of the similarity lass of A. Suha representative would be alled a normal form of A.Of ourse, we have to speify, what we mean by simple! The preise meaning hasto be looked up in Remark 1.21, where we desribe what it means that a matrix isin Jordan normal form. For the moment it is suÆient to say that simple means itshould be lose to being diagonal.1.4 De�nition and PropositionLet f 2 EndK(V) and A 2 Mat(n� n;K) be given.We all � 2 K an eigenvalue of f (resp. of A) if and only if one of the followingequivalent onditions is ful�lled:1) 9 0 6= v 2 V (resp. 0 6= x 2 Kn) suh that f(v) = � � v (resp. A � x = � � x).2) Eig(f; �) := Ker(f- � � idV) 6= f0g (resp. Eig(A; �) := Ker(A- � � 1) 6= f0g).



40 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPS3) �f(�) = 0 (resp. �A(�) = 0), where �f = det(f-t�idV) (resp. �A = det(A-t�1))denotes the harateristi polynomial of f (resp. A).Vetors whih satisfy the equation in 1) are alled eigenvetors of f (resp. A) w. r.t. the eigenvalue �, and the kernel in 2) is alled the orresponding eigenspae.1.5 ExampleLet A = ( 1 10 1 ) 2 Mat(2� 2; K). Then�A = det 1- t 10 1- t! = (1- t)2:That is, � = 1 is the only eigenvalue of A, and we say, it has multipliity two, sinethe fator (1- t) ours twie in the harateristi polynomial.Let's now alulate the eigenspae of A w. r. t. �. By de�nition this is the set ofsolutions of the following homogeneous system of linear equations: 0 10 0! � xy! = (A- 1 � 1) � xy! =  00! :Of ourse (x; y)t satis�es this equation if and only if x = 0. ThusEig(A; 1) = Ker(A- 1) = * 01!+ :1.6 PropositionLet f 2 EndK(V) and A 2 Mat(n�n;K). Then f (resp. A )is diagonalisable4 if andonly if V (resp. Kn) has a basis of eigenvetors of f (resp. A).Proof: Let's �rst suppose that there is a basis B = (v1; : : : ; vn) of eigenvetors, andlet �1; : : : ; �n be the orresponding eigenvalues. Thenf(vi) = �i � vi resp. A � vi = �i � vi:This however impliesMBB(f) = 0BBBBBBBB�
�1 0 : : : : : : 00 . . . . . . ...... . . . . . . . . . ...... . . . . . . 00 : : : : : : 0 �n

1CCCCCCCCA resp. T-1 �A � T = 0BBBBBBBB�
�1 0 : : : : : : 00 . . . . . . ...... . . . . . . . . . ...... . . . . . . 00 : : : : : : 0 �n

1CCCCCCCCA ; (5)where T is the matrix whose olumns are the vetors v1; : : : ; vn.Let's now suppose that there is a basis B = (v1; : : : ; vn) (resp. a matrix T 2 Gln(K))suh that Equation (5) is ful�lled, and all in the latter ase the olumn vetors ofT just v1; : : : ; vn. Thenf(vi) = �ivi resp. A � vi = �ivi:Thus (v1; : : : ; vn) is a basis of eigenvetors.4Reall, f is said to be diagonalisable if and only if there is a basis B of V suh that MBB(f) is adiagonal matrix. Analogously, A is diagonalisable if and only if it is similar to a diagonal matrix,i. e. if there is a T 2 Gln(K) suh that T-1 �A � T is a diagonal matrix.



1. JORDAN NORMAL FORM 411.7 Example (Example 1.5 ontinued)Sine dimK �Eig(A; 1)� = 1 < 2 = dimK �K2� and sine A has no other eigenvalues,K2 does not possess a basis of eigenvetors of A, and hene A is not diagonalisable.In partiular, not every endomorphism and not every square matrix an have adiagonal matrix as normal form!1.8 CorollaryLet f 2 EndK(V) with dimK(V) = n and let A 2 Mat(n�n;K). Suppose that f (resp.A) has pairwise distint eigenvalues �1; : : : ; �n, then f (resp. A) is diagonalisable.Proof: 5 Let v1; : : : ; vn 2 V be the orresponding eigenvetors of f. By Proposition1.6 it suÆes to prove that B = (v1; : : : ; vn) is a basis of V. For that, however, itsuÆes that B is linearly independent, sine V has dimension n.We proof by indution on k, that the vetors v1; : : : ; vk are linearly independent.For k = 1, there is nothing to show sine by hypothesis an eigenvetor is non-zero.Let now k > 1 and let's assume that we have already shown that v1; : : : ; vk-1 arelinearly independent.Let �1; : : : ; �k 2 K suh thatPki=1 �ivi = 0. We have to show that then �1 = : : : =�k = 0.kXi=1 �k�ivi = �k kXi=1 �ivi = 0 = f(0) = f kXi=1 �ivi! = kXi=1 �if(vi) = kXi=1 �i�ivi:Subtrating both sides from eah other, we get0 = kXi=1 (�k�i - �i�i) � vi = k-1Xi=1 (�k - �i) � �i � vi:Sine by indution v1; : : : ; vk-1 are linearly independent, this implies that(�k - �i) � �i = 0for i = 1; : : : ; k- 1. And sine by assumption �k - �i 6= 0, this implies�i = 0for i = 1; : : : ; k - 1. We are thus left with 0 = Pki=1 �ivi = �kvk, and sine theeigenvetor vk 6= 0, we �nally get �k = 0. Thus v1; : : : ; vk are linearly independent,and in partiular B is a basis of V.1.9 PropositionAn endomorphism f 2 EndK(V) (resp. a square matrix A 2 Mat(n � n;K)) istriangulable6 if and only if the harateristi polynomial �f (resp. �A) fatorisesinto linear fators.5We do the proof for endomorphisms, the proof for matries is idential, if you replae f by Aand V by Kn.6Reall, f is said to be triangulable if and only if there is a basis B of V suh that MBB(f) isan upper triangular matrix. Analogously, A is triangulable if and only if it is similar to an uppertriangular matrix, i. e. if there is a T 2 Gln(K) suh that T-1 �A � T is an upper triangular matrix.



42 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPSProof: 7 Let's �rst suppose we have a basis B suh thatMBB(f) = 0BBBBB��1 � : : : : : : �0 . . . . . . ...... . . . . . . . . . ...... . . . . . . �0 : : : : : : 0 �n
1CCCCCA;where � represents an entry whih need not be zero. Then the harateristi poly-nomial of f is�f = det(f-t idV) = det �MBB(f)-t1� = det0BBBBB��1 - t � : : : : : : �0 . . . . . . ...... . . . . . . . . . ...... . . . . . . �0 : : : : : : 0 �n - t

1CCCCCA= nYi=1 (�i-t);in partiular it fatorises into linear fators.The other diretion is somewhat harder to proof. We do the proof by indutionon n = dimK(V). If n = 1, then there is nothing to prove, sine every n � n-matrix is automatially a \diagonal" matrix. Let therefore n > 1 and suppose thatendomorphisms of vetor spaes of dimension n-1 whose harateristi polynomialfatorises are diagonalisable.By assumption �f = (�1 - t) � � � (�n - t), and �1 is therefore an eigenvalue of f. Let0 6= v1 2 V be an eigenvetor of f w. r. t. �1. We set U = hv1i, the subspae ofV generated by v1. Sine v1 is an eigenvetor of f, this spae is f-invariant, i. e.f(u) 2 U for all u 2 U. We may therefore onsider the restrition of f to U, denotedby fU : U! U : u 7! f(u):Moreover, f indues an endomorphism on V=U byfV=U : V=U! V=U : v+U 7! f(v) +U;whih is well-de�ned sine U is f-invariant.If we extend B 0 = (v1) to a basis of V by vetors v2; : : : ; vn, then the residuelasses B 00 = (v2 + U; : : : ; vn + U) form a basis of the quotient spae V=U. It isstraightforward to see that the matrix representations of f, fU and fV=U w. r. t. thebases B, B 0 and B 00 satisfy the following relation:MBB(f) = 0BBBB� MB 0B 0(fU) � � � � �0... MB 00B 00(fV=U)0
1CCCCA ; (6)where the �'s are suitable entries. In partiular, for the harateristi polynomialswe have (�1 - t) � � � (�n - t) = �f = �fU � �fV=U = (�1 - t) � �fV=U:7One again we do the proof only for the ase of endomorphisms and leave it to the reader todo the neessary replaements for matries.



1. JORDAN NORMAL FORM 43But then fV=U is an endomorphism of an n - 1-dimensional vetor spae whoseharateristi polynomial fatorises. So, by indution, there is a basis of V=U whihtriangulates fV=U. W. l. o. g. we may assume that B 00 = (v2+U; : : : ; vn+U) is suha matrix. But then by Equation 6 we see that B triangulates f.1.10 RemarkProposition 1.9 says that, if we want a normal form for f (resp. A) whih is at least anupper triangular matrix, then we have to request that the harateristi polynomialfatorises! We will therefore restrit in the theorems on the Jordan normal form tothis ase!1.11 De�nitionLet f 2 EndK(V) and A 2 Mat(n � n;K) be given with harateristi polynomial�f = (t - �)n � p resp. �A = (t - �)k � p, where p 2 K[t℄ is a polynomial suh thatp(�) 6= 0.We then all multalg(f; �) := k resp. multalg(A; �) := k the algebrai multipliity of� as an eigenvalue of f resp. A. That is, the algebrai multipliity is the multipliityof � as a zero of the harateristi polynomial.And we all multgeo(f; �) := dimK �Eig(f; �)� resp. multgeo(A; �) := dimK �Eig(A; �)�the geometri multipliity of � as an eigenvalue of f resp. of A.The following proposition gives a diret relation between the geometri and thealgebrai multipliity of an eigenvalue, so that a look at the fatorised harateristipolynomial suÆes to �nd upper bounds for the dimension of the eigenspaes.1.12 Proposition (Geometri and Algebrai Multipliity)Let f 2 EndK(V) and A 2 Mat(n�n;K), and let � 2 K. The geometri multipliityof � as an eigenvalue of f resp. A is less than or equal to the algebrai multipliityof � as an eigenvalue of f resp. A, i. e.multgeo(f; �) � multalg(f; �) and multgeo(A; �) � multalg(A; �):Proof: We do the proof for the ase of an endomorphism only.Let m := multgeo(f; �) and let (v1; : : : ; vm) be a basis of Eig(f; �). Extend this to abasis B = (v1; : : : ; vn) of V. We know thatf(vj) = � � vjfor j = 1; : : : ;m and that there aij 2 K, j = m + 1; : : : ; n and i = 1; : : : ; n, suhthat f(vj) = nXi=1 aij � vifor j = m + 1; : : : ; n. If we now setM = 0B�am+1;m+1 : : : am+1;n... ...an;m+1 : : : ann 1CA and M 0 = 0B�a1;m+1 : : : a1;n... ...am;m+1 : : : amn1CA



44 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPSthen MBB(f) =  � � 1m M 00(m-n)�m M ! :Thus we have�f = det (�- t) � 1m M 00(m-n)�m M- t � 1n-m ! = (�- t)m � �M:In partiular, the multipliity multalg(f; �) of � as a zero of �f is at least m =multgeo(f; �).The Theorem of Cayley-Hamilton is one of the key ingredients in the proof of the ex-istene of the Jordan normal form and at the same time it helps atually alulatingthem.1.13 Theorem (Cayley-Hamilton)Let f 2 EndK(V) and A 2 Mat(n� n;K), then �f(f) = 0 and �A(A) = 0.Proof: 8 Let's �rst prove the statement for matries.Consider the matrix Bt = A - t � 1 2 M := Mat(n � n;K)[t℄ = Mat �n � n;K[t℄�.Linear Algebra tells us that the adjoint matrix adj(Bt) 2 M of Bt satis�es thefollowing equation Bt � adj(Bt) = det(Bt) � 1 = �A � 1: (7)However, remembering how the adjoint of a matrix is atually de�ned, we �nd thatif adj(Bt) = (bij)i;j=1;:::;n then bij = (-1)i+j � det(Cji);where Cji is derived from the matrix Bt by erasing the j-th row and the i-th olumn.In partiular, bij is a polynomial in t of degree at most n - 1, sine Cji is an(n - 1) � (n - 1)-matrix where eah row ontains at most one entry whih is anon-onstant polynomial in t, and this entry is then linear in t.Thus the entries of adj(Bt) are all polynomials of degree at most n - 1 and wemay therefore onsider adj(Bt) as a polynomial of degree at most n - 1 with ma-trix oeÆients, as indiated in Footnote 8, i. e. there are matries B0; : : : ; Bn-1 2Mat(n� n;K) suh thatBt = Bn-1 � tn-1 + : : :+ B1 � t+ B0:Let now �A = (-1)n � tn + �n-1 � tn-1 + : : :+ �1 � t+ �0, then Equation (7) implies(A-t �1) ��Bn-1 �tn-1+ : : :+B0� = (-1)n �1 �tn+�n-1 �1 �tn-1+ : : :+�11 �t+�0 �1:8Note that the we have the following equality of sets Mat �n � n;K[t℄� = Mat(n � n;K)[t℄,where the �rst one is the set of n � n-matries whose entries are polynomials, while the seondone is the set of polynomials whose oeÆients are n� n-matries. Let's illustrate by an examplehow elements in the two sets are identi�ed:�t2 - 2 t2 - tt+ 3 0 � = �1 10 0� � t2 + �0 -11 0 � � t+�-2 03 0� :



1. JORDAN NORMAL FORM 45As usually with polynomial identities, we may ompare the oeÆients and get:A � B0 = �0 � 1A � B1 - B0 = �1 � 1... ...A � Bn-1 - Bn-2 = �n-1 � 1- Bn-1 = (-1)n � 1 (8)Multiplying the i-th row in Equation (8) by Ai-1 we getA � B0 = �0 � 1A2 � B1 - A � B0 = �1 �A... ...An � Bn-1 - An-1 � Bn-2 = �n-1 �An-1- An � Bn-1 = (-1)n �An (9)Adding the terms on the left hand side in Equation (9) we get the zero-matrix,adding the terms on the right hand side, we get �A(A). This proves the statement.For an endomorphism f we note thatMBB��f(f)� = �f�MBB(f)� = �MBB(f)�MBB(f)� = 0;by the previously shown result for matries. However, if the endomorphism �f(f) hasmatrix representation 0 w. r. t. some basis B, then it must be the zero endomorphism.1.14 RemarkWould not the following be a muh shorter proof of the above theorem?�A(A) = det(A-A � 1) = det(0) = 0:What is wrong with this proof?Note, that �A(A) is by de�nition a n� n-matrix, while det(0), the determinant ofthe zero matrix, is just a number! They an hardy oinide!The problem is, that we substituted A for the variable t in the above equation inthe wrong way!1.15 Example (Example 1.7 ontinued)The harateristi polynomial of A = ( 1 10 1 ) was alulated as �A = (1 - t)2. Let'snow plug in A:�A(A) = ��1 00 1�- �1 10 1��2 = �0 -10 0 �2 = �0 00 0� :1.16 LemmaLet g 2 EndK(V), then there is an m � 1 suh thatKer(g) ( Ker �g2� ( : : : ( Ker �gm� = Ker �gk� for all k � m:Proof: This is Exerise 4 on Assignment Set 6.



46 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPS1.17 Theorem (Jordan Normal Form { 2� 2-Case)a. Let f 2 EndK(V) with dimK(V) = 2 suh that �f = (�1 - t) � (�2 - t). Thenthere exists either a basis B of V suh thatJ(f) := MBB(f) =  �1 00 �2!or a basis B of V suh thatJ(f) := MBB(f) =  � 10 �! and � = �1 = �2:We all J(f) a Jordan normal form of f.b. Let A 2 Mat(2 � 2; K) suh that �A = (�1 - t) � (�2 - t). Then there existseither a T 2 Gl2(K) suh thatJ(A) := T-1 �A � T =  �1 00 �2!or a T 2 Gl2(K) suh thatJ(A) := T-1 �A � T =  � 10 �! and � = �1 = �2:We all J(A) a Jordan normal form of A.Proof: We do the proof for endomorphisms by onsidering di�erent ases, and weleave it to the reader to translate this proof to the ase of matries.1st Case: �1 6= �2. Then by Corollary 1.8 f is diagonalisable, and we are done.2nd Case: �1 = �2 and dimK �Eig(f; �)� = 2. Then by Proposition 1.6 f isdiagonalisable, and we are done.3rd Case: �1 = �2 =: � and dimK �Eig(f; �)� = 1. By the Theorem of Cayley-Hamilton we have (f - � � idV)2 = �f(f) = 0 and thus the kernel of this map is thewhole vetor spae V. Taking the dimension of the eigenspae into aount, we getf0g ( Ker(f- � � idV) = Eig(f; �) ( Ker �(f- � � idV)2� = VChoose any w 2 V n Eig(f; �) = Ker �(f - � � idV)2� n Eig(f; �) and set v = (f- � �idV)(w). Then, by the hoie of w,0 6= v 2 Ker �f- � � idV) = Eig(f; �):In partiular, B = (v;w) is linearly independent and thus a basis of V. Moreover,we have f(v) = �v, sine v is an eigenvetor, and f(w) = v + �w. This leads to thefollowing matrix representation MBB(f) =  � 10 �! :



1. JORDAN NORMAL FORM 47The proof of the Theorem was onstrutive and allows to alulate the Jordan normalform and the basis resp. transformation matrix leading to the Jordan normal form.In the �rst two ases we just have to alulate a basis of the eigenspaes and theygive either the desired basis B or the transformation matrix T, if we take them asolumns of T.1.18 Examplea. Let A = � -1 33 -1 � 2 Mat(2� 2; K). Then the harateristi polynomial is�A = det(A- t � 1) = (-1- t)2 - 9 = t2 + 2t- 8 = (t+ 4) � (t- 2):Thus we are in Case 1 and the Jordan normal form will beJ(A) =  -4 00 2! :Let's now alulate the transformation matrix T 2 Gl2(K).For this we �rst have to alulate the eigenspae of A w. r. t. -4. Solving thesystem of linear equations�3 33 3� � �xy� = (A+ 41) � �xy� = �00�leads to Eig(A;-4) = 
(1;-1)t�:Similarly we solve the system of linear equations�-3 33 -3� � �xy� = (A- 21) � �xy� = �00�in order to �nd that the eigenspae of A w. r. t. 2 isEig(A; 2) = 
(1; 1)t�:The transformation matrix is thus the matrix having these two vetors asolumns: T =  1 1-1 1! :b. Let A = � 3 1-1 1 � 2 Mat(2� 2; K). Then the harateristi polynomial is�A = det(A- t � 1) = (3- t) � (1- t) + 1 = t2 - 4t+ 4 = (t- 2)2:Thus we may be in Case 2 or in Case 3. Let's therefore alulate the eigenspaeof A w. r. t. 2.Solving the system of linear equations� 1 1-1 -1� � �xy� = (A- 21) � �xy� = �00�leads to Eig(A; 2) = 
(1;-1)t�:



48 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPSIt thus has dimension 1 and we are atually in Case 3. The Jordan normalform will therefore be J(A) = �2 10 2� :Let's now alulate the transformation matrix T 2 Gl2(K). For this we mayhoose any vetor w 2 K2 n Eig(A; 2), e. g.w = (1; 0)t and v = (A- 21) �w = (1;-1)t:Then the transformation matrix will have the vetors v and w as olumns:T = � 1 1-1 0� :1.19 Theorem (Jordan Normal Form { 3� 3-Case)a. Let f 2 EndK(V) with dimK(V) = 3 suh that �f = (�1 - t) � (�2 - t) � (�3 - t).Then there exists either a basis B of V suh thatJ(f) := MBB(f) = 0B��1 0 00 �2 00 0 �31CAor a basis B of V suh thatJ(f) := MBB(f) = 0B� � 1 00 � 00 0 � 0 1CAor a basis B of V suh thatJ(f) := MBB(f) = 0B� � 1 00 � 10 0 � 1CA :We all J(f) a Jordan normal form of f.b. Let A 2 Mat(3� 3; K) suh that �A = (�1 - t) � (�2 - t) � (�3 - t). Then thereexists either a T 2 Gl3(K) suh thatJ(A) := T-1 �A � T = 0B��1 0 00 �2 00 0 �31CAor a T 2 Gl3(K) suh thatJ(A) := T-1 �A � T = 0B� � 1 00 � 00 0 � 0 1CAor a T 2 Gl3(K) suh thatJ(A) := T-1 �A � T = 0B� � 1 00 � 10 0 � 1CA :We all J(A) a Jordan normal form of A.



1. JORDAN NORMAL FORM 49Proof: Again we do the proof for endomorphisms by onsidering di�erent ases,and we leave it to the reader to translate this proof to the ase of matries.1st Case: �1; �2; �3 are pairwise distint, or �1 = �2 = �3 and dimK �Eig(f; �1)� =3. Then by Proposition 1.6 and Corollary 1.8 f is diagonalisable, and we are done.2nd Case: Just two of the eigenvalues oinide and the orresponding eigenspaehas dimension 2.W. l. o. g. we may assume �1 = �2 6= �3. Let (v1; v2) be a basis of Eig(f; �1) andlet v3 be an eigenvetor of f w. r. t. �3. Sine v3 62 Eig(f; �3) = hv1; v2i, the vetorspae hv1; v2; v3i has dimension 3. This implies that B = (v1; v2; v3) is a basis of Vof eigenvetors, thus MBB(f) = 0B��1 0 00 �2 00 0 �31CA :3rd Case: Just two of the eigenvalues oinide and the orresponding eigenspaehas dimension 1. Again w. l. o. g. we may assume �1 = �2 6= �3.Claim: Eig(f; �1) = Ker(f- �1 idV) ( Ker �(f- �1 idV)2�.With the aid of the dimension formula for linear maps and taking Proposition 1.12into aount we may alulate the dimension of Im(f- �3 idV) asdimK � Im(f-�3 idV)� = dimK(V)-dimK �Ker(f-�3 idV)� = 3-dimK �Eig(f; �3)� = 2:Sine by the Theorem of Cayley-Hamilton we have(f- �1 idV)2 Æ (f- �3) = �f(f) = 0;we have Im(f- �3 idV) � Ker �(f- �1 idV)2�;so that the latter vetor spae has dimension at least 2. Thus, sine the eigenspaeof f w. r. t. �1 has by assumption only dimension 1, the laim follows in view ofLemma 1.16.Choose now any v2 2 Ker �(f- �1 � idV)2� n Eig(f; �1) and set v1 = (f- � � idV)(v2).Moreover, let v3 be any eigenvetor of f w. r. t. �3. Then, by the hoie of v2,0 6= v1 2 Ker �f- �1 � idV) = Eig(f; �1);and (v1; v2) are linearly independent. Sine Ker �(f - �1 idV)2� \ Eig(f; �3) = f0gby Exerise 6 on Assignment Set 6, also B = (v1; v2; v3) is linearly independent andthus a basis of V. Moreover, we have f(v1) = �1v1, sine v1 is an eigenvetor w. r.t. �1; f(v2) = v1 + �1v2; and �nally f(v3) = �3v3. This leads to the following matrixrepresentation MBB(f) = 0B� �1 1 00 �1 00 0 �3 1CA :4th Case: �1 = �2 = �3 and dimK �Eig(f; �1)� = 2.Claim: Ker �(f- �1 idV)2� = V.



50 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPSLet g = f- �1 idV. The Theorem of Cayley-Hamilton gives 0 = �f(f) = g3. HeneKer �g3� = V:By Lemma 1.16 we know that the asending hainKer(g) � Ker �g2� � Ker �g3� � : : :will be stritly asending until the moment where it beomes stationary for good.Sine Ker(g) = Eig(f; �1) has dimension 2 this impliesKer(g) ( Ker �g2� = Ker �g3�;and thus the laim follows.Choose now any v2 2 Ker �(f-�1 � idV)2�nEig(f; �1) and set v1 = (f-� � idV)(v2) 2Eig(f; �1). Moreover, sine Eig(f; �1) has dimension 2, we may hoose v3 2 Eig(f; �1)linearly independent of v1. Then B = (v1; v2; v3) is linearly independent and thusa basis of V. Moreover, we have f(v1) = �1v1, sine v1 is an eigenvetor w. r. t.�1; f(v2) = v1 + �1v2; and �nally f(v3) = �1v1. This leads to the following matrixrepresentation MBB(f) = 0B� �1 1 00 �1 00 0 �1 1CA :5th Case: �1 = �2 = �3 and dimK �Eig(f; �1)� = 1.Claim: f0g ( Ker(f- �1 idV) ( Ker �(f- �1 idV)2� ( Ker �(f- �1 idV)3� = V.As in Case 4 we see that g = f- �1 idV satis�esKer �g3� = V;and sine Ker(g) = Eig(f; �1) has only dimension 1, Ker �(f - �1 idV)2� must haveat least dimension 2 in view of Lemma 1.16. Suppose its dimension was 3. Theng�g(v)� = g2(v) = 0 for all v 2 V:Hene Im(g) � Ker(g) = Eig(f; �1):However, by the dimension formula we havedimK � Im(g)� = dimK(V)- dimK �Ker(g)� = 3- 1 = 2;in ontradition to the fat that the eigenspae has only dimension 1. Thus Ker �g2�lies stritly between Ker(g) and Ker �g3�.Choose now v3 2 V n Ker �(f - �1 idV)2� arbitrary, and set v2 = (f - �1 idV)(v3) 2Ker �(f- �1 idV)2� and v1 = (f- �1 idV)(v2) 2 Ker(f- �1 idV) = Eig(f; �1). In viewof the above laim these vetors form a basis B = (v1; v2; v3) and sine f(v1) = �1v1,f(v2) = v1 + �1v2 and f(v3) = v2 + �1v3, we get the following matrix representationMBB(f) = 0B� �1 1 00 �1 10 0 �1 1CA :



1. JORDAN NORMAL FORM 51In the same way as for the 2 � 2-ase the above proof provides an algorithm toalulate the Jordan normal form of an endomorphism resp. a square matrix andthe orresponding basis respetively the transformation matrix.1.20 ExampleLet us onsider the matrixA = 0B� 3 2 10 3 1-1 -4 -11CA 2 Mat(3� 3; K):The harateristi polynomial is�A = det(A- t � 1) = -t3 + 5t2 - 8t+ 4 = (2- t)2 � (1- t):The eigenvalues are thus �1 = �2 = 2 and �3 = 1, and we are either in Case 2 orin Case 3. To deide whih of the ases it is, we have to alulate the eigenspaeEig(A; 2), i. e. we have to solve the following system of linear equations: 1 2 10 1 1-1 -4 -3! � xyz! = (A- 21) � xyz! =  000! :Using the Algorithms of Gau� and the fat that the third line of the above matrixis equal to the negative of the sum of the �rst two lines, we �nd that the eigenspaehas dimension 1 and is Eig(A; 2) = 
(1;-1; 1)t�:We are therefore in Case 3 and the Jordan normal form of A isJ(A) = 0B� 2 1 00 2 00 0 1 1CA :In order to �nd the transformation matrix T we also have to alulate Ker �(A-21)2�and Eig(A; 1).The system of linear equations 0 0 0-1 -3 -22 6 4 ! � xyz! = (A- 21)2 � xyz! =  000!leads with the aid of the Gau� algorithm toKer �(A- 21)2� = 
(1;-1; 1)t; (2; 0;-1)t�and we may therefore hoose v2 = (2; 0;-1)t 2 Ker �(A- 21)2� n Eig(A; 2) and setv1 = (A- 21) � v2 = (1;-1; 1)t.The orresponding system of linear equations for Eig(A; 1) 2 2 10 2 1-1 -4 -2! � xyz! = (A- 1) � xyz! =  000!gives the one-dimensional solution spaeEig(A; 1) = 
(0; 1;-2)t�and we may set v3 = (0; 1;-2)t.



52 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPSHene the transformation matrix T has these vetors as olumn vetorsT = 0B� 1 2 0-1 0 11 -1 -21CA :1.21 Remark (Jordan Normal Form)Let f 2 EndK(V) suh that �f = (�1 - t)n1 � � � (�r - t)nr with pairwise distint �i.Then there is a basis B of V suh that9J(f) := MBB(f) = rLi=1 miLj=1 tijLk=1 Jj(�i)= 0BBBB� J�(��) 0 � � � 00 J�(��) ...... . . . ...0 � � � � � � J�(��)
1CCCCA ;where� mi = min�m � 1 �� Ker �(f- �i idV)m� = Ker �(f- �i idV)m+1�	,� tij = rank �(f- �i idV)j-1�- 2 � rank �(f- �i idV)j�+ rank �(f- �i idV)j+1�,� ni =Pmij=1 tij, and

� Jj(�i) = 0BBBBBBBBBB�
�i 1 0 : : : : : : 00 . . . . . . . . . ...... . . . . . . . . . . . . ...... . . . . . . . . . 0... . . . . . . 10 : : : : : : : : : 0 �i

1CCCCCCCCCCA 2 Mat(j� j; K).
We all J(f) a Jordan normal form of f.Of ourse, an analogous statement for square matries holds as well.The proof of these will be a major issue in the ourse Algebra II in Term 2.Note, that the above desription allows to alulate the Jordan normal form onewe know a fatorisation of the harateristi polynomial, just by alulating ertainranks of endomorphisms resp. matries, whih an easily be done with the aid of theGau� algorithm.Note also, that over so alled algebraially losed �elds, suh as the omplex numbers,every polynomial fatorises, so that every square matrix has a Jordan normal formas representative of its similarity lass!9Reall that if we have two matries A 2 Mat(m�n;K) and B 2 Mat(p�q; K), then A�B 2Mat �(m + p)� (n + q); K� denotes the blok diagonal matrixA� B =  A 0m�q0p�n B ! :



2. SYMMETRIC BILINEAR FORMS & MATRICES AND QUADRATIC FORMS 532 Normal Forms of Symmetri Bilinear Forms & Matriesand Quadrati Forms2.0 General Assumptions Throughout this setion K will be a �eld of har(K) 6=2, and V will be a �nite-dimensional K-vetor spae.2.1 De�nitiona. A map b : V� V! Kis alled a bilinear form if and only if10 for all v;w; u 2 V and �; � 2 Kb(�v+ �w;u) = � � b(v; u) + � � b(w;u)and b(u; �v+ �w) = � � b(u; v) + � � b(u;w):We denote by BilK(V) the set of all bilinear forms on V.b. A bilinear form b 2 BilK(V) is alled symmetri if and only if for all v;w 2 Vb(v;w) = b(w; v):2.2 Examplea. (Determinant) Let V = K2. The determinant mapdet : K2 � K2 ! K :   a1a2! ; b1b2!! 7! det a1 b1a2 b2! :is a bilinear form on K2 whih is not symmetri.b. (Salar Produt) Let V = Rn. The standard salar produt on Rnh�; �i : Rn �Rn ! R : (x; y) 7! xt � y = nXi=1 xiyiis a symmetri bilinear form.. (Standard Example) Let V = Kn and let A 2 Mat(n� n;K) be �xed. Themap bA : Kn � Kn ! K : (x; y) 7! xt �A � y = nXi=1 nXj=1 xiaijyjis a bilinear form.Moreover, bA is symmetri if and only if At = A, i. e. if A is symmetri.Proof: If bA is symmetri, then aij = bA(ei; ej) = bA(ej; ei) = aji and A issymmetri.On the other hand, if A = At, thenbA(x; y) = xt �A � y = xt �At � y = �xt �At � y�t = yt �A � x = bA(y; x)and thus bA is symmetri.10I. e., if b is linear in the �rst omponent and linear in the seond omponent.



54 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPS2.3 De�nitionLet B = (v1; : : : ; vn) be a basis of V. We all the matrixMB(b) = �b(vi; vj)�i;j=1;:::;n 2 Mat(n� n;K)the matrix assoiated to b or the matrix representation of b with respet to B.2.4 ExampleLet V = R2 and b = h�; �i be the standard salar produt. Let E be the standardbasis of R2 and B = �(1; 1)t; (1; 0)t� another basis. ThenME(b) =  1 00 1! and MB(b) =  2 11 1! :2.5 PropositionLet B = (v1; : : : ; vn) be a basis of V. The mapMB : BilK(V)! Mat(n� n;K) : b 7!MB(b)is a bijetion.Moreover, b is symmetri if and only if MB(b) is symmetri.Note also, for v;w 2 V we haveb(v;w) = MB(v)t �MB(b) �MB(w) = bMB(b)�MB(v);MB(w)�:Proof:Claim: MB is injetive.Let b; b 0 2 BilK(V) suh that MB(b) = MB(b 0). Then for all i; j = 1; : : : ; n we haveb(vi; vj) = b 0(vi; vj):Let v =Pni=1 �ivi 2 V and w =Pnj=1 �jvj 2 V be given, thenb(v;w) = nXi=1 nXj=1 �i�jb(vi; vj) = nXi=1 nXj=1 �i�jb 0(vi; vj) = b 0(v;w):Thus b = b 0, and MB is injetive.Claim: MB is surjetive.Let A 2 Mat(n� n;K) be given. De�neb : V� V! K : (v;w) 7! bA�MB(v);MB(w)� = MB(v)t �A �MB(w): (10)SineMB(�v+� 0v 0) = �MB(v)+� 0MB(v 0), the map b is atually bilinear, and sineb(vi; vj) = bA(ei; ej) = aij;its matrix representation is MB(b) = A. Thus MB is surjetive.Claim: b is symmetri if and only if MB(b) is symmetri.By Equation (10) we knowb(v;w) = bMB(b)�MB(v);MB(w)�:However, applying Example 2.2 ., we have b is symmetri if and only if bMB(b) issymmetri if and only if MB(b) is symmetri.



2. SYMMETRIC BILINEAR FORMS & MATRICES AND QUADRATIC FORMS 552.6 RemarkWe have just shown that one we have �xed a basis of V then symmetri bilinearforms and symmetri n� n-matries are virtually the same thing!Aim: Given b 2 BilK(V) symmetri, �nd a basis B of V suh that MB(b) has asimple form!2.7 Proposition (Base Change)Let B and B 0 be two bases of V and let b 2 BilK(V). ThenMB 0(b) = �TBB 0�t �MB(b) � TBB 0:This allows us to de�ne the rank of the bilinear form to be rank(b) = rank �MB(b)�,and this number is independent of the hosen basis BProof: Let's denote the matrix on the right hand side by (aij)i;j=1;:::;n.Let B = (v1; : : : ; vn), B 0 = (v 01; : : : ; v 0n) and suppose v 0j = Pni=1 tijvi, i. e. TBB 0 =(tij)i;j=1;:::;n. Thenb(v 0i; v 0j) = b nXk=1 tkivk; nXl=1 tljvl! = nXk=1 nXl=1 tkitljb(vk; vl)= (t1i : : : tni) � �b(vk; vl)�k;l=1;:::;n � (t1j : : : tnj)t = aij;sine (t1i : : : tni) is the i-th row of �TBB 0�t and (t1j : : : tnj)t is the j-th olumn of TBB 0.Note, that the rank of a matrix is not hanged when the matrix is multiplied byinvertible matries. Thus the rank of b as de�ned does not depend on the hosenbasis B.2.8 Example (Example 2.4 ontinued)We have(1; 0)t = 0 � (1; 1)t + 1 � (1; 0)t and (0; 1)t = 1 � (1; 1)t + (-1) � (1; 0)t;hene the base hange matrix TBE isTBE =  0 11 -1! :Using the results in Example 2.4 we may verify the result of Proposition 2.7 in thisexample:ME(b) = �1 00 1� = �0 11 -1� � �2 11 1� ��0 11 -1� = �TBE �t �MB(b) � TBE :2.9 Remarka. If we de�ne for A;B 2Mat(n� n;K) symmetriA � B :() 9 T 2 Gln(K) : Tt �A � T;then we have de�ned an equivalene relation on the set of all symmetri n�n-matries.Aim: Find in eah equivalene lass a representative of a simple form!



56 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPSDue to the above remarks this is the same thing as �nding for a given symmetrimatrix A a basis B of Kn suh that MB(bA) has a simple form.b. If T 2 Gln(K) and ti denotes the i-th olumn of T and if the matrix Tt �A �T =(ij)i;j=1:::;n, then bA�ti; tj� = tti �A � tj = ij;that is, the ij-th entry of Tt �A �T is just the bilinear form bA evaluated at thei-th and j-th olumn of T!In partiular bA(ei; ej) = aij, when A = (aij)i;j=1;:::;n.2.10 Theorem (Normal Form of Symmetri Bilinear Forms & Matries)a. Let b 2 BilK(V) be symmetri, then there is basis B = (v1; : : : ; vn) of V suhthat MB(b) is a diagonal matrix, i. e. b(vi; vj) = 0 if i 6= j.b. Let A 2 Mat(n � n;K) be symmetri, then there is a T 2 Gln(K) suh thatTt �A � T is a diagonal matrix.We all suh a diagonal matrix then a normal form for b resp. A.Proof: a. We do the proof by indution on n = dimK(V), where in the ase n = 1there is nothing to show, sine 1� 1-matries are by default diagonal.Let's now assume that n > 1 and that we have already proved the result forn- 1-dimensional vetor spaes.If b(v; v) = 0 for all v 2 V, then for arbitrary v;w 2 V we have0 = b(v+w; v+w) - b(v; v) - b(w;w) = b(v;w) + b(w; v) = 2 � b(v;w); (11)and hene b(v;w) = 0 for all v;w 2 V, sine har(K) 6= 2. Then, however,MB(b) is the zero matrix for any basis, and in partiular it is diagonal.We may therefore assume that there is some v 2 V suh that b(v; v) 6= 0. SetU = hvi and U? = fu 2 V j b(v; u) = 0g. By Exerise 3 on Assignment Set 7we know that U? is a subspae suh that V = U+U?.Claim: U \U? = f0g.Let u 2 U \U?. Then there is a � 2 K suh that u = �v and0 = b(v; u) = � � b(v; v):However, sine b(v; v) 6= 0, � must be zero, and hene u = 0.This shows in partiular that dimK �U?� = n- 1, and therefore we may applyindution to the bilinear formbj : U? �U? ! K : (u;w) 7! b(u;w):Hene, there is a basis B 0 = (v1; : : : ; vn-1) of U? suh that b(vi; vj) = 0 for alli 6= j. But then B = (v1; : : : ; vn) with vn = v is a basis of V and we have forall i; j = 1; : : : ; n with i 6= j b(vi; vj) = 0:



2. SYMMETRIC BILINEAR FORMS & MATRICES AND QUADRATIC FORMS 57b. By Part a. there is a basis B of Kn suh that MB(bA) is a diagonal matrix. SetT = TEB 2 Gln(K) where E is the standard basis of Kn, in other words let thevetors in B be the olumns of T, thenMB(bA) = �TEB�t �ME(b) � TEB = Tt �A � T:Note that this proof gives a reursive algorithm for �nding a basis of V resp. atransformation matrix T whih diagonalises b resp. A!2.11 Corollary (Theorem of Sylvester)Let b 2 BilK(V) and A 2 Mat(n� n;K) both be symmetri and of rank r.a. K = C: There exists a basis B of V suh thatMB(b) = 1r � 0n-r =  1r 0r�n-r0n-r�r 0n-r !and there is some T 2 Gln(C) suh thatTt �A � T = 1r � 0n-r =  1r 0r�n-r0n-r�r 0n-r ! :b. K = R: There exists a basis B of V suh thatMB(b) = 1s �-1t � 0n-r = 0B� 1s 0s�t 0s�n-r0t�s -1t 0s�n-r0n-r�s 0n-r�t 0n-r 1CAand there is some T 2 Gln(R) suh thatTt �A � T = 1s �-1t � 0n-r = 0B� 1s 0s�t 0s�n-r0t�s -1t 0s�n-r0n-r�s 0n-r�t 0n-r 1CA ;where r = s+ t = rank �MB(b)� resp. r = s + t = rank(A).s is alled the index of b resp. of A, s - t its signature. Both s and t areuniquely determined by b resp. by A.Proof: It suÆes to onsider bilinear forms, sine the result for matries follows asin Theorem 2.10.a. By Theorem 2.10 there is a basis B 0 = (v 01; : : : ; v 0n) of V suh that b(v 0i; v 0j) = 0for all i 6= j. W. l. o. g. we may assumeb(v 0i; v 0i) Æ 6= 0; i = 1; : : : ; r;= 0; i = r + 1; : : : ; n:Choose for i = 1; : : : ; r some square rootpb(v 0i; v 0i) 2 C of b(v 0i; v 0i) and de�nevi = Æ 1pb(v 0i;v 0i) � v 0i; i = 1; : : : ; r;v 0i; i = r+ 1; : : : ; n:Then B = (v1; : : : ; vn) is a basis of V suh that MB(b) has the desired form.



58 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPSb. By Theorem 2.10 there is a basis B 0 = (v 01; : : : ; v 0n) of V suh that b(v 0i; v 0j) = 0for all i 6= j. W. l. o. g. we may assumeb(v 0i; v 0i) 8><>: > 0; i = 1; : : : ; s;< 0; i = s+ 1; : : : ; s+ t;= 0; i = s+ t+ 1; : : : ; n:Let's de�ne vi = 8>><>>: 1pb(v 0i;v 0i) � v 0i; i = 1; : : : ; s;1p-b(v 0i;v 0i) � v 0i; i = s+ 1; : : : ; s+ t;v 0i; i = s+ t+ 1; : : : ; n:Then B = (v1; : : : ; vn) is a basis of V suh that MB(b) has the desired form.It remains to show that s and t are uniquely determined. Note �rst, thatobviously r = s + t = rank�MB(b)� and this rank is independent of thehosen basis by Proposition 2.7.Claim: s = max� dimK(U) �� U � V; b(v; v) > 0 8 0 6= v 2 U	, and thus inpartiular s depends only on b, and not on the hosen basis B.By hoie, the subspae U = hv1; : : : ; vsi � V satis�es for 0 6=Psi=1 �ivi 2 Ub sXi=1 �ivi; sXj=1 �jvj! = nXi=1 nXj=1 �i�jb(vi; vj) = nXi=1 �2ib(vi; vi) > 0:Thus s is at most the maximum on the right hand side.Set W = hvs+1; : : : ; vni. In the same way as above we see that for w 2Wb(w;w) � 0:Let U 0 � V suh that b(v; v) > 0 for all 0 6= v 2 U 0. Then U 0 \W = f0g, andhene dimK(U 0) = dimK(U 0 +W)- dimK(W)+ dimK(U 0 \W)� n- �t+ (n- t- s)� = s:Thus s is also at least the maximum on the right hand side, whih proves thelaim.If however s and r only depend on b, then t = r- s does so as well.2.12 Example (Symmetri Gau� Algorithm)Reall �rst that any invertible matrix T is the produt of elementary matriesT = P1 � � �Pk;where an elementary matrix Pi orresponds to performing one of the elementaryoperations in the Gau� algorithm, i. e. permuting rows or olumns resp. addingmultiples of rows or olumns to eah other. Reall moreover, that multiplying withan elementary P from the right is a olumn operation, while multiplying with thematrix Pt from left is the orresponding row operation!



2. SYMMETRIC BILINEAR FORMS & MATRICES AND QUADRATIC FORMS 59Thus the relation B = Tt �A � T= Ptk � � �Pt1 �A � P1 � � �Pksays thatA an be transformed into B by suessively performing row/olumn opera-tions, where eah row operation is immediately also performed as olumn operation!This gives an algorithm to �nd a normal form for a symmetri A.Let for example A = ( 2 11 1 ) 2 Mat(2;R). ThenA = ( 2 11 1 ) R:II7!II-12 I //

� 2 10 12 � C:II7!II-12 I
//

� 2 00 12 � R=C:I 7! 1p2 I
//

� 1 00 12 � R=C:II7!p2II
// ( 1 00 1 ):Thus the signature of A, its index and its rank are all 2.2.13 De�nitiona. A homogeneous polynomial of degree 2q = nXi=1 qiix2i + 2 �Xi<j qijxixj 2 K[x1; : : : ; xn℄is alled a quadrati form. By K[x1; : : : ; xn℄2 we denote the set of all suhpolynomials.Note, sine har(K) 6= 2, every homogeneous polynomial of degree 2 has thisform!b. Let b 2 BilK(V) be symmetri. We all the mapqb : V! K : v 7! b(v; v)the quadrati form assoiated to b.Note, if MB(b) = (aij)i;j=1;:::;n and MB(v) = (y1; : : : ; yn)t for some basis B ofV, thenqb(v) = (y1; : : : ; yn) � (aij)i;j=1;:::;n � � y1...yn� = nXi=1 aiiy2i + 2 �Xi<j aijyiyj:Thus, one we have �xed a basis B of V, qb is a homogeneous polynomialfuntion of degree 2 in the oordinates w. r. t. B.We de�ne for B = (v1; : : : ; vn)MB(qb) = nXi=1 nXj=1 b(vi; vj) � xixj = nXi=1 aiix2i + 2 �Xi<j aijxixj 2 K[x1; : : : ; xn℄and all this the basis representation of qb with respet to B.2.14 Example (Example 2.8 ontinued)We have alulated MB(b) = ( 2 11 1 ), and heneMB(qb) = 2x21 + x22 + 2x1x2:



60 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPS2.15 Propositiona. Let b 2 BilK(V) be symmetri. Then for v;w 2 Vb(v;w) = 12 � �qb(v+w) - qb(v) - qb(w)�:In partiular, the bilinear form b is uniquely determined by its assoiated qua-drati form.b. Let q 2 K[x1; : : : ; xn℄ be a quadrati form, and let B be a basis of V. Thenthere is a symmetri b 2 BilK(V) suh thatq = MB(qb):. The mapfb 2 BilK(V) j b symmetrig �! K[x1; : : : ; xn℄2 : b 7!MB(qb)is bijetive.Proof: a. This is just Equation (11) in the Proof of Theorem 2.10.b. Let q = Pni=1 qiix2i + 2 �Pi<j qijxixj be given, and set A = (qij)i;j=1;:::;n withqji := qij for i < j. Then A 2 Mat(n� n;K) is symmetri and by Proposition2.5 there is a (unique) symmetri bilinear form b 2 BilK(V) suh thatMB(b) =A, whih implies MB(qb) = q:. Part a. gives the injetivity, and Part b. the surjetivity.2.16 Corollary (Normal Forms of Quadrati Forms)Let b 2 BilK(V) be symmetri.a. There is a basis B of V suh that MB(qb) =Pni=1 aix2i with ai = qb(vi).b. If K = C, then there is a basis B of V suh that MB(qb) = Pri=1 x2i , wherer = rank(b).. If K = R, then there is a basis B of V suh that MB(qb) =Psi=1 x2i -Pri=s+1 x2i ,where s = index(b) and r = rank(b).Proof: This follows right away from Theorem 2.10 and Corollary 2.11.3 Normal Forms of Orthogonal, Unitary and Self-AdjointEndomorphisms and Matries3.0 General Assumptions Throughout this setion K = R, the �eld of realnumbers, or K = C, the �eld of omplex numbers. By� : K! K : � 7! �we denote the omplex onjugation, and if � 2 R, then of ourse � = �. V will be a�nite-dimensional K-vetor spae.



3. ORTHOGONAL, UNITARY AND SELF-ADJOINT ENDOMORPHISMS & MATRICES 613.1 De�nitionA salar produt on V is a map h�; �i : V� V! K suh that(i) for v;w; u 2 V and �; � 2 K we haveh�v+ �w;ui = � � hv; ui+ � � hw;uiand hu; �v+ �wi = � � hu; vi+ � � hu;wi:(ii) hv;wi = hw; vi for v;w 2 V.(iii) hv; vi > 0 for 0 6= v 2 V.The �rst property is alled the sesqui-linearity of the salar produt, the seondproperty is alled its anti-symmetry and due to the third property it is said to bede�nite.3.2 RemarkIf K = R, then a salar produt is just a de�nite symmetri bilinear form.3.3 Examplea. (Standard Salar Produt) Let V = Kn, then the maph�; �i : Kn �Kn ! K : (x; y) 7! xt � y = nXi=1 xi � yiis a salar produt, the so alled standard salar produt.b. Let V = R[x℄<n = fp 2 R[x℄ j deg(p) < ng. The maph�; �i : V� V! R : (p; q) 7! Z 10 p(x) � q(x)dxde�nes a salar produt on V, due to the rules for integrals.3.4 De�nitiona. A tuple �V; h�; �i� onsisting of a �nite-dimensional K-vetor spae V and asalar produt h�; �i is alled a (�nite-dimensional) Hilbert spae. If K = R,one alls it also Eulidean spae.b. If �V; h�; �i� is a Hilbert spae and B = (v1; : : : ; vn) is a basis of V suh thathvi; vji = Æij = Æ 1; i = j;0; i 6= j;then B is alled an orthonormal basis (ONB) of V.. If �V; h�; �i� is a Hilbert spae and v 2 V, then we de�nejjvjj =phv; viand all this the length or the norm of v.d. If �V; h�; �i� is a Hilbert spae and U � V a subspae, then we allU? = fv 2 V j hv; ui = 0 8 u 2 Ugthe orthogonal omplement of U.



62 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPS3.5 Example (Explanation for the Notion ONB)Let V = R2 and h�; �i be the standard salar produt.If x 2 R2 is some vetor, then by the Theorem of Pythagoras the length of x isindeed just jjxjj =px21 + x22. R2 0 x1x2 �x1x2� = x
And if x 2 R2 and y 2 R2 are two vetors in the plane, then some geometrialobservations lead to an algorithm for alulating the angle ℄(x; y) between thesetwo vetors.

xjjxjj yjjyjj
x

y
os(�)os(�)

sin(�)sin(�)
1

1��'
For this we sale the vetors so that they have length one by dividing them by theirlength, i. e. we onsider the vetors xjjxjj and yjjyjj . Using the notation in the aboveplan we have ℄(x; y) = ℄� xjjxjj ; yjjyjj� = �- � = ':Using the theorems from trigonometry we haveos(') = os(�- �)= os(�) os(�) + sin(�) sin(�)= x1y1+x2y2jjxjj�jjyjj= hx;yijjxjj�jjyjjor alternatively ℄(x; y) = ' = aros� hx; yijjxjj � jjyjj� :In partiular, x and y are orthogonal to eah other if and only if os(') = 0 if andonly if hx; yi = 0.We have thus seen, that the standard salar produt determines angles, lengths andthus distanes in R2, and we may therefore use salar produts in general in orderto generalise these properties.



3. ORTHOGONAL, UNITARY AND SELF-ADJOINT ENDOMORPHISMS & MATRICES 63From now on we will assume that �V; h�; �i� is a Hilbert spae, i. e. that V is endowedwith a �xed salar produt.The following Lemma tells us how to �nd the base representation of a vetor withrespet to an ONB without having to solve a system of linear equations.3.6 Lemma (Parseval-Equation)Let B = (v1; : : : ; vn) be an ONB of the Hilbert spae �V; h�; �i� and let v 2 V, thenv = nXi=1 hv; vii � vi:Proof: Sine B is a basis, there are unique elements �1; : : : ; �n 2 K suh thatv =Pni=1 �ivi. Using the salar produt and the fat that B is an ONB we �ndhv; vji = * nXi=1 �ivi; vj+ = nXi=1 �i � hvi; vji = �j:3.7 LemmaIf v1; : : : ; vr 2 V suh that hvi; vji = Æij for i; j = 1; : : : ; r, then (v1; : : : ; vr) is linearlyindependent.Proof: Let �1; : : : ; �r 2 K suh that Pri=1 �ivi = 0. Then for j = 1; : : : ; r0 = * rXi=1 �ivi; vj+ = rXi=1 �i � hvi; vji = �j:Hene, (v1; : : : ; vr) is linearly independent.3.8 Theorem (Gram-Shmidt)Let U � V be a subspae of the Hilbert spae �V; h�; �i�, then any ONB of U an beextended to an ONB of V. In partiular, every Hilbert spae has an ONB.Moreover, V = U�U?.Proof: Let B = (v1; : : : ; vr) be an ONB of U, n = dimK(V) and m = n- r. We dothe proof by indution on m. If m = 0, then n = r and hene U = V, so that B isalready an ONB of V.Suppose now that m > 0 and that the statement holds true for m - 1, i. e. forsubspaes of dimension r + 1. By assumption r < n, and hene there is somev 2 V nU. We set v 0 = v - rXi=1 hv; vii � vi 6= 0and vr+1 = 1jjv 0jj � v 0:Then hvr+1; vr+1i = hv 0;v 0ijjvjj2 = 1 andhvr+1; vii = hv; vii-Prj=1hv; vji � hvi; vjijjv 0jj = hv; vii- hv; viijjv 0jj = 0:



64 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPSHene, by Lemma 3.7 (v1; : : : ; vr+1) is an ONB of the subspae U 0 = hv1; : : : ; vr+1i,whih has dimension r + 1. So by indution (v1; : : : ; vr+1) an be extended to anONB of V. Finally, it is Exerise 4 on Assignment Set 8 to show V = U�U?.3.9 ExampleLet V = K3 and h�; �i be the standard salar produt.a. The standard basis E = (e1; e2; e3) ful�ls hei; eji = Æij, and is thus an ONB of�K3; h�; �i�.b. Let U = 
(2; 1; 2)t; (3; 1; 1)t� � K3, u1 = (2; 1; 2)t and u2 = (3; 1; 1)t.Let's �rst of all �nd an ONB of U, using the algorithm of Gram-Shmidt.Step 1 : v1 = 1jju1 jj � u1 = 13 � (2; 1; 2)t.Step 2 : Setv 0 = u2 - hu2; v1i � v1 = (3; 1; 1)t - 93 � 13 � (2; 1; 2)t = (1; 0;-1)t;and then v2 = 1jjv2jj � v2 = 1p2 � (1; 0;-1)t:Then B = (v1; v2) is an ONB of U.Let us now extend B to an ONB of V.Step 3 : For this we hoose some vetor u3 = (1; 0; 0)t 62 U. We then setv 0 = u3 - hu3; v1i � v1 - hu3; v2i � v2= (1; 0; 0)t - 29 � (2; 1; 2)t - 12 � (1; 0;-1)t= 118 � (1;-4; 1);and hene v3 = 1jjv 0 jj � v 0 = 13p2 � (1;-4; 1)t:Then (v1; v2; v3) is an ONB of K3 whih extends an ONB of U.3.10 IdeaWhen we onsider Hilbert spaes, that is vetor spaes together with the additionalstruture of a salar produt, then we should like to restrit our attention to mapsfrom V to V whih respet the struture, i. e. maps f : V ! V whih are K-linearand whih respet the salar produt.However, what does it mean that an endomorphism respets the salar produt?We will give two di�erent interpretations of this in the following de�nition, both ofwhih make sense and lead to interesting lasses of endomorphisms.As always, we will treat the ase of square matries at the same time.3.11 De�nitionLet f 2 EndK(V) and A 2 Mat(n� n;K).a. If hf(v); f(w)i = hv;wi for all v;w 2 V, then f is said to be orthogonal (ifK = R) or unitary (if K = C).b. If hf(v); wi = hv; f(w)i for all v;w 2 V, then f is said to be self-adjoint. IfK = R we say also f is symmetri, and if K = C we say likewise f is hermitian.



3. ORTHOGONAL, UNITARY AND SELF-ADJOINT ENDOMORPHISMS & MATRICES 65. If A 2 Gln(K) and A-1 = At, then A is alled orthogonal (if K = R) orunitary (if K = C). We set O(n) = fB 2 Mat(n�n;R) j A is orthogonalg andU(n) = fB 2 Mat(n � n;C) j A is unitaryg. These are subgroups of Gln(R)resp. of Gln(C), as one easily veri�es.d. If A = At, then A is alled self-adjoint, in the real ase also symmetri and inthe omplex ase also hermitian.3.12 ExampleLet V = Kn and let h�; �i be the standard salar produt.a. Let A 2 Mat(n � n;K) and let a1; : : : ; an denote the olumns of A. ThenA-1 = At if and only if At � A = 1 if and only if At � A = 1 if and only ifati � aj = Æij for all i; j if and only if (a1; : : : ; an) is an ONB of Kn.This shows e. g. that the following matrix is orthogonal and self-adjointA =  1p2 1p21p2 - 1p2! :b. Let A 2 Gln(K) be suh that A-1 = At. ThenfA : Kn ! Kn : x 7! A � xis an orthogonal resp. unitary endomorphism.Proof: Let x; y 2 Kn. ThenhfA(x); fA(y)i = �A � x)t �A � y= xt �At �A � y = xt �At �A � y = xt � y = hx; yi:. Let A 2 Mat(n� n;K) be self-adjoint, then fA is self-adjoint.Proof: Let x; y 2 Kn. ThenhfA(x); yi = �A � x)t � y = xt �At � y = xt � �At�t � y = xt �A � y = hx; fA(y)i:d. Let �V; h�; �i�be any Hilbert spae and let B = (v1; : : : ; vn) and B 0 = (v 01; : : : ; v 0n)be two ONB. Then the base hange matrix TBB 0 is orthogonal resp. unitary.Proof: Let TBB 0 = (tij)i;j=1;:::;n and denote by ti the i-th olumn of this matrix.Then v 0j =Pni=1 tijvi and thereforehtk; tli =Xni=1 tik � til =Xni=1Xnj=1 tik � tjl � hvi; vji= DXni=1 tikvi;Xnj=1 tjlvjE = hv 0k; v 0li = Ækl:



66 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPS3.13 PropositionLet g 2 EndK(V) be orthogonal resp. unitary. Then:a. jjf(v)jj = jjvjj for all v 2 V.b. hf(v);f(w)ijjf(v)jj�jjf(w)jj = hv;wijjvjj�jjwjj for all v;w 2 V.Hene, f preserves lengths, distanes and angles.Proof: a. For v 2 V we have jjf(v)jj =phf(v); f(v)i =phv; vi = jjvjj.b. This follows from Part a. and the de�nition of orthogonal resp. unitary.3.14 PropositionLet B be an ONB of V, f 2 EndK(V). Then:a. f is orthogonal resp. unitary if and only MBB(f) is so.b. f is self-adjoint if and only if MBB(f) is so.Proof: Let B = (v1; : : : ; vn), then the Parseval-Equation 3.6 givesf(vj) = nXi=1 hf(vj); vii � vi:Hene MBB(f) = (aij)i;j=1;:::;n with aij = hf(vj); vii. Let's denote the olumns ofMBB(f) by a1; : : : ; an.a. We then �ndhf(vj); f(vl)i = * nXi=1 aijvi; nXk=1 aklvk+= nXi=1 nXk=1 aij � akl � hvi; vki = nXi=1 aij � ail = haj; ali:Taking Example 3.12 a. into aount, we have MBB(f) is orthogonal/unitary ifand only if haj; ali = Æjl 8 j; l if and only if hf(vj); f(vl)i = Æjl = hvj; vli 8 j; l.If f is orthogonal/unitary, then the last ondition is obviously satis�ed andtherefore MBB(f) is orthogonal/unitary.If onverselyMBB(f) is orthogonal/unitary, and v =Pnj=1 �jvj; w =Pnl=1 �lvl 2V, then by the above equivalene we gethf(v); f(w)i = nXj=1 nXl=1 �j � �l � hf(vj); f(vl)i = nXj=1 nXl=1 �j � �l � hvj; vli = hv;wi:b. Let v =Pni=1 �ivi; w =Pnj=1 �jvj 2 V. Thenhf(v); wi = nXi=1 nXj=1 �i � �j � hf(vi); vji = nXi=1 nXj=1 �i � �j � ajiand hv; f(w)i = nXi=1 nXj=1 �i � �j � hvi; f(vj)i = nXi=1 nXj=1 �i � �j � aij:



3. ORTHOGONAL, UNITARY AND SELF-ADJOINT ENDOMORPHISMS & MATRICES 67If, now, MBB(f) is self-adjoint, then aij = aji, and thus f is self-adjoint.If f is self-adjoint, then we may apply the above inequalities to v = vi andw = vj for i; j arbitrary, in order to �nd aji = aij for all i; j. Thus MBB(f) isself-adjoint.3.15 Theorem (Normal Forms for Unitary Endomorphisms & Matries)a. If f 2 EndC(V) is unitary, then there is an ONB B = (v1; : : : ; vn) of V suhthat f(vi) = �ivi and j�ij = 1, i. e.
MBB(f) = 0BBBBBBB�

�1 0 : : : : : : 00 . . . . . . ...... . . . . . . . . . ...... . . . . . . 00 : : : : : : 0 �n
1CCCCCCCA :

b. If A 2 U(n), then there is a T 2 U(n) suh that for some �i 2 C with j�ij = 1
T-1 �A � T = 0BBBBBBB�

�1 0 : : : : : : 00 . . . . . . ...... . . . . . . . . . ...... . . . . . . 00 : : : : : : 0 �n
1CCCCCCCA :Proof: a.Claim: If � is an eigenvalue of f, then j�j = 1.By assumption there is some 0 6= v 2 V suh that f(v) = �v. Thus� � � � hv; vi = h�v; �vi = hf(v); f(v)i = hv; vi:Sine the salar produt is de�nite hv; vi 6= 0, and hene j�j2 = � � � = 1.Claim: f has an ONB of eigenvetors.We do the proof by indution on n = dimK(V), where for the ase n = 1 thereis nothing to show.We may therefore assume that n > 1 and that unitary endomorphisms onHilbert spaes of dimension n- 1 are diagonalisable w. r. t. an ONB.Sine K = C, the harateristi polynomial of f fatorises and, hene, f has aneigenvalue �n with orresponding eigenvetor 0 6= vn 2 V of length jjvnjj = 1and by the above laim �n � �n = 1. We set U = hvni, and we showf�U?� � U?:For this let u 2 U?. Thenhf(u); vni = �n � �n � hf(u); vni= �n � hf(u); �nvni = �n � hf(u); f(vn)i = �n � hu; vni = 0:Thus f(u)?vn, and hene f(u) 2 U?.



68 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPSWe may therefore onsider the endomorphism f restrited to U?fj : U? ! U? : u 7! f(u);whih by default is unitary again.Thus by indution, sine dimK �U?� = n - 1, there is an ONB (v1; : : : ; vn-1)of U? suh that f(vi) = �ivifor i = 1; : : : ; n- 1 and some �i 2 C with j�ij = 1.However, hvi; vji = Æij for all i; j = 1; : : : ; n, sine vi 2 hvni?. Thus byLemma 3.7 B = (v1; : : : ; vn) is an ONB of V and f(vi) = �ivi with j�ij = 1 forall i = 1; : : : ; n.b. We may apply Part a. to V = Cn with the standard salar produt and theendomorphism f = fA. Then T = TEB will do, where B is the ONB whih Parta. gives us, and E is the standard basis. Note that by Proposition 3.14 f isunitary and by Example 3.12 d. T 2 U(n).3.16 Remark (Normal Forms of Orthogonal Endomorphisms & Matries)The ase of orthogonal endomorphisms and matries is onsiderably harder, due tothe fat, that over R the harateristi polynomial need not fatorise. However, onean show the following generalisation.If f 2 EndR(V) is orthogonal resp. A 2 O(n), then there is an ONB B of V resp. aT 2 O(n) suh thatMBB(f) = 0BBBB�A1 0 � � � 00 A2 ...... . . . ...0 � � � � � � Ar
1CCCCA resp. T-1 �A � T = 0BBBB�A1 0 � � � 00 A2 ...... . . . ...0 � � � � � � Ar

1CCCCAwhere either Ai = (1) 2 Mat(1� 1;R) or Ai = (-1) 2 Mat(1� 1;R) orAi =  os(�i) sin(�i)- sin(�i) os(�i)!for some �i 2 [0; 2�).3.17 Theorem (Normal Forms of Self-Adjoint Endomorphisms & Matries)a. Let f 2 EndK(V) be self-adjoint, then there is an ONB B = (v1; : : : ; vn) of Vsuh that f(vi) = �ivi with �i 2 R for i = 1; : : : ; n, i. e.
MBB(f) = 0BBBBBBB�

�1 0 : : : : : : 00 . . . . . . ...... . . . . . . . . . ...... . . . . . . 00 : : : : : : 0 �n
1CCCCCCCA :



3. ORTHOGONAL, UNITARY AND SELF-ADJOINT ENDOMORPHISMS & MATRICES 69b. If A 2 Mat(n� n;K) is self-adjoint, then there is a T 2 O(n) resp. T 2 U(n)suh that T-1 �A � T = 0BBBBBBB�
�1 0 : : : : : : 00 . . . . . . ...... . . . . . . . . . ...... . . . . . . 00 : : : : : : 0 �n

1CCCCCCCAand �i 2 R for i = 1; : : : ; n.Proof:Claim: If � is an eigenvalue of f, then � 2 R.By assumption there is some 0 6= v 2 V suh that f(v) = �v. Thus� � hv; vi = h�v; vi = hf(v); vi = hv; f(v)i = hv; �vi = � � hv; vi:Sine the salar produt is de�nite hv; vi 6= 0, and hene � = �, i. e. � 2 R.Claim: If � is an eigenvalue of A, then � 2 R.By assumption � is an eigenvalue of the self-adjoint endomorphism fA, and thus bythe above laim � 2 R.a. Claim: f has some eigenvalue!Let B be any ONB of V and M = MBB(f), then by Proposition 3.14 M =Mt 2 Mat(n�n;K) � Mat(n�n;C). We may thus onsider M as a omplexmatrix, no matter whether its entries are real or omplex. Therefore�f = �M 2 K[t℄ � C[t℄;and onsidered as a omplex polynomial it must have a zero � 2 C in theomplex numbers. This, however, is an eigenvalue of the matrix M onsideredas omplex matrix, and by the above laim it is therefore a real number, withthe property �f(�) = �M(�) = 0. That is, it is an eigenvalue of f!Claim: f has an ONB of eigenvetors.We do the proof by indution on n = dimK(V), where for the ase n = 1 thereis nothing to show.We may therefore assume that n > 1 and that unitary endomorphisms onHilbert spaes of dimension n- 1 are diagonalisable w. r. t. an ONB.We have just shown that f has an eigenvalue �n with orresponding eigenvetor0 6= vn 2 V of length jjvnjj = 1 and �n 2 R. We set U = hvni, and we showf�U?� � U?:For this let u 2 U?. Thenhf(u); vni = hu; f(vn)i = hu; �nvni = �n � hu; vni = 0:Thus f(u)?vn, and hene f(u) 2 U?.



70 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPSWe may therefore onsider the endomorphism f restrited to U?fj : U? ! U? : u 7! f(u);whih by default is self-adjoint again.Thus by indution, sine dimK �U?� = n - 1, there is an ONB (v1; : : : ; vn-1)of U? suh that f(vi) = �ivifor i = 1; : : : ; n- 1 and some �i 2 R.However, hvi; vji = Æij for all i; j = 1; : : : ; n, sine vi 2 hvni?. Thus byLemma 3.7 B = (v1; : : : ; vn) is an ONB of V and f(vi) = �ivi with �i 2 R forall i = 1; : : : ; n.b. We may apply Part a. to V = Kn with the standard salar produt and theendomorphism f = fA. Then T = TEB will do, where B is the ONB whihPart a. gives us, and E is the standard basis. Note that by Proposition 3.14 fis self-adjoint and by Example 3.12 T 2 O(n) resp. T 2 U(n).3.18 ExampleConsider the matrix A = 0B� 0 -1 i-1 0 -i-i i 0 1CA 2 Mat(3� 3;C):Sine A = At, the matrix A is self-adjoint. It is our aim to diagonalise A w. r. t. anONB, so �rst of all we have to �nd the eigenvalues of A.�A = det(A- t � 1) = -t3 + 3t- 2 = (1+ t)2 � (2- t);whih implies that the eigenvalues are -1 and 2.We next have to �nd ONB's of the eigenspaes of A, using the Gau� algorithm andthe algorithm of Gram-Shmidt.In order to �nd Eig(A;-1) we solve the linear system of equations 1 -1 i-1 1 -i-i i 1! � xyz! = (A+ 1) � xyz! =  000! :The algorithm of Gau� gives Eig(A;-1) = 
(1; 1; 0)t; (0; 1;-i)t�. We use the algo-rithm of Gram-Shmidt to transform these vetors into an ONB of the eigenspae,and we get v1 = 1p2 � (1; 1; 0)t; v2 = 1p6 � (-1; 1;-2i)t:We then alulate the eigenspae Eig(A; 2) with the aid of -2 -1 i-1 -2 -i-i i -2! � xyz! = (A+ 1) � xyz! =  000! :



3. ORTHOGONAL, UNITARY AND SELF-ADJOINT ENDOMORPHISMS & MATRICES 71and get Eig(A; 2) = 
(1;-1;-i)t�. Gram-Shmidt tells us to ut this vetor downto length 1 in oder to have an ONB of Eig(A; 2)v3 = 1p3 � (1;-1;-i)t:Thus the matrix having these vetors v1; v2; v3 as olumns is the wanted transfor-mation matrix, T = 0B� 1p2 - 1p6 1p31p2 1p6 - 1p30 - 2ip6 - ip31CA 2 U(3);and T-1 �A � T = 0B�-1 0 00 -1 00 0 21CA :The above results on normal forms of self-adjoint matries allow a lassi�ation ofreal symmetri bilinear forms with respet to base hanges whih respets distanesand angles, i. e. with respet to ONB's. This is desirable when we onsider geometriinterpretations of symmetri bilinear forms respetively quadrati forms.3.19 Corollary (Normal Forms of Quadrati Forms by ONB's)a. Let A 2 Mat(n� n;R) be a symmetri matrix, then there is a T 2 O(n) suhthat Tt �A � T = 0BBBBBBB�
�1 0 : : : : : : 00 . . . . . . ...... . . . . . . . . . ...... . . . . . . 00 : : : : : : 0 �n

1CCCCCCCA :where �1; : : : ; �n 2 R are the eigenvalues of A.b. Let b 2 BilR(V) be symmetri, then there is an ONB of V suh that
MB(b) = 0BBBBBBB�

�1 0 : : : : : : 00 . . . . . . ...... . . . . . . . . . ...... . . . . . . 00 : : : : : : 0 �n
1CCCCCCCAand MB(qb) = nXi=1 �ix2i :Proof: Part a. follows from Theorem 3.17 and the fat that for orthogonal matrieswe have T-1 = Tt!Part b. then is an immediate onsequene of Part a. and the orrespondene betweensymmetri matries and symmetri bilinear forms studied in Setion 2.



72 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPS4 Normal Forms of Cone Setions4.0 General Assumptions We onsider R2 endowed with the standard salarprodut h�; �i. By I�R2� = �' : R2 ! R2 �� ' is an isometry	we denote the group of isometries of the real plane. From the ourse on \FromGroups to Geometry" it is known thatI�R2� = ��v Æ f �� v 2 R2; f 2 O(2)	;where �v : R2 ! R2 : x 7! v + x is the translation by v. I. e. every isometry an bedeomposed as an orthogonal endomorphism followed by a translation.4.1 De�nitionLet Q = fp 2 R[x1; x2℄ j deg(p) = 2g. For p; q 2 Q we de�nep � q :() 9 ' 2 I�R2�; 0 6= � 2 R : q = � � (p Æ'):One easily heks that this de�nes an equivalene relation on Q, sine �I�R2�; Æ�and (R n f0g; �) are groups. We all the elements of Q onis.As always, we are interested in �nding simple representatives for the equivalenelasses of this relation, and we all them normal forms.4.2 RemarkA polynomial p 2 Q has the formp = �11x21 + 2�12x1x2 + �22x22 + �1x1 + �2x2 + �= (x1; x2) � ��11 �12�21 �22� � �x1x2� + (�1; �2) � �x1x2�+ �= hx; S � xi+ ha; xi+ �;where x = (x1; x2)t, �21 := �12, a = (�1; �2)t and S = ( �11 �12�21 �22 ) is symmetri.We are atually interested in the zero set of p, i. e. inZ(p) := �(x; y)t 2 R2 �� p(x; y) = 0	:E. g. p = x2 - x21, then Z(p) is the standard parabola in R2.Note that multiplying p with a non-zero onstant � does not hange Z(p), andhanging the oordinates by an isometry preserves distanes and angles, that is,Z(p) will be hanged by a rotation or reetion followed by a translation.E. g. let p = x2 - x21, q = -x22 + x1 + 2x2 + 1, f = fA with A = � 0 1-1 0 �, v = (1; 2)tand ' = �v Æ f. We laim that q = p Æ', in partiular p � q. For this just notep Æ' = p��v(f(x1; x2))� =p��v(-x2; x1)� = p(-x2 + 1; x1 + 2) = (x1 + 2) - (-x2 + 1)2 = q:Note that Z(q) an be derived from Z(p) by applying '-1 to it!In order to be able to �nd the normal forms of



4. NORMAL FORMS OF CONE SECTIONS 734.3 LemmaLet S 2 Mat(2� 2;R) be symmetri.a. Ker �S2� = Ker(S) and Im �S2� = Im(S).b. For all a 2 R2 there is some  2 R2 suh that S2 � + S � a = 0.Proof: a. It is lear, that Ker(S) � Ker �S2�. Let now x 2 Ker �S2�. Then0 = 
x; S2x� = hSx; Sxi:This, however, implies Sx = 0, and thus x 2 Ker(S).Again it is lear that Im �S2� � Im(S). But then the dimension formula givesdimR Im �S2� = 2- dimRKer �S2� = 2- dimRKer(S) = dimR Im(S):Hene Im �S2� = Im(S).b. We have S � (-a) 2 Im(S) = Im �S2�. Thus there is a  2 R2 suh thatS2 �  = S � (-a), whih proves the laim.4.4 Theorem (Classi�ation of Cone Setions)Let p = hx; Sxi + ha; xi + � 2 Q be arbitrary with S = ( �11 �12�21 �22 ) 2 Mat(2 � 2;R)symmetri and a = (�1; �2)t 2 R2.Then p is equivalent to one of the following normal forms:I: det(S) > 0.I.1: � 6= 0 and �11 > 0. p � (�1x1)2 + (�2x2)2 - 1 and Z(p) is an ellipse.I.2: � 6= 0 and �11 < 0. p � (�1x1)2 + (�2x2)2 + 1 and Z(p) is the empty set.I.3: � = 0. p � (�1x1)2 + (�2x2)2 and Z(p) is a single point.II: det(S) < 0.II.1: � 6= 0. p � (�1x1)2 - (�2x2)2 - 1 and Z(p) is a hyperbola.II.2: � = 0. p � (�1x1)2 - (�2x2)2 and Z(p) onsists of two di�erent linesthrough the origin.III: det(S) = 0, a 6= (0; 0)t. p � x21 - �x2 and Z(p) is a parabola.IV: det(S) = 0, a = (0; 0)t.IV.1: � 6= 0 and S has a positive eigenvalue. p � x21 - �, � > 0, and Z(p) on-sists of two parallel lines.IV.2: � 6= 0 and S has a negative eigenvalue. p � x21 + �, � > 0, and Z(p) isthe empty set.IV.3: � = 0. p � x21 and Z(p) onsists of a line ounted twie.Proof: 1st Case: a = (0; 0)t: Let's �rst onsider the ase a = (0; 0)t.By Corollary 3.19 there is a T 2 O(2), suh thatTt � S � T = T-1 � S � T =  �1 00 �2 ! :



74 II. NORMAL FORMS OF LINEAR AND BILINEAR MAPSNote that not both eigenvalues �1 and �2 an be zero, sine S 6= 0. Hene we mayassume �1 6= 0 and �1 � �2 if �2 6= 0.The endomorphism fT : R2 ! R2 : x 7! Tx is a rotation or a reetion and we havep(Tx) = 
Tx; (S � T)x�+ �= 
x; �Tt � S � T�x�+ �= �1x21 + �2x22 + �:Multiplying with a suitable onstant, we may assume that either � = 0 or � = -1.De�ne �i =pj�ij, then we have to distinguish the following ases.Case 1.1: �1; �2 > 0: This is equivalent to the fat that S is positive de�nite andhene that det(S) > 0 and �11 > 0. If � = -1, we are in Case I.1, and if � = 0, weare in Case I.3.Case 1.2: �1; �2 < 0: This is equivalent to the fat that -S positive de�nite, henethat det(S) = det(-S) > 0 and -�11 > 0. Is � = -1, we are in Case I.2, and for� = 0 its again Case I.3, sine we may multiply the polynomial one more by -1.Case 1.3: �1 > 0; �2 < 0: This is equivalent to �1 � �2 = det(S) < 0. � = -1 leadsto Case II.1 and � = 0 to Case II.2.Case 1.4: �1 > 0; �2 = 0 or �1 < 0; �2 = 0: This is Equivalent to det(S) = 0. If�1 > 0 and � = -1 we are in Case IV.1, for �1 < 0 and � = -1 we get Case IV.2,and for � = 0 it is Case IV.3.2nd Case: a 6= (0; 0)t: In Case a = (0; 0)t we got around without applying anytranslations. This will now be di�erent.For  2 R2 the translation t : R2 ! R2 : x 7! x+ leads to the following oordinatetransformation for pp(x+ ) = hx+ ; Sx+ Si+ 2ha; x+ i+ �= hx; Sxi+ 2ha+ S; xi+ h; Si+ 2ha; i+ �= hx; Sxi+ 2hb; xi+ �; (12)where b = a+ S and � = h; Si+ 2ha; i+ �.Case 2.1: 9  2 R2 : b = a+ S = (0; 0)t: The transformation p 7! p�t(x)� reduesto the �rst Case \a = (0; 0)t". Hene p is equivalent one of the Cases I, II or IV.Case 2.2: 8  2 R2 : b = a+ S 6= (0; 0)t: By Lemma 4.3 there is a  2 R2 suh thatSb = S2+ Sa = 0. If we de�ne Æ := - �2hb;bi , then the translation t+Æb leads top(x+  + Æb) = hx; Sxi+ 2
a+ S( + Æb); x�+ 
 + Æb; S(+ Æb)� + 2ha;  + Æbi+ �= hx; Sxi+ 2hb + ÆSb; xi+ Æ2hb; Sbi + 2Æhb; bi + �= hx; Sxi+ 2hb; xi+ 2Æhb; bi + �= hx; Sxi+ 2hb; xi:



4. NORMAL FORMS OF CONE SECTIONS 75Taking into aount that 0 is ertainly an eigenvalue of S, sine Sb = 0, and sineS 6= 0, Corollary 3.19 implies the existene of a T 2 O(2), suh thatD := Tt � S � T = T-1 � S � T =  �1 00 0 ! ;where �1 6= 0. In partiular we are in the ase det(S) = 0.Moreover, for Ttb =: (�; �)t we have, taking Tt = T-1 into aount,(�1�; 0) = �Tt � S � T) � (Ttb) = Tt � (Sb) = 0;and hene Ttb = (0; �)t, where � 6= 0, sine Tt is invertible and b 6= (0; 0)t. Butthen the map x 7! Tx transforms the polynomial hx; Sxi+ 2hb; xi into
Tx; (S � T)x�+ 2
b; Tx� = 
xt; Dx�+ 2
Ttb; x� = �1x21 + 2�x2:I. e. q := p�(t+Æb Æ fT)(x)� = �1x21 + 2�x2;and we are in Case III.4.5 RemarkThe sets Z(p) with p 2 Q are alled one setions sine all of them, exept forthe ases I.2, IV.1 and IV.2, an be realised as intersetions of the double oneC = fx20 - x21 - x22 = 0g in R3 with a suitable plane.

I.1: Ellipse I.3: Point II.1: Hyperbola

II.2: Two Lines with Intersetion III: Parabola IV.3: Double Line
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APPENDIX AAssignments and SolutionsAssignment Set 1Exerise 2 should be handed in for marking. Exerises with an asterisque (*) areonsidered hallenging, and you should not spend too muh time on trying to solvethem.Exerise 1: Let n � 2 be an integer. Denote by � = (1 2 : : : n) 2 Sn the n-ylewith �(i) = i + 1 for i < n and �(n) = 1, and by � 2 Sn the permutation with�(i) = n+ 1- i for i = 1; : : : ; n.a. Show that �n = (1), �2 = (1), and �� = �-1.b. Show that h�; �i = ��i; � Æ �i �� i = 0; : : : ; n - 1g is a group of order 2n. Wedenote this group by D2n and all it the dihedrial group of order 2n.. De�ne a permutation � : D2n ! D2n on D2n by ���i� = �n-1-i and ���Æ�i� =� Æ �i. Setting �i := �i 2 Sym(D2n) for i = 1; : : : ; r, r � 3 any integer, showthat the hek digit ode CD2n��1; : : : ; �r; (1)� detets errors of type II.Note: If you have problems dealing with the general ase, you may just replae n by anyof the numbers n = 3, 4 or 5.Exerise 2: Let (G; �) be a group suh that g2 = eG for all g 2 G. Show that Gis abelian.Exerise 3: Let p be a prime number and set Z� 1p� = � zpn 2 Q �� n; z 2 Z; n � 0	.a. Show that Z� 1p� is a subgroup of �Q;+�, i. e. of the rational numbers withrespet to addition.b.� Find all the subgroups of �Z� 1p�;+� and of �Zp1 ;+�, where Zp1 = Z� 1p�ÆZis the fator group of Z� 1p� by the normal subgroup Z.Note: It will turn out that every strit subgroup of Zp1 is �nite and yli, while theZp1 itself is not even �nitely generated!Exerise� 4: Let (C;+; �) denote the �eld of omplex numbers, and denote by ithe imaginary unit with i2 = -1. Consider the subgroupQ8 := 
� 0 -11 0 � ; ( 0 ii 0 )� < Gl2(C)of the group of invertible 2�2-matries over C with respet to matrix multipliation.Find all the subgroups of Q8. 77



78 A. ASSIGNMENTS AND SOLUTIONSAssignment Set 2Exerise 1: Let (G; �) is a group, g 2 G and n = min�m 2 Z j m > 0; gm =eG	 <1. Show that hgi = �eG = g0; g1; g2; : : : ; gn-1	.Exerise 2: Whih of the sets A = fz 2 Z j z > 0g, B = �1z j z 2 A	 and A [ B isa group with respet to the multpliation of integers?Exerise 3: Show that E = fz 2 C j jzj = 1g is a subgroup of (C n f0g; �), where Cdenotes the omplex numbers.Exerise 4: Let R>0 = fx 2 R j x > 0g. De�neÆ : R>0 �R>0 ! R>0 : (x; y) 7! x Æ y := xy:Is (R>0; Æ) a group? Assignment Set 3Exerises 1 and 3 should be handed in for marking.Exerise 1: Let (G; �) be a �nite group and let U;V � G. Use the Theorem ofLagrange to prove the following statements.a. If V � U, then jG : Vj = jG : Uj � jU : Vj.b. If gd �jG : Uj; jG : Vj�= 1, then G = U � V.Exerise 2: Let (G; �) be a group, Ui � G for i 2 I. Show that Ti2IUi � G.Exerise 3: Let (G; �) be a group, N;N1; N2 �G, U � G.a. N \U�U.b. N1 \N2 � G.Exerise 4:a.� Let � = (a1 a2 : : : ak) 2 Sn be a k-yle and � = (b1 b2 : : : bl) 2 Sn be anl-yle. Show that that � and � are onjugate (i. e. 9 � 2 Sn s. t. �Æ�Æ�-1 = �)if and only if k = l.Hint, if k = l then it is easy just to give �, for the opposite diretion I reommend to have a look at�k and �k.b. We know that any permutation in Sn has a unique representation as a produtof disjoint yles. Suppose that � = �1 Æ : : : Æ �r is suh a representation for� 2 Sn and suppose that �i is a ki-yle with k1 � k2 � : : : � kr. We thenall (k1; : : : ; kr) the yle type of �.Use part a. in order to show that two permutations are onjugate if and onlyif they have the same yle type.



ASSIGNMENT SET 3 79. Use these results to show thatK4 = �(1); (1 2)(3 4); (1 3)(2 4); (1 4)(2 3)	is a normal subgroup of S4, the so alled Kleinian group of order 4.Hint, in oder to see that it is a subgroup of S4 it is best to write down the group table, whih showsthe losedness with respet to the group operation and with respet to taking inverses.Exerise 5: Find all the subgroups of D8 = 
(1 2 3 4); (1 4)(2 3)�, whih wasintrodued on the assingment set 2. Whih of the subgroups are normal subgroups?Solution to Exerise 1 a. By the Theorem of Lagrange we knowjG : Vj = jGjjVj; jG : Uj = jGjjUj ; and jU : Vj = jUjjVj:This proves the laim.b. We set H = U \ V. Then by Part a. we havejG : Vj �� jG : Hj and jG : Uj �� jG : Hj:Thus also the least ommon multiple divides jG : Hj, i. e.jG : Vj � jG : Uj = jG : Vj � jG : Ujgd �jG : Vj; jG : Uj� = lm �jG : Vj; jG : Uj� �� jG : Hj;and there is a number m > 0 suh thatm � jGjjVj � jGjjUj = m � jG : Vj � jG : Uj = jG : Hj = jGjjHj :From this equation we dedue with the produt formulajU � Vj = jUj � jVjjHj = jGj �m � jGj:Being a subset of G, this implies U � V = G.Solution to Exerise 2Sine eG 2 Ui for all i 2 I, eG 2 Ti2IUi, so that this set is non-empty. Letu; v 2 Ti2IUi. We have to show that u � v; u-1 2 Ti2IUi. By assumption u; v 2 Uifor all i 2 I, and thus u � v; u-1 2 Ui for all i 2 I, sine the Ui are subgroups. Butthen u � v; u-1 2 Ti2IUi, and Ti2IUi � G.Solution to Exerise 3 a. Being the intersetion of subgroups, N \ U is a sub-group of G, whih is ontained in U. Hene, it's a subgroup of U. It remainsto hek the normality ondition. Let u 2 U and n 2 N \U. Thenu � n � u-1 2 N \U;sine N is a normal subgroup of G and U is losed under multipliation. Thus,N \U�U.



80 A. ASSIGNMENTS AND SOLUTIONSb. Being the intersetion of subgroups N1 \N2 is a subgroup of G. It remains tohek a normality ondition. Let g 2 G and n 2 N1 \N2. Sine both, N1 andN2, are normal subgroups of G, we getg � n � g-1 2 Nifor i = 1; 2, and thus g � n � g-1 2 N1 \N2.Solution to Exerise 4 a. Let f1; : : : ; ng = fa1; : : : ; ang = fb1; : : : ; bng.\(" Suppose k = l. We de�ne a permutation � 2 Sn by� =  a1 : : : anb1 : : : bn ! :The inverse of � is then just�-1 =  b1 : : : bna1 : : : an ! :We laim that � Æ � Æ �-1 = �. For this we apply both maps to bi,i = 1; : : : ; n:��Æ�Æ�-1�(bi) = ���(ai)� = 8><>: �(ai+1) = bi+1 = �(bi); if 1 � i < k = l;�(a1) = b1 = �(bl); if i = k = l;�(bi) = ai = �(bi); if k + 1 = l+ 1 � i � n:\)" We may assume that k � l. Let � 2 Sn be suh that � Æ � Æ �-1 = �.Then�k = �� Æ � Æ �-1�k = � Æ �k Æ �-1 = � Æ (1) Æ �-1 = (1):Hene, l = o(�) � k, and thus k = l.b. Let � = �1 Æ : : : Æ �r and � = �1 Æ : : : Æ �s, where �i is a ki-yle with k1 � k2 �: : : � kr and �i is an li-yle with l1 � l2 � : : : � ls.\)" Suppose there is a � 2 Sn suh that � Æ � Æ �-1 = �. By Part a. we thenhave that !i := � Æ �i Æ �-1also is a ki-yle. We dedue thus that!1 Æ!2 Æ : : : Æ!r = �� Æ �1 Æ �-1� Æ �� Æ �2 Æ �-1� Æ : : : Æ �� Æ �r Æ �-1�= � Æ ��1 Æ �2 Æ : : : Æ �r� Æ �-1 = � Æ � Æ �-1 = �:Thus the yle type of �must be (k1; : : : ; kr). However, it is also (l1; : : : ; ls),whih implies that(k1; : : : ; kr) = (l1; : : : ; ls):\(" Let's now suppose that r = s and (k1; : : : ; kr) = (l1; : : : ; ls). Moreover,suppose that �i = (ai;1 : : : ai;ki) and �i = (bi;1 : : : bi;ki) for i = 1; : : : ; r.Thenf1; : : : ; ng = fai;j j i = 1; : : : ; r; j = 1; : : : ; kig = fbi;j j i = 1; : : : ; r; j = 1; : : : ; kig:



ASSIGNMENT SET 3 81As in the proof of Part a. we de�ne a permutation� =  a1;1 : : : ar;krb1;1 : : : br;kr ! ;and it follows for bi;j�� Æ � Æ �-1�(bi;j) = ���(ai;j)� = Æ �(ai;j+1) = bi;j+1 = �(bi;j); if 1 � j < ki;�(ai;1) = bi;1 = �(bi;j); if j = ki:This proves that � Æ � Æ �-1 = �.. We set e = (1), a = (1 2)(3 4), b = (1 3)(2 4) and  = (1 4)(2 3). Then themultipliation table of K4 looks likee a b e e a b a a e  bb b  e a  b a eThis shows that K4 is losed under the multipliation and that every elementhas an inverse. Thus K4 � S4 is a subgroup.Let now � 2 Sn be given and � 2 K4. We have to show that �Æ�Æ�-1 2 K4 inorder to see that K4 is a normal subgroup. If � = e, then the produt is againe and belongs to K4. If � 2 fa; b; g, then by Part b. the produt � Æ � Æ �-1has yle type (2; 2). However, all elements of this yle type in S4 belong toK4. Thus the produt does as well.Solution to Exerise 5Note, that with � = (1 2 3 4) and � = (1 4)(2 3) we have by Exerise 1 onAssignment Set 1 D8 = � id; �; �2; �3; �; � Æ �; � Æ �2; � Æ �3	= �(1); (1 2 3 4); (1 3)(2 4); (1 4 3 2);(1 4)(2 3); (1 3); (1 2)(3 4); (2 4)	:If U � D8, then by the Theorem of Lagrange jUj 2 f1; 2; 4; 8g.If jUj = 1, then of ourse U = 1.If jUj = 2, then U is yli and generated by one element of order 2. Thus U is oneof the groups h�i, h� Æ �i, 
� Æ �2�, 
� Æ �3�, or 
�2�.If jUj = 4, then U may be yli or it only ontains elements of order at most 2. Ifit is yli, then it must ontain two elements of order 4, whih are inverse to eahother, thus U = h�i. Otherwise U is one of the two groups 
�; �Æ�2� or 
�Æ�; �Æ�3�.If jUj = 8, then of ourse U = D8.



82 A. ASSIGNMENTS AND SOLUTIONSAssignment Set 4Exerises 1 and 2 should be handed in for marking.Exerise 1: Let � 2 Hom(G;H), where (G; �) and (H; �) are groups.a. Im(�) := �(G) � G and is alled the image of �.b. If � is bijetive, then �-1 2 Hom(H;G).In partiular, �Aut(G); Æ� is a subgroup of �Sym(G); Æ�.Exerise 2: Let (G; �) be a group and let N;N 0 � G be two normal subgroups.Prove the Isomorphism Theorem (N �N 0)=N 0 �= N=(N \N 0).Exerise 3: Suppose that A and B are �nite sets with the same number of ele-ments. Show that the groups � Sym(A); Æ� and �Sym(B); Æ� are isomorphi.Exerise 4: Let (G; �) be a group. We all Z(G) = fh 2 G j gh = hg 8 g 2 Gg theentre of G, i. e. the set of elements in G whih ommute with all other elements.1a. Z(G)� G.b. If G=Z(G) is yli, then G is abelian.2Exerise� 5: [Generators and Relations℄Let x and y be two di�erent symbols. Consider the set of wordsW = �x�1y�1 � � �x�ry�r �� �i; �i 2 Z; r � 1g [ feg;where e is just a symbol de�ning the so alled empty word. We use the ommonexponential laws in order to simplify suh words and we onsider words whih beomethe same that way to be the same, e. g.x3y5y-3x0y-2x-3 = x3y5y-3y-2x-3 = x3y5-3-2x-3 = x3x-3 = x3-3 = e:There is then a natural way to multiply words just by putting them together, andhaving the empty word e operate as the identity. This way W beomes a group,and obviously W = hx; yi is generated by the elements x; y.3Moreover, if M = fw1 = w 01; : : : ; wr = w 0rg is a set of equations of words in W -alled relations-, then we onsider the smallest normal subgroups whih ontainsthe set M 0 = �w-11 �w 01; : : : ; w-1r �w 0r	N(M) = \M 0�N�W(X)N;and we denote by hx; y j w1 = w 01; : : : ; wr = w 0ri the quotient group of W by thenormal subgroup N(M). By abuse of notation we will denote the generators of thisquotient group still by x and y rather than by xN(M) and yN(M).1Note, that obviously G is abelian if and only if G = Z(G).2This then implies G = Z(G)!3You are not required to prove these fats! Their proof is quite tedious and an be found - ina more general setting - in many textbooks, e. g. Mihael Weinstein, Examples of Groups, pp. 52�.



ASSIGNMENT SET 4 83a. Show that W has the following universal property: given any group (G; �) suhthat G = hg; hi, then there is a unique epimorphism � : W ! G suh that�(x) = g and �(y) = h.Moreover, if the relations wi = w 0i still hold when you replae x by g and y byh, then � indues an epimorphism� : hx; y j w1 = w 01; : : : ; wr = w 0ri �! G : w 7! �(w):with �(x) = g and �(y) = h.4b. Show that the group 
x; y �� xn = e; y2 = e; yxy-1 = x-1� is isomorphi toD2n.. Show that the group 
x; y �� x4 = e; y4 = e; yxy-1 = x-1� is isomorphi to Q8.d. Show that a non-abelian group of order 8 is either isomorphi to D8 or to Q8.Solution to Exerise 1 a. Sine eH = �(eG) 2 Im(�), the set is non-empty.Moreover, for g; g 0 2 G we have �(g)���g 0� = ��g�g 0� 2 Im(�) and �(g)-1 =��g-1� 2 Im(�). Hene, Im(�) � H.b. Let h; h 0 2 H be given. Sine � is bijetive, there are elements g; g 0 2 G suhthat �(g) = h and ��g 0� = h 0. We thus have for the inverse mapping �-1�-1�h � h 0� = �-1��(g) � �(g 0)� = �-1��(g � g 0)� = g � g 0 = �-1(h) � �-1�h 0�:For the \in partiular part" just note that we have shown in the leture thatAut(G) is losed under omposition of maps and that we have just proved thatit is also losed under taking inverses. Moreover, sine idG 2 Aut(G), it is anon-empty subset of Sym(G), and hene a subgroup thereof.Solution to Exerise 2Note that N �N 0 is atually a group, and N 0 is a normal subgroup thereof. We havealso seen that N \ N 0 � N, so that the quotient groups in this statement atuallyexist! Let's now de�ne a map by� : N! N �N 0=N 0 : n 7! nN 0:We are going to show that this map is an epimorphism with kernel N\N 0, and thenwe apply the Homomorphism Theorem.Step 1 : � is a homomorphism.Let n;m 2 N, then �(n �m) = nmN 0 = nN 0 �mN 0 = �(n) � �(m).Step 2 : � is a surjetive.Let nn 0N 0 2 NN 0=N 0 be arbitrary with n 2 N and n 0 2 N 0. Then �(n) = nN 0 =nn 0N 0, thus � is surjetive.Step 3 : Ker(�) = N \N 0.4That the relations wi = w 0i are satis�ed when replaing x by g and y by h is the same assaying that N(M) is ontained in the kernel of �.



84 A. ASSIGNMENTS AND SOLUTIONSWe have n 2 Ker(�) if and only if nN 0 = N 0 if and only if n 2 N 0 \N.Applying now the Homomorphism Theorem we getN=N \N 0 = N=Ker(�) �= Im(�) = NN 0=N 0:Solution to Exerise 3Sine A and B have the same order, there exists a bijetion� : A! B:We use this to de�ne a map� : Sym(A)! Sym(B) : � 7! � Æ � Æ �-1:This map is obviously bijetive with inverse� : Sym(B)! Sym(A) : � 7! �-1 Æ � Æ �:Moreover, for �; � 2 Sym(A) we have�(� Æ �) = � Æ � Æ � Æ �-1 = � Æ � Æ �-1 Æ � Æ � Æ �-1 = �(�) Æ �(�):Thus � is also a homomorphism, hene it is an isomorphism.Solution to Exerise 4 a. Let's show �rst that Z(G) is atually a subgroup ofG. Sine eG ommutes with any element in G, it belongs to Z(G), so that theset is non-empty. Let h; h 0 2 Z(G) and g 2 G arbitrary. Thenhh 0g = hgh 0 = ghh 0 and h-1g = �g-1h�-1 = �hg-1�-1 = gh-1;hene hh 0; h-1 2 Z(G) and Z(G) � G.It remains to hek the normality ondition. Let for this g 2 G and h 2 Z(G).Then ghg-1 = hgg-1 = heG = h 2 Z(G):b. By assumption there is some g 2 G suh that G=Z(G) = 
gZ(G)� is generatedby the oset gZ(G). This, however, implies thatG = [k2ZgkZ(G):Let now h; h 0 2 G be arbitrary. We then �nd k; k 0 2 Z and u; u 0 2 Z(G) suhthat h = gku and h 0 = gk 0u 0. Thus, using the exponential laws and the fatthat u and u 0 ommute with any element in G, we gethh 0 = gkugk 0u 0 = gkgk 0uu 0 = gk 0gku 0u = gk 0u 0gku = h 0h:Thus G is ommutative.Solution to Exerise 5 a. We de�ne a map� : W! G : x�1 � � �y�r 7! g�1 � � �h�r:Note that the representation of an element in W as a word is not unique; weused the exponential laws to identify ertain words! We therefore have to hekthat the de�nition of � does not depend on the given representation. However,



ASSIGNMENT SET 4 85sine the exponential laws also apply in G, two representations of the sameword will lead to the same image. Hene, � is wellde�ned.Moreover, it is indeed lear that � is a homomorphism mapping x to g and yto h, and sine G is generated by g and h the homomorphism is also surjetive.Let's now show the uniqueness. Let � 2 Hom(W;G) be suh that �(x) = gand �(y) = h, and let x�1 � � �y�r 2 W be any word. Using the rules forhomomorphisms��x�1 � � �y�r� = �(x)�1 � � ��(y)�r = g�1 � � �h�r = ��x�1 � � �y�r�:It remains to show that � indues an epimorphism from hx; y j w1 = w 01; : : : ; wr =w 0ri to G, if g and h satisfy the relations wi = w 0i for i = 1; : : : ; r. Note thatthe latter is the same as saying thatw-1i w 0i 2 Ker(�);and sine Ker(�) is a normal subgroup of W we thus have N(M) � Ker(�).We only have to show that the above map � is wellde�ned, then it's learthat it is an epimorphism. Let w and w 0 be two words whih oinide inhx; y j w1 = w 01; : : : ; wr = w 0ri, i. e. wN(M) = w 0N(M). Thusw-1w 0 2 N(M) � Ker(�);and hene eG = ��w-1w 0� = �(w)-1 � �(w 0), whih implies �(w) = �(w 0).The morphism � is therefore wellde�ned.b. Reall from Exerise 1, Set 1, thatD2n = h�; �i = ��i; ��i �� i = 0; : : : ; n- 1gand that the generators � and � satisfy the relations�n = (1); �2 = (1) and ���-1 = �-1:Hene by Part a. there is an epimorphism� : 
x; y �� xn = e; y2 = e; yxy-1 = x-1� �! D2n:One we know that the group 
x; y �� xn = e; y2 = e; yxy-1 = x-1� has at most2n elements, we are therefore done, sine then the map must be bijetive.The same proof as in Exerise 1, Set 2, applies in order to show
x; y �� xn = e; y2 = e; yxy-1 = x-1� = �xiyj �� i = 0; 1; j = 0; : : : ; n- 1	:. Reall from Exerise 5, Set 2, thatQ8 = hA;Bi = �AiBj j i = 0; : : : ; 3; j = 0; 1	where A = � 0 -11 0 � and B = ( 0 ii 0 ). Moreover, we have shown thereA4 = 1; B4 = 1 and BAB-1 = A-1:We may therefore one more apply Part a. in order to get an epimorphism� : 
x; y �� x4 = e; y4 = e; yxy-1 = x-1� �! Q8:



86 A. ASSIGNMENTS AND SOLUTIONSAnd the same proof as in Exerise 5, Set 2, shows that
x; y �� x4 = e; y4 = e; yxy-1 = x-1� = �xiyj �� i = 0; : : : ; 3; j = 0; 1	:Hene the group has at most 8 elements, and sine � is a surjetion on a setwith 8 elements, this must be a bijetion.d. Sine G is not abelian, it is not yli, and hene it does not ontain any elementof order 8. By the Theorem of Lagrange the elements of G must therefore beof order 1, 2 or 4.Suppose that G does not ontain any element of order 4. Then g2 = eG for allg 2 G, and hene g = g-1 for all g 2 G. Let g; h 2 G be given. Thengh = (gh)-1 = h-1g-1 = hg:This means that G is abelian in ontradition to our assumption.Hene there is some g 2 G of order 4. Then N = hgi is a subgroup of index 2,and is therefore a normal subgroup. Let u 2 GnN and U = hui. Sine N�G,the set UN is a subgroup of G with more than 4 elements. By the Theorem ofLagrange it must therefore be equal to G. That isG = UN = hu; gi:Moreover, sine N is a normal subgroup, we have ugu-1 2 N and this elementhas the same order as the element g, whih is 4. There are only two hoiesfor this in N, namely g and g-1. If ugu-1 = g, then ug = gu. However, if thetwo generators of G ommute, then G is abelian, whih it is not by assumption.Therefore ugu-1 = g-1:We now have to distinguish two ases. u ould be of order 2 or it ould be oforder 4.If o(u) = 2, then g and u satisfy the relationsg4 = e; u2 = e and ugu-1 = g-1:Hene by Part a. we get { in the same way as in Part b. { an isomorphism
x; y �� x4 = e; y2 = e; yxy-1 = x-1� �= G:But by Part b. this group is also isomorphi to D8.If o(u) = 4, then g and u satisfy the relationsg4 = e; u4 = e and ugu-1 = g-1:Hene by Part a. we get { in the same way as in Part . { an isomorphism
x; y �� x4 = e; y4 = e; yxy-1 = x-1� �= G:But by Part . this group is also isomorphi to Q8.



ASSIGNMENT SET 5 87Assignment Set 5One of the Exerises 1 or 3 should be handed in for marking.Exerise 1: Let (G; �) be a group and N � G.Show that N is a normal subgroup of G if and only if G = NG(N).Exerise 2: [Class Equation℄ Let (G; �) be a �nite group. We all for g 2 G theset CG(g) = fh 2 G j hg = ghg the entraliser of g in G.a. Show that the group G ats on the set G by onjugation, i. e. show that� : G! Sym(G) : g 7! �gis a homomorphism, where �g : G! G : h 7! hg = ghg-1.b. Show that there are g1; : : : ; gn 2 G suh thatjGj = nXi=1 jG : CG(gi)j:. Show that there g1; : : : ; gr 2 G suh that jG : CG(gi)j > 1 andjGj = jZ(G)j + rXi=1 jG : CG(gi)j:Hint, show that CG(g) is just the stabiliser StabG(g) of g under the group operation in a. and use theOrbit Stabilser Theorem. By Z(G) we mean the entre of G introdued in Exerise 4, Set 4.Exerise 3: Let (G; �) be a group of order pn for some prime p. Show thatjZ(G)j > 1.Hint, use the lass equation.Exerise 4: Show that any group of order p2, p some prime, is abelian.Hint, use Exerise 3 above and Exerise 4, Set 4.Exerise� 5: Calulate Z(D8) and Z(Q8).Hint, you may use Exerise 3 above and Exerise 4, Set 4, in order save many alulations.Exerise 6: Use Corollary 4.7 to show that D8 is not a normal subgroup of S4.Solution to Exerise 1By de�nition NG(N) = �g 2 G �� N = Ng = gNg-1	. However again by de�nition,N is normal if and only if Ng = N for all g 2 G, and this is then the ase if andonly if g 2 NG(N) for all g 2 G, i. e. G = NG(N).Solution to Exerise 2 a. Note, we have already shown in the leture that themaps �g are automorphisms of G, hene they are in partiular bijetive andbelong to Sym(G).We have to show that �(g � g 0) = �(g) Æ �(g 0), or with the above notation�gg 0 = �g Æ �g 0. Let h 2 G. Then�gg 0(h) = (gg 0)�h�(gg 0)-1 = gg 0hg 0-1g-1 = �g�g 0hg 0-1� = �g��g 0(h)� = (�gÆ�g 0)(h):



88 A. ASSIGNMENTS AND SOLUTIONSb. We note that StabG(g) = fh 2 G j gh = gg = CG(g), and by the OrbitStabiliser Theorem we therefore have j orbG(g)j = jG : CG(g)j.Sine G operates on G, there are g1; : : : ; gn 2 G suh that G =`ni=1 orbG(gi)is the disjoint union of the orbits of the gi. ThusjGj = nXi=1 j orbG(gi)j = nXi=1 jG : CG(gi)j:. Note that g 2 Z(G) if and only if gh = hg for all h 2 G if and only ifg = hgh-1 = gh for all h 2 G if and only if orbG(g) = �gh �� h 2 G	 = fggonsists only of one element.Let g1; : : : ; gn 2 G be as in Part b. and suppose that they have been ordered insuh a way that the orbits of g1; : : : ; gr onsist of more than one element andthe orbits of gr+1; : : : ; gn all ontain only one element. We have just provedthat then Z(G) = n[i=r+1 orbG(gi):The result therefore follows from Part b.Solution to Exerise 3By the Class Equation we know there are g1; : : : ; gr 2 G suh thatpn = jGj = jZ(G)j + rXi=1 jG : CG(gi)j; (13)and jG : CG(gi)j > 1 for all i = 1; : : : ; r. Sine this index jG : CG(gi)j is a divisor ofjGj = pn, it must be divisible by p. Considering the Equation (13) modulo p we getjZ(G)j � 0(mod p):Thus the number must be divisible by p as well, in partiular it is greater than 1.Solution to Exerise 4Let G be a group of order p2. By Exerise 3 the entre Z(G) has order greater than1, and by the Theorem of Lagrange its order must then be p or p2. If the order isp2, then G = Z(G) and G is abelian.Suppose therefore the order of Z(G) was p, then however G=Z(G) has also order pand is therefore yli. Hene by Exerise 4, Set 4, G is again abelian. (However,this implies Z(G) = G and its order is p2 in ontradition to our assumption! Thatis, this ase will not our.)Solution to Exerise 5For both groups D8 and Q8 the entre must have order 1, 2, 4 or 8 by the TheoremLagrange. By Exerise 3 above it annot be 1.If the order was 8, that is, if the entre was the whole group, the group would beabelian, whih both are not.If it had order 4, then the quotient group by the entre would be of order 2 andhene yli. But then again, by Exerise 4, Set 4, the group itself would be abelian,whih it is not.



ASSIGNMENT SET 5 89Thus it must have order 2 in both ases. It therefore suÆes in both ases to �ndone element of order two whih ommutes with all the other elements, and this onewill then generate the entre.Using the notation from Exerise 1, Set 1, and Exerise 5, Set 2, we see that �2 2 D8and A2 = B2 2 Q8 will do, i. e.Z(D8) = 
�2� and Z(Q8) = 
A2�:Solution to Exerise 6Besides D8 = 
(1 2 3 4); (1 4)(2 3)� the group S4 ontains two other subgroupsof order 8 { both of whih are isomorphi to D8 { namely 
(1 2 4 3); (1 3)(2 4)�and 
(1 3 2 4); (1 4)(2 3)�. Sine 8 = 23 is the maximal power of 2 whih dividesthe order of S4, whih is 4! = 24, these three groups are 2-Sylow subgroups of S4.Having more than one 2-Sylow subgroup, none of them an be normal by Corollary4.7.



90 A. ASSIGNMENTS AND SOLUTIONSAssignment Set 6One of the Exerises 1 or 3 should be handed in for marking.Exerise 1: Calulate the eigenvalues and the eigenspaes of the following matrixand deide whether it is diagonalisable, triangulable or neither of the two:A = 0BBB� 1 1 0 10 3 0 0-1 1 2 1-1 1 0 3
1CCCA 2 Mat(4� 4;R):Exerise 2: Let V = �P2i=0 aixi �� a0; a1; a2 2 R	 be the 3-dimensional vetorspae of polynomials of degree less than or equal to 2, and let � 2 R be �xed.Consider the mapf : V! V : 2Xi=0 aixi 7! 2Xi=0 ai(x+ �)i - � � 2Xi=1 ai � i � xi-1:Show the following:a. f is R-linear.b. Calulate MBB(f), where B = �1; x; x2� is the anonial basis of V.. Calulate the harateristi polynomial �f.Exerise 3: Let V be an n-dimensional K-vetor spae, and let f 2 EndK(V) suhthat fn-1 6= 0, but fn = 0, where 0 means the zero-map. Show:a. There is a v 2 V suh that B = �fn-1(v); fn-2(v); : : : ; f(v); v� is a basis of V.b. Find the matrix representation MBB(f) w. r. t. the basis B in Part a.Exerise 4: Let V be a �nite-dimensional K-vetor spae and let g 2 EndK(V).Show there is an m � 1 suh thatKer(g) ( Ker �g2� ( : : : ( Ker �gm� = Ker �gk� for all k � m:Exerise 5: Use the Theorem of Cayley-Hamilton to show that for A 2 Gln(K)there is a polynomial g =Pn-1i=0 biti 2 K[t℄ suh that A-1 = g(A) =Pn-1i=0 biAi.Exerise 6: Let f 2 EndK(V) and let �; � 2 K be two di�erent eigenvalues of f.Show that for any m � 0Eig(f; �) \Ker �(f- � idV)m� = f0g:Solution to Exerise 1�A = det(A - t1) = (3 - t) � (2 - t)3, and hene A is triangulable, sine the har-ateristi polynomial fatorises. Eig(A; 2) = 
(1; 0; 0; 1)t; (0; 0; 1; 0)t�, Eig(A; 3) =
(1; 1; 1; 1)t�.A is not diagonalisable, sine K4 does not posses a basis of eigenvetors of A.



ASSIGNMENT SET 6 91Solution to Exerise 2 a. Let p = a2x2 + a1x + a0; q = b2x2 + b1x + b0 2 Vand �; � 2 R be given. Thenf(�p+�q) = f 2Xi=0 (ai + bi) � xi! = 2Xi=0 (�ai+�bi)�(x+�)i-�� 2Xi=1 (�ai+�bi)�i�xi-1= � 2Xi=0 ai(x + �)i - � � 2Xi=1 ai � i � xi-1!+� 2Xi=0 bi(x+ �)i - � � 2Xi=1 bi � i � xi-1! = �f(p)+�f(q):b. Note that f(1) = 1, f(x) = (x+�)-� = x and f�x2� = (x+�)2-2�x = x2+�2,hene MBB(f) =  1 0 �20 1 00 0 1! :. �f = �MBB(f) = (1- t)3.Solution to Exerise 3 a. By assumption fn-1 6= 0, so there is a v 2 V suhthat fn-1(v) 6= 0. De�ne B as in the laim using this vetor v.Sine V has dimension n it suÆes to show that B is linearly independent. Forthis let �1; : : : ; �n 2 K suh that Pni=1 �i � fn-i(v) = 0. We have to show that�1 = : : : = �n = 0.Suppose this is not the ase and let m 2 f1; : : : ; ng be minimal suh that�m 6= 0. Then0 = fm-1(0) = fm-1 nXi=1 �ifn-i(v)!= m-1Xi=1 �ifn-i+m-1(v) + �mfn-m+m-1(v) + nXi=m+1�ifn-i+m-1(v) = �mfn-1(v);where the �rst sum is zero sine �1 = : : : = �m-1 = 0, and the last sumvanishes, sine fn is the zero-map. However, by assumption neither �m norfn-1(v) vanish, whih leads to a ontradition.b. Sine f�fk(v)� = fk+1(v) and this is 0, if k = n- 1, we getMBB(f) = 0BBBBB�0 1 0 : : : 0... . . . . . . . . . ...... . . . . . . 0... . . . 10 : : : : : : : : : 0
1CCCCCA :Solution to Exerise 4If v 2 Ker �gk�, then gk+1(v) = g�gk(v)� = g(0) = 0. Thus for all k � 1 we haveKer �gk� � Ker �gk+1�: (14)Moreover, sine the vetor spae V is �nite dimensional, the hain of kernels annotasend forever. Let thereforem = min�k � 1 �� Ker �gk� = Ker �gk+1�	:



92 A. ASSIGNMENTS AND SOLUTIONSWe have to show that then Ker �gm� = Ker �gk� for all k � m, and we do this byindution on k. We get the indution base k = m for free. Let's now suppose thatk > m and that we have already shown Ker �gm� = Ker �gk-1�. By Equation (14)we thus get Ker �gm� = Ker �gk-1� � Ker �gk�.It remains to prove the opposite inlusion. Let therefore v 2 Ker �gk� be given.Then 0 = gk(v) = gk-1�g(v)�. Hene g(v) 2 Ker �gk-1� = Ker �gm�, and thusgm+1(v) = gm�g(v)� = 0:However, by de�nition of m we have Ker �gm� = Ker �gm+1� and thus we haveshown v 2 Ker �gm+1� = Ker �gm�:Solution to Exerise 5Let �A = (-1)ntn + an-1tn-1 + : : :+ a0 2 K[t℄ be the harateristi polynomial ofA.Sine A is invertible, the kernel of A onsists only of the zero-vetor. HeneEig(A; 0) = Ker(A) = f0g, whih implies that 0 is not an eigenvalue of A. Henea0 = �A(0) 6= 0. De�neg = (-1)n-a0 � tn-1 + an-1-a0 � tn-2 + : : :+ a1-a0 2 K[t℄:Then g(A) �A = 1-a0 � �A(A) + 1 = 1;where the latter equality is due to the Thm. of Cayley-Hamilton. Thus g(A) = A-1.Solution to Exerise 6We do the proof by indution on m � 0. For m = 0 the kernel of (f-� idV)0 = idVonsists only of the zero-vetor, so there is nothing to show.Let now m > 0 and suppose the laim has been proved for m - 1. Let thenv 2 Eig(f; �) \ Ker �(f- � idV)m�, we have to show the v = 0. By assumption0 = (f- � idV)m(v) = (f- � idV)m-1�(f- � idV)(v)� = (f- � idV)m-1�f(v) - �v�= (f- � idV)m-1�(�- �) � v� = (�- �) � (f- � idV)m-1(v):Sine � 6= � this implies (f- � idV)m-1(v) = 0, and thereforev 2 Eig(f; �) \ Ker �(f- � idV)m-1� = f0g:



ASSIGNMENT SET 7 93Assignment Set 7Exerise 3 should be handed in for marking.Exerise 1: Find a Jordan normal form and the orresponding transformationmatrix T for the following matries:A =  0 1-2 3! ; B =  4 1-1 6! ; C = 0B� 0 1 12 1 -1-6 -5 -31CA and D = 0B�-3 -1 1-1 -3 1-2 -2 01CA :Exerise 2: Find a Jordan normal form for the Endomorphism in Exerise 2 onAssignment Set 6.Exerise 3: Let V be a K-vetor spae, U � V a subspae, and b 2 BilK(V).Showa. U? = fv 2 V j b(v; u) = 0 8 u 2 Ug is a subspae of V.b.� If U = hvi and b(v; v) 6= 0, then V = U+U?.Exerise 4: Consider b : K2 ! K2 : �(x1; x2)t; (y1; y2)t) 7! 2 � x1 � y1 + x1 � y2 +y1 � x2 - x2 � y2. Let E = (e1; e2) be the standard basis of K2 and B = (v1; v2) withv1 = (1; 1)t and v2 = (1;-1)t some other basis.a. Show that b is a bilinear map.b. Calulate the matrix representations ME(b) and MB(b).. Calulate the transformation matrix TEB and verifyMB(b) = �TEB�t �ME(b) � TEB:Exerise 5: Let b 2 BilK(V) be a bilinear form and q = qb : V! K : v 7! b(v; v)its assoiated quadrati form. Show that for all u; v;w 2 Vq(u+ v +w) - q(u+ v) - q(v+w) - q(u+w) + q(u) + q(v) + q(w) = 0:Solution to Exerise 1�A = (1- t) � (2- t); �B = (5- t)2; �C = (2+ t)2 � (2- t); �D = (2+ t)3:A =  0 1-2 3! ; J(A) =  1 00 2! ; T =  1 11 2! T-1 =  2 -1-1 1 ! :B =  4 1-1 6! ; J(B) =  5 10 5! ; T =  -1 1-1 0! T-1 =  0 -11 -1! :C =  0 1 12 1 -1-6 -5 -3! ; J(C) =  -2 1 00 -2 00 0 2! ; T =  -1 -1 01 1 -11 0 1 ! T-1 =  1 1 1-2 -1 -1-1 -1 0 ! :D =  -3 -1 1-1 -3 1-2 -2 0! ; J(D) =  -2 1 00 -2 00 0 -2! ; T =  -1 1 -1-1 0 1-2 0 0 ! T-1 =  0 0 -121 1 -10 1 -12! :



94 A. ASSIGNMENTS AND SOLUTIONSSolution to Exerise 2We showed in Exerise 2 on Assignment Set 6 that for B = �1; x; x2�MBB(f) = 0�1 0 �20 1 00 0 11A :Thus dimR �Eig(f; 1)� = dimR �Ker(f - idV)� = 3 - rank �MBB(f) - 1� = 2, whihimplies that the following matrix is a Jordan normal form for f:J(f) = 0�1 1 00 1 00 0 11A :Solution to Exerise 3 a. Sine b(0; u) = b(0+0; u) = b(0; u)+b(0; u) for anyu 2 U, we see that b(0; u) = 0 for any u 2 U. Therefore 0 2 U? and the latteris non-empty. Let now v;w 2 U?, �; � 2 K and u 2 U. Thenb(�v+ �w;u) = �b(v; u) + �b(w;u) = 0;and hene �v + �w 2 U?. This shows that U? is a subspae of V.b. Let w 2 V be arbitrary. We have to show that w is a sum of a vetor in U andone in U?. Set � = b(v;w)b(v;v) 2 K and u = w - � � v. Thenb(v; u) = b(v;w- �v) = b(v;w) - �b(v; v) = 0:Hene, u 2 U?, and w = �v+ u 2 U +U?. This proves the laim.Solution to Exerise 4 a. Note that b�(x1; x2)t; (y1; y2)t) = (x1; x2)�A�(y1; y2)t,where A = � 2 11 -1 �. Sine matrix multipliation is distributive, b is a bilinearform, and sine A = At, i. e. sine A is symmetri,b(x; y) = xt �A � y = xt �At � y = (A � x)t � y = �(A � x)t � y�t = yt � (A � x) = b(y; x):Hene, b is symmetri.b. Just alulating b(ei; ej) and b(vi; vj) for all i; j we getME(b) =  2 11 -1! = A and MB(b) =  3 33 -1! :. The base hange TEB has the vetors of B as olumn vetors, sine E is thestandard basis, thusTEB =  1 11 -1! and MB(b) = �TEB�t �ME(b) � TEB:Solution to Exerise 5Let u; v;w 2 V be given. Note thatq(u+ v +w) = b(u+ v+w;u+ v +w)= b(u; u)+2b(u; v+w)+b(v+w; v+w) = q(u)+2b(u; v)+2b(u;w)+q(v+w)



ASSIGNMENT SET 7 95andq(u+ v) = b(u+ v; u+ v) = b(u; u) + 2b(u; v) + b(v; v) = q(u) + 2b(u; v) + q(v)andq(u+w) = b(u+w;u+w) = b(u; u)+2b(u;w)+b(w;w) = q(u)+2b(u;w)+q(w)Using these results we �nally getq(u+ v +w) - q(u+ v) - q(v +w) - q(u+w) + q(u) + q(v) + q(w)= �q(u) + 2b(u; v) + 2b(u;w) + q(v +w)�- �q(u) + 2b(u; v) + q(v)�- q(v +w) - �q(u) + 2b(u;w) + q(w)�+ q(u) + q(v) + q(w) = 0:



96 A. ASSIGNMENTS AND SOLUTIONSAssignment Set 8Exerise 1 should be handed in for marking.Exerise� 1: We all a bilinear form b 2 BilR(V) positive de�nite if and only ifb(v; v) > 0 for all 0 6= v 2 V. Let A = ( a11 a12a21 a22 ) 2 Mat(2 � 2;R) be a symmetrimatrix. Show, the bilinear form bA is positive de�nite if and only if a11 > 0 anddet(A) > 0.Hint, use Corollary 2.11 to �nd a T 2 Gl2(R) suh that Tt � A � T = ( a 00 b ) with a; b 2 f-1; 0; 1g, and notethat Tt � A � T = �bA(ti; tj)�i;j=1;2 if tk denotes the k-th olumn of T .Exerise 2: Calulate the rank, the index and the signature of the bilinear formorresponding to the following symmetri matries:A =  -1 44 -16! 2 Mat(2� 2;R) and B = 0BBB�0 0 1 00 0 1 11 1 0 10 1 1 0
1CCCA 2 Mat(4� 4;R):

Exerise 3: Use the Algorithm of Gram-Shmidt to alulate an ONB of thesubspae 
(1;-1; 1;-1)t; (1; 0; 1; 0)t; (2; 2; 1; 0)t� of K4 w. r. t. the standard salarprodut.Exerise 4: Let �V; h�; �i� be a Hilbert spae and U � V a subspae of V. Showthata. U? � V is a subspae of V.b. V = U�U?, i. e. V = U+U? and U \U? = f0g.Hint, in b. show �rst that U\U? = f0g and alulate then the dimension of U+U?, taking Gram-Shmidtinto onsideration.Exerise 5: Find for the following matrix an orthogonal matrix T whih diago-nalises it: A = 0B� 1 0 -20 -1 0-2 0 -11CA :Exerise 6: Let f 2 EndK(V), �V; h�; �i� a �nite-dimensional Hilbert spae. Showthere is a unique endomorphism6 f� 2 EndK(V) suh that for all v;w 2Whf(v); wi = 
v; f�(w)�:6Note, f� is alled the adjoint of f, and f is self-adjoint if and only if f = f�!



ASSIGNMENT SET 8 97Solution to Exerise 1We start by olleting some useful remarks. By Corollary 2.11 there is an invertiblematrix T = � t11 t12t21 t22 � 2 Gl2(R) suh thatTt �A � T =  a 00 b! ; (15)with a; b 2 f-1; 0; 1g. This givesdet(A) � det(T)2 = det �Tt �A � T�= a � b (16)The olumns t1 = (t11; t21)t and t2 = (t12; t22)t of T form a basis of K2, sine T isinvertible, and we havebA(t1; t1) = a; bA(t1; t2) = bA(t2; t1) = 0 and bA(t2; t2) = b: (17)Let v = �1t1 + �2t2. Then bA(v; v) = �21a+ �22b: (18)If bA is positive de�nite, then a11 = bA(e1; e1) > 0and in view of Equation (16) and (17) we havedet(A) � det(T)2 = bA(t1; t1) � bA(t2; t2) > 0;and hene also det(A) > 0.Suppose now, vie versa, that a11 > 0 and det(A) > 0. We have to show thatbA(v; v) > 0 for all v 2 K2.Note �rst of all, that det(A) > 0 implies either a = b = 1 or a = b = -1 in view ofEquation (15) and (16). Let �1; �2 2 R be suh that e1 = �1t1 + �2t2, then0 < a11 = bA(e1; e2) = �21a+ �22b:Thus we must have a = b = 1.Let now v = �1t1 + �2t2 2 K2 be arbitrary, then by Equation (18) bA(v; v) =�21 + �22 > 0, sine a = b = 1. Hene b is positive de�nite.Solution to Exerise 2The normal forms ofA and Bmay be alulated using the symmetri Gau�-Algorithm7and turn out to be�-1 00 0� respetively 0B�1 0 0 00 1 0 00 0 -1 00 0 0 -11CA :Thus rank(A) = 1, index(A) = 0 and signature(A) = -1, while rank(B) = 4,index(B) = 2 and signature(B) = 0.7For B do the following row-olumn-operations (R/C): 1) II 7! II - I; 2) III 7! III - II; 3)I 7! I+ 12 II; 4) III 7! III- I; 5) II 7! II+ 12 IV; 6) IV 7! IV- II.



98 A. ASSIGNMENTS AND SOLUTIONSSolution to Exerise 3Let u1 = (1;-1; 1;-1)t, u2 = (1; 0; 1; 0)t and u3 = (2; 2; 1; 0)t. Using the Algorithmof Gram-Shmidt, we get:v1 = 1jju1jj � u1 = 12 � (1;-1; 1;-1)t:We setv 02 = u2 - hu2; v1i � v1 = (1; 0; 1; 0)t - 12 � (1;-1; 1;-1)t = 12 � (1; 1; 1; 1)tand then again v2 = 1jjv 02jj � v 02 = 12 � (1; 1; 1; 1)t:And �nallyv 03 = u3-hu3; v1i�v1-hu3; v2i�v2 = (2; 2; 1; 0)t-14 �(1;-1; 1;-1)t-54 �(1; 1; 1; 1)t = 12 �(1; 2;-1;-2)t:Hene v3 = 1jjv 03jj � v 03 = 1p10 � (1; 2;-1;-2)t:And (v1; v2; v3) is an ONB of U = hu1; u2; u3i.Solution to Exerise 4 a. Sine 0 is orthogonal to every vetor, 0 2 U? and thelatter is non-empty. Let now v;w 2 U?, �; � 2 K and u 2 U. Thenh�v+ �w;ui = �hv; ui+ �hw;ui = 0;and hene �v + �w 2 U?. This shows that U? is a subspae of V.b. We show �rst that U \ U? = f0g. If v 2 U \ U?, then hv; vi = 0. Sine thesalar produt is de�nite, this implies v = 0.It remains to show that V = U+U?. Extend an ONB (v1; : : : ; vr) of U to anONB (v1; : : : ; vn) of V. Then vr+1; : : : ; vn 2 U? and henedimK �U?� � n - r = dimK(V)- dimK(U):By the dimension formula for U+U? we therefore getdimK(V)� dimK �U+U?� = dimK(U)+ dimK �U?�- dimK �U\U?� � dimK(V):This, however, implies dimK(V) = dimK �U+U?� and V = U+U?.Solution to Exerise 5Note �rst, sine A is symmetri, hene self-adjoint over R, there exists an orthogonalmatrix T suh that T-1 � A � T is a diagonal matrix, and the olumns of T are anONB of eigenvetors of R3.We have �A = (3- t) � (1- t)2, so thatT-1 �A � T = 0�-1 0 00 -1 00 0 31A :In order to alulate T, we have to alulate the eigenspaes w. r. t. -1 and 3, andthen to use Gram-Shmidt to orthonormalize them. This givesEig(A;-1) = 
(0; 1; 0)t; 1p2 � (1; 0; 1)t� and Eig(A; 3) = 
 1p2 � (1; 0;-1)t�:



ASSIGNMENT SET 8 99Thus the following matrix will do:T = 0B�0 1p2 1p21 0 00 1p2 - 1p21CA :Solution to Exerise 6Let's �rst show the existene of f�. For this we hoose an ONB B = (v1; : : : ; vn) ofV. We de�ne f� on the basis vetorsf�(vj) = nXi=1 hvj; f(vi)i � vi (19)for i = 1; : : : ; n. By linear ontinuation this de�nes an endomorphism f� 2 EndK(V),i. e. if v =Pni=1 �ivi 2 V, thenf�(v) = nXj=1 nXi=1 �j � hvj; f(vi)i � vi:We have to show that hf(v); wi = hv; f�(w)i for all v;w 2 V.By the Parseval-Equation we havef�(vj) = nXi=1 hf�(vj); vii � vi: (20)The uniqueness of the basis representation of a vetor gives in view of Equation (19)and (20) therefore hvj; f(vi)i = hf�(vj); viior equivalently hf(vi); vji = hvi; f�(vj)ifor all i; j = 1; : : : ; n. Let now v =Pni=1 �ivi and w =Pnj=1 �jvj be given, thenhf(v); wi = nXi=1 nXj=1 �i�jhf(vi); vji = nXi=1 nXj=1 �i�jhvi; f�(vj)i = hv; f�(w)i:It remains to show the uniqueness. Let therefore f 0 2 EndK(V) be any endomor-phism suh that hf(v); wi = hv; f 0(w)i (21)for all v;w 2 V. We have to show f 0(w) = f�(w) for all w 2 V. From Equation(21) if follows that0 = hv; f 0(w)i- hv; f�(w)i = hv; f 0(w) - f�(w)ifor all v;w 2 V. Fix w and hoose now v = f 0(w) - f�(w), thenhf 0(w) - f�(w); f 0(w) - f�(w)i = 0;whih implies f 0(w) - f�(w) = 0, sine the salar produt is de�nite.
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